// SPDX-License-Identifier: GPL-2.0-or-later /* Madge Ambassador ATM Adapter driver. Copyright (C) 1995-1999 Madge Networks Ltd. */ /* * dedicated to the memory of Graham Gordon 1971-1998 * */ #include <linux/module.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/atmdev.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/poison.h> #include <linux/bitrev.h> #include <linux/mutex.h> #include <linux/firmware.h> #include <linux/ihex.h> #include <linux/slab.h> #include <linux/atomic.h> #include <asm/io.h> #include <asm/byteorder.h> #include "ambassador.h" #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>" #define description_string "Madge ATM Ambassador driver" #define version_string "1.2.4" static inline void __init show_version (void) { printk ("%s version %s\n", description_string, version_string); } /* Theory of Operation I Hardware, detection, initialisation and shutdown. 1. Supported Hardware This driver is for the PCI ATMizer-based Ambassador card (except very early versions). It is not suitable for the similar EISA "TR7" card. Commercially, both cards are known as Collage Server ATM adapters. The loader supports image transfer to the card, image start and few other miscellaneous commands. Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023. The cards are big-endian. 2. Detection Standard PCI stuff, the early cards are detected and rejected. 3. Initialisation The cards are reset and the self-test results are checked. The microcode image is then transferred and started. This waits for a pointer to a descriptor containing details of the host-based queues and buffers and various parameters etc. Once they are processed normal operations may begin. The BIA is read using a microcode command. 4. Shutdown This may be accomplished either by a card reset or via the microcode shutdown command. Further investigation required. 5. Persistent state The card reset does not affect PCI configuration (good) or the contents of several other "shared run-time registers" (bad) which include doorbell and interrupt control as well as EEPROM and PCI control. The driver must be careful when modifying these registers not to touch bits it does not use and to undo any changes at exit. II Driver software 0. Generalities The adapter is quite intelligent (fast) and has a simple interface (few features). VPI is always zero, 1024 VCIs are supported. There is limited cell rate support. UBR channels can be capped and ABR (explicit rate, but not EFCI) is supported. There is no CBR or VBR support. 1. Driver <-> Adapter Communication Apart from the basic loader commands, the driver communicates through three entities: the command queue (CQ), the transmit queue pair (TXQ) and the receive queue pairs (RXQ). These three entities are set up by the host and passed to the microcode just after it has been started. All queues are host-based circular queues. They are contiguous and (due to hardware limitations) have some restrictions as to their locations in (bus) memory. They are of the "full means the same as empty so don't do that" variety since the adapter uses pointers internally. The queue pairs work as follows: one queue is for supply to the adapter, items in it are pending and are owned by the adapter; the other is the queue for return from the adapter, items in it have been dealt with by the adapter. The host adds items to the supply (TX descriptors and free RX buffer descriptors) and removes items from the return (TX and RX completions). The adapter deals with out of order completions. Interrupts (card to host) and the doorbell (host to card) are used for signalling. 1. CQ This is to communicate "open VC", "close VC", "get stats" etc. to the adapter. At most one command is retired every millisecond by the card. There is no out of order completion or notification. The driver needs to check the return code of the command, waiting as appropriate. 2. TXQ TX supply items are of variable length (scatter gather support) and so the queue items are (more or less) pointers to the real thing. Each TX supply item contains a unique, host-supplied handle (the skb bus address seems most sensible as this works for Alphas as well, there is no need to do any endian conversions on the handles). TX return items consist of just the handles above. 3. RXQ (up to 4 of these with different lengths and buffer sizes) RX supply items consist of a unique, host-supplied handle (the skb bus address again) and a pointer to the buffer data area. RX return items consist of the handle above, the VC, length and a status word. This just screams "oh so easy" doesn't it? Note on RX pool sizes: Each pool should have enough buffers to handle a back-to-back stream of minimum sized frames on a single VC. For example: frame spacing = 3us (about right) delay = IRQ lat + RX handling + RX buffer replenish = 20 (us) (a guess) min number of buffers for one VC = 1 + delay/spacing (buffers) delay/spacing = latency = (20+2)/3 = 7 (buffers) (rounding up) The 20us delay assumes that there is no need to sleep; if we need to sleep to get buffers we are going to drop frames