/* Fallback functions when the main IOMMU code is not compiled in. This code is roughly equivalent to i386. */ #include <linux/dma-mapping.h> #include <linux/scatterlist.h> #include <linux/string.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/mm.h> #include <asm/processor.h> #include <asm/iommu.h> #include <asm/dma.h> static int check_addr(char *name, struct device *hwdev, dma_addr_t bus, size_t size) { if (hwdev && !dma_capable(hwdev, bus, size)) { if (*hwdev->dma_mask >= DMA_BIT_MASK(32)) printk(KERN_ERR "nommu_%s: overflow %Lx+%zu of device mask %Lx\n", name, (long long)bus, size, (long long)*hwdev->dma_mask); return 0; } return 1; } static dma_addr_t nommu_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { dma_addr_t bus = page_to_phys(page) + offset; WARN_ON(size == 0); if (!check_addr("map_single", dev, bus, size)) return DMA_ERROR_CODE; flush_write_buffers(); return bus; } /* Map a set of buffers described by scatterlist in streaming * mode for DMA. This is the scatter-gather version of the * above pci_map_single interface. Here the scatter gather list * elements are each tagged with the appropriate dma address * and length. They are obtained via sg_dma_{address,length}(SG). * * NOTE: An implementation may be able to use a smaller number of * DMA address/length pairs than there are SG table elements. * (for example via virtual mapping capabilities) * The routine returns the number of addr/length pairs actually * used, at most nents. * * Device ownership issues as mentioned above for pci_map_single are * the same here. */ static int nommu_map_sg(struct device *hwdev, struct scatterlist *sg, int nents, enum dma_data_direction dir, struct dma_attrs *attrs) { struct scatterlist *s; int i; WARN_ON(nents == 0 || sg[0].length == 0); for_each_sg(sg, s, nents, i) { BUG_ON(!sg_page(s)); s->dma_address = sg_phys(s); if (!check_addr("map_sg", hwdev, s->dma_address, s->length)) return 0; s->dma_length = s->length; } flush_write_buffers(); return nents; } static void nommu_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_addr) { free_pages((unsigned long)vaddr, get_order(size)); } static void nommu_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { flush_write_buffers(); } static void nommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction dir) { flush_write_buffers(); } struct dma_map_ops nommu_dma_ops = { .alloc_coherent = dma_generic_alloc_coherent, .free_coherent = nommu_free_coherent, .map_sg = nommu_map_sg, .map_page = nommu_map_page, .sync_single_for_device = nommu_sync_single_for_device, .sync_sg_for_device = nommu_sync_sg_for_device, .is_phys = 1, };