anyway. In fact, each pool should have enough buffers to support the simultaneous reassembly of a separate frame on each VC and cope with the case in which frames complete in round robin cell fashion on each VC. Only one frame can complete at each cell arrival, so if "n" VCs are open, the worst case is to have them all complete frames together followed by all starting new frames together. desired number of buffers = n + delay/spacing These are the extreme requirements, however, they are "n+k" for some "k" so we have only the constant to choose. This is the argument rx_lats which current defaults to 7. Actually, "n ? n+k : 0" is better and this is what is implemented, subject to the limit given by the pool size. 4. Driver locking Simple spinlocks are used around the TX and RX queue mechanisms. Anyone with a faster, working method is welcome to implement it. The adapter command queue is protected with a spinlock. We always wait for commands to complete. A more complex form of locking is used around parts of the VC open and close functions. There are three reasons for a lock: 1. we need to do atomic rate reservation and release (not used yet), 2. Opening sometimes involves two adapter commands which must not be separated by another command on the same VC, 3. the changes to RX pool size must be atomic. The lock needs to work over context switches, so we use a semaphore. III Hardware Features and Microcode Bugs 1. Byte Ordering *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*! 2. Memory access All structures that are not accessed using DMA must be 4-byte aligned (not a problem) and must not cross 4MB boundaries. There is a DMA memory hole at E0000000-E00000FF (groan). TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB but for a hardware bug). RX buffers (DMA write) must not cross 16MB boundaries and must include spare trailing bytes up to the next 4-byte boundary; they will be written with rubbish. The PLX likes to prefetch; if reading up to 4 u32 past the end of each TX fragment is not a problem, then TX can be made to go a little faster by passing a flag at init that disables a prefetch workaround. We do not pass this flag. (new microcode only) Now we: . Note that alloc_skb rounds up size to a 16byte boundary. . Ensure all areas do not traverse 4MB boundaries. . Ensure all areas do not start at a E00000xx bus address. (I cannot be certain, but this may always hold with Linux) . Make all failures cause a loud message. . Discard non-conforming SKBs (causes TX failure or RX fill delay). . Discard non-conforming TX fragment descriptors (the TX fails). In the future we could: . Allow RX areas that traverse 4MB (but not 16MB) boundaries. . Segment TX areas into some/more fragments, when necessary. . Relax checks for non-DMA items (ignore hole). . Give scatter-gather (iovec) requirements using ???. (?) 3. VC close is broken (only for new microcode) The VC close adapter microcode command fails to do anything if any frames have been received on the VC but none have been transmitted. Frames continue to be reassembled and passed (with IRQ) to the driver. IV To Do List . Fix bugs! . Timer code may be broken. . Deal with buggy VC close (somehow) in microcode 12. . Handle interrupted and/or non-blocking writes - is this a job for the protocol layer? . Add code to break up TX fragments when they span 4MB boundaries. . Add SUNI phy layer (need to know where SUNI lives on card). . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b) leave extra headroom space for Ambassador TX descriptors. . Understand these elements of struct atm_vcc: recvq (proto?), sleep, callback, listenq, backlog_quota, reply and user_back. . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable). . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow. . Decide whether RX buffer recycling is or can be made completely safe; turn it back on. It looks like Werner is going to axe this. . Implement QoS changes on open VCs (involves extracting parts of VC open and close into separate functions and using them to make changes). . Hack on command queue so that someone can issue multiple commands and wait on the last one (OR only "no-op" or "wait" commands are waited for). . Eliminate need for while-schedule around do_command. */ static void do_housekeeping (struct timer_list *t); /********** globals **********/ static unsigned short debug = 0; static unsigned int cmds = 8; static unsigned int txs = 32; static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 }; static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 }; static unsigned int rx_lats = 7; static unsigned char pci_lat = 0; static const unsigned long onegigmask = -1 << 30; /********** access to adapter **********/ static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) { PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data); #ifdef AMB_MMIO dev->membase[addr / sizeof(u32)] = data; #else outl (data, dev->iobase + addr); #endif } static inline u32 rd_plain (const amb_dev * dev, size_t addr) { #ifdef AMB_MMIO u32 data = dev->membase[addr / sizeof(u32)]; #else u32 data = inl (dev->iobase + addr); #endif PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data); return data; } static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) { __be32 be = cpu_to_be32 (data); PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be); #ifdef AMB_MMIO dev->membase[addr / sizeof(u32)] = be; #else outl (be, dev->iobase + addr); #endif } static inline u32 rd_mem (const amb_dev * dev, size_t addr) { #ifdef AMB_MMIO __be32 be = dev->membase[addr / sizeof(u32)]; #else __be32 be = inl (dev->iobase + addr); #endif u32 data = be32_to_cpu (be); PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be); return data; } /********** dump routines **********/ static inline void dump_registers (const amb_dev * dev) { #ifdef DEBUG_AMBASSADOR if (debug & DBG_REGS) { size_t i; PRINTD (DBG_REGS, "reading PLX control: "); for (i = 0x00; i < 0x30; i += sizeof(u32)) rd_mem (dev, i); PRINTD (DBG_REGS, "reading mailboxes: "); for (i = 0x40; i < 0x60; i += sizeof(u32)) rd_mem (dev, i); PRINTD (DBG_REGS, "reading doorb irqev irqen reset:"); for (i = 0x60; i < 0x70; i += sizeof(u32)) rd_mem (dev, i); } #else (void) dev; #endif return; } static inline void dump_loader_block (volatile loader_block * lb) { #ifdef DEBUG_AMBASSADOR unsigned int i; PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:", lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command)); for (i = 0; i < MAX_COMMAND_DATA; ++i) PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i])); PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid)); #else (void) lb; #endif return; } static inline void dump_command (command * cmd) { #ifdef DEBUG_AMBASSADOR unsigned int i; PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:", cmd, /*be32_to_cpu*/ (cmd->request)); for (i = 0; i < 3; ++i) PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i])); PRINTDE (DBG_CMD, ""); #else (void) cmd; #endif return; } static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) { #ifdef DEBUG_AMBASSADOR unsigned int i; unsigned char * data = skb->data; PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc); for (i=0; i<skb->len && i < 256;i++) PRINTDM (DBG_DATA, "%02x ", data[i]); PRINTDE (DBG_DATA,""); #else (void) prefix; (void) vc; (void) skb; #endif return; } /********** check memory areas for use by Ambassador **********/ /* see limitations under Hardware Features */ static int check_area (void * start, size_t length) { // assumes length > 0 const u32 fourmegmask = -1 << 22; const u32 twofivesixmask = -1 << 8; const u32 starthole = 0xE0000000; u32 startaddress = virt_to_bus (start); u32 lastaddress = startaddress+length-1; if ((startaddress ^ lastaddress) & fourmegmask || (startaddress & twofivesixmask) == starthole) { PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!", startaddress, lastaddress); return -1; } else { return 0; } } /********** free an skb (as per ATM device driver documentation) **********/ static void amb_kfree_skb (struct sk_buff * skb) { if (ATM_SKB(skb)->vcc->pop) { ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb); } else { dev_kfree_skb_any (skb); } } /********** TX completion **********/ static void tx_complete (amb_dev * dev, tx_out * tx) { tx_simple * tx_descr = bus_to_virt (tx->handle); struct sk_buff * skb = tx_descr->skb; PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx); // VC layer stats atomic_inc(&ATM_SKB(skb)->vcc->stats->tx); // free the descriptor kfree (tx_descr); // free the skb amb_kfree_skb (skb); dev->stats.tx_ok++; return; } /********** RX completion **********/ static void rx_complete (amb_dev * dev, rx_out * rx) { struct sk_buff * skb = bus_to_virt (rx->handle); u16 vc = be16_to_cpu (rx->vc); // unused: u16 lec_id = be16_to_cpu (rx->lec_id); u16 status = be16_to_cpu (rx->status); u16 rx_len = be16_to_cpu (rx->length); PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len); // XXX move this in and add to VC stats ??? if (!status) { struct atm_vcc * atm_vcc = dev->rxer[vc]; dev->stats.rx.ok++; if (atm_vcc) { if (rx_len <= atm_vcc->qos.rxtp.max_sdu) { if (atm_charge (atm_vcc, skb->truesize)) { // prepare socket buffer ATM_SKB(skb)->vcc = atm_vcc; skb_put (skb, rx_len); dump_skb ("<<<", vc, skb); // VC layer stats atomic_inc(&atm_vcc->stats->rx); __net_timestamp(skb); // end of our responsibility atm_vcc->push (atm_vcc, skb); return; } else { // someone fix this (message), please! PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize); // drop stats incremented in atm_charge } } else { PRINTK (KERN_INFO, "dropped over-size frame"); // should we count this? atomic_inc(&atm_vcc->stats->rx_drop); } } else { PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc); // this is an adapter bug, only in new version of microcode } } else { dev->stats.rx.error++; if (status & CRC_ERR) dev->stats.rx.badcrc++; if (status & LEN_ERR) dev->stats.rx.toolong++; if (status & ABORT_ERR) dev->stats.rx.aborted++; if (status & UNUSED_ERR) dev->stats.rx.unused++; } dev_kfree_skb_any (skb); return; } /* Note on queue handling. Here "give" and "take" refer to queue entries and a queue (pair) rather than frames to or from the host or adapter. Empty frame buffers are given to the RX queue pair and returned unused or containing RX frames. TX frames (well, pointers to TX fragment lists) are given to the TX queue pair, completions are returned. */ /********** command queue **********/ // I really don't like this, but it's the best I can do at the moment // also, the callers are responsible for byte order as the microcode // sometimes does 16-bit accesses (yuk yuk yuk) static int command_do (amb_dev * dev, command * cmd) { amb_cq * cq = &dev->cq; volatile amb_cq_ptrs * ptrs = &cq->ptrs; command * my_slot; PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev); if (test_bit (dead, &dev->flags)) return 0; spin_lock (&cq->lock); // if not full... if (cq->pending < cq->maximum) { // remember my slot for later my_slot = ptrs->in; PRINTD (DBG_CMD, "command in slot %p", my_slot); dump_command (cmd); // copy command in *ptrs->in = *cmd; cq->pending++; ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit); // mail the command wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in)); if (cq->pending > cq->high) cq->high = cq->pending; spin_unlock (&cq->lock); // these comments were in a while-loop before, msleep removes the loop // go to sleep // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout); msleep(cq->pending); // wait for my slot to be reached (all waiters are here or above, until...) while (ptrs->out != my_slot) { PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out); set_current_state(TASK_UNINTERRUPTIBLE); schedule(); } // wait on my slot (... one gets to its slot, and... ) while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) { PRINTD (DBG_CMD, "wait: command slot completion"); set_current_state(TASK_UNINTERRUPTIBLE); schedule(); } PRINTD (DBG_CMD, "command complete"); // update queue (... moves the queue along to the next slot) spin_lock (&cq->lock); cq->pending--; // copy command out *cmd = *ptrs->out; ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit); spin_unlock (&cq->lock); return 0; } else { cq->filled++; spin_unlock (&cq->lock); return -EAGAIN; } } /********** TX queue pair **********/ static int tx_give (amb_dev * dev, tx_in * tx) { amb_txq * txq = &dev->txq; unsigned long flags; PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev); if (test_bit (dead, &dev->flags)) return 0; spin_lock_irqsave (&txq->lock, flags); if (txq->pending < txq->maximum) { PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr); *txq->in.ptr = *tx; txq->pending++; txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit); // hand over the TX and ring the bell wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr)); wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME); if (txq->pending > txq->high) txq->high = txq->pending; spin_unlock_irqrestore (&txq->lock, flags); return 0; } else { txq->filled++; spin_unlock_irqrestore (&txq->lock, flags); return -EAGAIN; } } static int tx_take (amb_dev * dev) { amb_txq * txq = &dev->txq; unsigned long flags; PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev); spin_lock_irqsave (&txq->lock, flags); if (txq->pending && txq->out.ptr->handle) { // deal with TX completion tx_complete (dev, txq->out.ptr); // mark unused again txq->out.ptr->handle = 0; // remove item txq->pending--; txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit); spin_unlock_irqrestore (&txq->lock, flags); return 0; } else { spin_unlock_irqrestore (&txq->lock, flags); return -1; } } /********** RX queue pairs **********/ static int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) { amb_rxq * rxq = &dev->rxq[pool]; unsigned long flags; PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool); spin_lock_irqsave (&rxq->lock, flags); if (rxq->pending < rxq->maximum) { PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr); *rxq->in.ptr = *rx; rxq->pending++; rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit); // hand over the RX buffer wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr)); spin_unlock_irqrestore (&rxq->lock, flags); return 0; } else { spin_unlock_irqrestore (&rxq->lock, flags); return -1; } } static int rx_take (amb_dev * dev, unsigned char pool) { amb_rxq * rxq = &dev->rxq[pool]; unsigned long flags; PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool); spin_lock_irqsave (&rxq->lock, flags); if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) { // deal with RX completion rx_complete (dev, rxq->out.ptr); // mark unused again rxq->out.ptr->status = 0; rxq->out.ptr->length = 0; // remove item rxq->pending--; rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit); if (rxq->pending < rxq->low) rxq->low = rxq->pending; spin_unlock_irqrestore (&rxq->lock, flags); return 0; } else { if (!rxq->pending && rxq->buffers_wanted) rxq->emptied++; spin_unlock_irqrestore (&rxq->lock, flags); return -1; } } /********** RX Pool handling **********/ /* pre: buffers_wanted = 0, post: pending = 0 */ static void drain_rx_pool (amb_dev * dev, unsigned char pool) { amb_rxq * rxq = &dev->rxq[pool]; PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool); if (test_bit (dead, &dev->flags)) return; /* we are not quite like the fill pool routines as we cannot just remove one buffer, we have to remove all of them, but we might as well pretend... */ if (rxq->pending > rxq->buffers_wanted) { command cmd; cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q); cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT); while (command_do (dev, &cmd)) schedule(); /* the pool may also be emptied via the interrupt handler */ while (rxq->pending > rxq->buffers_wanted) if (rx_take (dev, pool)) schedule(); } return; } static void drain_rx_pools (amb_dev * dev) { unsigned char pool; PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev); for (pool = 0; pool < NUM_RX_POOLS; ++pool) drain_rx_pool (dev, pool); } static void fill_rx_pool (amb_dev * dev, unsigned char pool, gfp_t priority) { rx_in rx; amb_rxq * rxq; PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority); if (test_bit (dead, &dev->flags)) return; rxq = &dev->rxq[pool]; while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) { struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority); if (!skb) { PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool); return; } if (check_area (skb->data, skb->truesize)) { dev_kfree_skb_any (skb); return; } // cast needed as there is no %? for pointer differences PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li", skb, skb->head, (long) skb_end_offset(skb)); rx.handle = virt_to_bus (skb); rx.host_address = cpu_to_be32 (virt_to_bus (skb->data)); if (rx_give (dev, &rx, pool)) dev_kfree_skb_any (skb); } return; } // top up all RX pools static void fill_rx_pools (amb_dev * dev) { unsigned char pool; PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev); for (pool = 0; pool < NUM_RX_POOLS; ++pool) fill_rx_pool (dev, pool, GFP_ATOMIC); return; } /********** enable host interrupts **********/ static void interrupts_on (amb_dev * dev) { wr_plain (dev, offsetof(amb_mem, interrupt_control), rd_plain (dev, offsetof(amb_mem, interrupt_control)) | AMB_INTERRUPT_BITS); } /********** disable host interrupts **********/ static void interrupts_off (amb_dev * dev) { wr_plain (dev, offsetof(amb_mem, interrupt_control), rd_plain (dev, offsetof(amb_mem, interrupt_control)) &~ AMB_INTERRUPT_BITS); } /********** interrupt handling **********/ static irqreturn_t interrupt_handler(int irq, void *dev_id) { amb_dev * dev = dev_id; PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id); { u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt)); // for us or someone else sharing the same interrupt if (!interrupt) { PRINTD (DBG_IRQ, "irq not for me: %d", irq); return IRQ_NONE; } // definitely for us PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt); wr_plain (dev, offsetof(amb_mem, interrupt), -1); } { unsigned int irq_work = 0; unsigned char pool; for (pool = 0; pool < NUM_RX_POOLS; ++pool) while (!rx_take (dev, pool)) ++irq_work; while (!tx_take (dev)) ++irq_work; if (irq_work) { fill_rx_pools (dev); PRINTD (DBG_IRQ, "work done: %u", irq_work); } else { PRINTD (DBG_IRQ|DBG_WARN, "no work done"); } } PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id); return IRQ_HANDLED; } /********** make rate (not quite as much fun as Horizon) **********/ static int make_rate (unsigned int rate, rounding r, u16 * bits, unsigned int * actual) { unsigned char exp = -1; // hush gcc unsigned int man = -1; // hush gcc PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate); // rates in cells per second, ITU format (nasty 16-bit floating-point) // given 5-bit e and 9-bit m: // rate = EITHER (1+m/2^9)*2^e OR 0 // bits = EITHER 1<<14 | e<<9 | m OR 0 // (bit 15 is "reserved", bit 14 "non-zero") // smallest rate is 0 (special representation) // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1) // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0) // simple algorithm: // find position of top bit, this gives e // remove top bit and shift (rounding if feeling clever) by 9-e // ucode bug: please don't set bit 14! so 0 rate not representable if (rate > 0xffc00000U) { // larger than largest representable rate if (r == round_up) { return -EINVAL; } else { exp = 31; man = 511; } } else if (rate) { // representable rate exp = 31; man = rate; // invariant: rate = man*2^(exp-31) while (!(man & (1<<31))) { exp = exp - 1; man = man<<1; } // man has top bit set // rate = (2^31+(man-2^31))*2^(exp-31) // rate = (1+(man-2^31)/2^31)*2^exp man = man<<1; man &= 0xffffffffU; // a nop on 32-bit systems // rate = (1+man/2^32)*2^exp // exp is in the range 0 to 31, man is in the range 0 to 2^32-1 // time to lose significance... we want m in the range 0 to 2^9-1 // rounding presents a minor problem... we first decide which way // we are rounding (based on given rounding direction and possibly // the bits of the mantissa that are to be discarded). switch (r) { case round_down: { // just truncate man = man>>(32-9); break; } case round_up: { // check all bits that we are discarding if (man & (~0U>>9)) { man = (man>>(32-9)) + 1; if (man == (1<<9)) { // no need to check for round up outside of range man = 0; exp += 1; } } else { man = (man>>(32-9)); } break; } case round_nearest: { // check msb that we are discarding if (man & (1<<(32-9-1))) { man = (man>>(32-9)) + 1; if (man == (1<<9)) { // no need to check for round up outside of range man = 0; exp += 1; } } else { man = (man>>(32-9)); } break; } } } else { // zero rate - not representable if (r == round_down) { return -EINVAL; } else { exp = 0; man = 0; } } PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp); if (bits) *bits = /* (1<<14) | */ (exp<<9) | man; if (actual) *actual = (exp >= 9) ? (1 << exp) + (man << (exp-9)) : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp)); return 0; } /********** Linux ATM Operations **********/ // some are not yet implemented while others do not make sense for // this device /********** Open a VC **********/ static int amb_open (struct atm_vcc * atm_vcc) { int error; struct atm_qos * qos; struct atm_trafprm * txtp; struct atm_trafprm * rxtp; u16 tx_rate_bits = -1; // hush gcc u16 tx_vc_bits = -1; // hush gcc u16 tx_frame_bits = -1; // hush gcc amb_dev * dev = AMB_DEV(atm_vcc->dev); amb_vcc * vcc; unsigned char pool = -1; // hush gcc short vpi = atm_vcc->vpi; int vci = atm_vcc->vci; PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci); #ifdef ATM_VPI_UNSPEC // UNSPEC is deprecated, remove this code eventually if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) { PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)"); return -EINVAL; } #endif if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) && 0 <= vci && vci < (1<<NUM_VCI_BITS))) { PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci); return -EINVAL; } qos = &atm_vcc->qos; if (qos->aal != ATM_AAL5) { PRINTD (DBG_QOS, "AAL not supported"); return -EINVAL; } // traffic parameters PRINTD (DBG_QOS, "TX:"); txtp = &qos->txtp; if (txtp->traffic_class != ATM_NONE) { switch (txtp->traffic_class) { case ATM_UBR: { // we take "the PCR" as a rate-cap int pcr = atm_pcr_goal (txtp); if (!pcr) { // no rate cap tx_rate_bits = 0; tx_vc_bits = TX_UBR; tx_frame_bits = TX_FRAME_NOTCAP; } else { rounding r; if (pcr < 0) { r = round_down; pcr = -pcr; } else { r = round_up; } error = make_rate (pcr, r, &tx_rate_bits, NULL); if (error) return error; tx_vc_bits = TX_UBR_CAPPED; tx_frame_bits = TX_FRAME_CAPPED; } break; } #if 0 case ATM_ABR: { pcr = atm_pcr_goal (txtp); PRINTD (DBG_QOS, "pcr goal = %d", pcr); break; } #endif default: { // PRINTD (DBG_QOS, "request for non-UBR/ABR denied"); PRINTD (DBG_QOS, "request for non-UBR denied"); return -EINVAL; } } PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx", tx_rate_bits, tx_vc_bits); } PRINTD (DBG_QOS, "RX:"); rxtp = &qos->rxtp; if (rxtp->traffic_class == ATM_NONE) { // do nothing } else { // choose an RX pool (arranged in increasing size) for (pool = 0; pool < NUM_RX_POOLS; ++pool) if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) { PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)", pool, rxtp->max_sdu, dev->rxq[pool].buffer_size); break; } if (pool == NUM_RX_POOLS) { PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL, "no pool suitable for VC (RX max_sdu %d is too large)", rxtp->max_sdu); return -EINVAL; } switch (rxtp->traffic_class) { case ATM_UBR: { break; } #if 0 case ATM_ABR: { pcr = atm_pcr_goal (rxtp); PRINTD (DBG_QOS, "pcr goal = %d", pcr); break; } #endif default: { // PRINTD (DBG_QOS, "request for non-UBR/ABR denied"); PRINTD (DBG_QOS, "request for non-UBR denied"); return -EINVAL; } } } // get space for our vcc stuff vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL); if (!vcc) { PRINTK (KERN_ERR, "out of memory!"); return -ENOMEM; } atm_vcc->dev_data = (void *) vcc; // no failures beyond this point // we are not really "immediately before allocating the connection // identifier in hardware", but it will just have to do! set_bit(ATM_VF_ADDR,&atm_vcc->flags); if (txtp->traffic_class != ATM_NONE) { command cmd; vcc->tx_frame_bits = tx_frame_bits; mutex_lock(&dev->vcc_sf); if (dev->rxer[vci]) { // RXer on the channel already, just modify rate... cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE); cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0 cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT); while (command_do (dev, &cmd)) schedule(); // ... and TX flags, preserving the RX pool cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS); cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0 cmd.args.modify_flags.flags = cpu_to_be32 ( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT) | (tx_vc_bits << SRB_FLAGS_SHIFT) ); while (command_do (dev, &cmd)) schedule(); } else { // no RXer on the channel, just open (with pool zero) cmd.request = cpu_to_be32 (SRB_OPEN_VC); cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0 cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT); cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT); while (command_do (dev, &cmd)) schedule(); } dev->txer[vci].tx_present = 1; mutex_unlock(&dev->vcc_sf); } if (rxtp->traffic_class != ATM_NONE) { command cmd; vcc->rx_info.pool = pool; mutex_lock(&dev->vcc_sf); /* grow RX buffer pool */ if (!dev->rxq[pool].buffers_wanted) dev->rxq[pool].buffers_wanted = rx_lats; dev->rxq[pool].buffers_wanted += 1; fill_rx_pool (dev, pool, GFP_KERNEL); if (dev->txer[vci].tx_present) { // TXer on the channel already // switch (from pool zero) to this pool, preserving the TX bits cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS); cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0 cmd.args.modify_flags.flags = cpu_to_be32 ( (pool << SRB_POOL_SHIFT) | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) ); } else { // no TXer on the channel, open the VC (with no rate info) cmd.request = cpu_to_be32 (SRB_OPEN_VC); cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0 cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT); cmd.args.open.rate = cpu_to_be32 (0); } while (command_do (dev, &cmd)) schedule(); // this link allows RX frames through dev->rxer[vci] = atm_vcc; mutex_unlock(&dev->vcc_sf); } // indicate readiness set_bit(ATM_VF_READY,&atm_vcc->flags); return 0; } /********** Close a VC **********/ static void amb_close (struct atm_vcc * atm_vcc) { amb_dev * dev = AMB_DEV (atm_vcc->dev); amb_vcc * vcc = AMB_VCC (atm_vcc); u16 vci = atm_vcc->vci; PRINTD (DBG_VCC|DBG_FLOW, "amb_close"); // indicate unreadiness clear_bit(ATM_VF_READY,&atm_vcc->flags); // disable TXing if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) { command cmd; mutex_lock(&dev->vcc_sf); if (dev->rxer[vci]) { // RXer still on the channel, just modify rate... XXX not really needed cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE); cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0 cmd.args.modify_rate.rate = cpu_to_be32 (0); // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool } else { // no RXer on the channel, close channel cmd.request = cpu_to_be32 (SRB_CLOSE_VC); cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0 } dev->txer[vci].tx_present = 0; while (command_do (dev, &cmd)) schedule(); mutex_unlock(&dev->vcc_sf); } // disable RXing if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { command cmd; // this is (the?) one reason why we need the amb_vcc struct unsigned char pool = vcc->rx_info.pool; mutex_lock(&dev->vcc_sf); if (dev->txer[vci].tx_present) { // TXer still on the channel, just go to pool zero XXX not really needed cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS); cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0 cmd.args.modify_flags.flags = cpu_to_be32 (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT); } else { // no TXer on the channel, close the VC cmd.request = cpu_to_be32 (SRB_CLOSE_VC); cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0 } // forget the rxer - no more skbs will be pushed if (atm_vcc != dev->rxer[vci]) PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p", "arghhh! we're going to die!", vcc, dev->rxer[vci]); dev->rxer[vci] = NULL; while (command_do (dev, &cmd)) schedule(); /* shrink RX buffer pool */ dev->rxq[pool].buffers_wanted -= 1; if (dev->rxq[pool].buffers_wanted == rx_lats) { dev->rxq[pool].buffers_wanted = 0; drain_rx_pool (dev, pool); } mutex_unlock(&dev->vcc_sf); } // free our structure kfree (vcc); // say the VPI/VCI is free again clear_bit(ATM_VF_ADDR,&atm_vcc->flags); return; } /********** Send **********/ static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) { amb_dev * dev = AMB_DEV(atm_vcc->dev); amb_vcc * vcc = AMB_VCC(atm_vcc); u16 vc = atm_vcc->vci; unsigned int tx_len = skb->len; unsigned char * tx_data = skb->data; tx_simple * tx_descr; tx_in tx; if (test_bit (dead, &dev->flags)) return -EIO; PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u", vc, tx_data, tx_len); dump_skb (">>>", vc, skb); if (!dev->txer[vc].tx_present) { PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc); return -EBADFD; } // this is a driver private field so we have to set it ourselves, // despite the fact that we are _required_ to use it to check for a // pop function ATM_SKB(skb)->vcc = atm_vcc; if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) { PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping..."); return -EIO; } if (check_area (skb->data, skb->len)) { atomic_inc(&atm_vcc->stats->tx_err); return -ENOMEM; // ? } // allocate memory for fragments tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL); if (!tx_descr) { PRINTK (KERN_ERR, "could not allocate TX descriptor"); return -ENOMEM; } if (check_area (tx_descr, sizeof(tx_simple))) { kfree (tx_descr); return -ENOMEM; } PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr); tx_descr->skb = skb; tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len); tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data)); tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr); tx_descr->tx_frag_end.vc = 0; tx_descr->tx_frag_end.next_descriptor_length = 0; tx_descr->tx_frag_end.next_descriptor = 0; #ifdef AMB_NEW_MICROCODE tx_descr->tx_frag_end.cpcs_uu = 0; tx_descr->tx_frag_end.cpi = 0; tx_descr->tx_frag_end.pad = 0; #endif tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc); tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end)); tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag)); while (tx_give (dev, &tx)) schedule(); return 0; } /********** Change QoS on a VC **********/ // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags); /********** Free RX Socket Buffer **********/ #if 0 static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) { amb_dev * dev = AMB_DEV (atm_vcc->dev); amb_vcc * vcc = AMB_VCC (atm_vcc); unsigned char pool = vcc->rx_info.pool; rx_in rx; // This may be unsafe for various reasons that I cannot really guess // at. However, I note that the ATM layer calls kfree_skb rather // than dev_kfree_skb at this point so we are least covered as far // as buffer locking goes. There may be bugs if pcap clones RX skbs. PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)", skb, atm_vcc, vcc); rx.handle = virt_to_bus (skb); rx.host_address = cpu_to_be32 (virt_to_bus (skb->data)); skb->data = skb->head; skb_reset_tail_pointer(skb); skb->len = 0; if (!rx_give (dev, &rx, pool)) { // success PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool); return; } // just do what the ATM layer would have done dev_kfree_skb_any (skb); return; } #endif /********** Proc File Output **********/ static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) { amb_dev * dev = AMB_DEV (atm_dev); int left = *pos; unsigned char pool; PRINTD (DBG_FLOW, "amb_proc_read"); /* more diagnostics here? */ if (!left--) { amb_stats * s = &dev->stats; return sprintf (page, "frames: TX OK %lu, RX OK %lu, RX bad %lu " "(CRC %lu, long %lu, aborted %lu, unused %lu).\n", s->tx_ok, s->rx.ok, s->rx.error, s->rx.badcrc, s->rx.toolong, s->rx.aborted, s->rx.unused); } if (!left--) { amb_cq * c = &dev->cq; return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ", c->pending, c->high, c->maximum); } if (!left--) { amb_txq * t = &dev->txq; return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n", t->pending, t->maximum, t->high, t->filled); } if (!left--) { unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:"); for (pool = 0; pool < NUM_RX_POOLS; ++pool) { amb_rxq * r = &dev->rxq[pool]; count += sprintf (page+count, " %u/%u/%u %u %u", r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied); } count += sprintf (page+count, ".\n"); return count; } if (!left--) { unsigned int count = sprintf (page, "RX buffer sizes:"); for (pool = 0; pool < NUM_RX_POOLS; ++pool) { amb_rxq * r = &dev->rxq[pool]; count += sprintf (page+count, " %u", r->buffer_size); } count += sprintf (page+count, ".\n"); return count; } #if 0 if (!left--) { // suni block etc? } #endif return 0; } /********** Operation Structure **********/ static const struct atmdev_ops amb_ops = { .open = amb_open, .close = amb_close, .send = amb_send, .proc_read = amb_proc_read, .owner = THIS_MODULE, }; /********** housekeeping **********/ static void do_housekeeping (struct timer_list *t) { amb_dev * dev = from_timer(dev, t, housekeeping); // could collect device-specific (not driver/atm-linux) stats here // last resort refill once every ten seconds fill_rx_pools (dev); mod_timer(&dev->housekeeping, jiffies + 10*HZ); return; } /********** creation of communication queues **********/ static int create_queues(amb_dev *dev, unsigned int cmds, unsigned int txs, unsigned int *rxs, unsigned int *rx_buffer_sizes) { unsigned char pool; size_t total = 0; void * memory; void * limit; PRINTD (DBG_FLOW, "create_queues %p", dev); total += cmds * sizeof(command); total += txs * (sizeof(tx_in) + sizeof(tx_out)); for (pool = 0; pool < NUM_RX_POOLS; ++pool) total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out)); memory = kmalloc (total, GFP_KERNEL); if (!memory) { PRINTK (KERN_ERR, "could not allocate queues"); return -ENOMEM; } if (check_area (memory, total)) { PRINTK (KERN_ERR, "queues allocated in nasty area"); kfree (memory); return -ENOMEM; } limit = memory + total; PRINTD (DBG_INIT, "queues from %p to %p", memory, limit); PRINTD (DBG_CMD, "command queue at %p", memory); { command * cmd = memory; amb_cq * cq = &dev->cq; cq->pending = 0; cq->high = 0; cq->maximum = cmds - 1; cq->ptrs.start = cmd; cq->ptrs.in = cmd; cq->ptrs.out = cmd; cq->ptrs.limit = cmd + cmds; memory = cq->ptrs.limit; } PRINTD (DBG_TX, "TX queue pair at %p", memory); { tx_in * in = memory; tx_out * out; amb_txq * txq = &dev->txq; txq->pending = 0; txq->high = 0; txq->filled = 0; txq->maximum = txs - 1; txq->in.start = in; txq->in.ptr = in; txq->in.limit = in + txs; memory = txq->in.limit; out = memory; txq->out.start = out; txq->out.ptr = out; txq->out.limit = out + txs; memory = txq->out.limit; } PRINTD (DBG_RX, "RX queue pairs at %p", memory); for (pool = 0; pool < NUM_RX_POOLS; ++pool) { rx_in * in = memory; rx_out * out; amb_rxq * rxq = &dev->rxq[pool]; rxq->buffer_size = rx_buffer_sizes[pool]; rxq->buffers_wanted = 0; rxq->pending = 0; rxq->low = rxs[pool] - 1; rxq->emptied = 0; rxq->maximum = rxs[pool] - 1; rxq->in.start = in; rxq->in.ptr = in; rxq->in.limit = in + rxs[pool]; memory = rxq->in.limit; out = memory; rxq->out.start = out; rxq->out.ptr = out; rxq->out.limit = out + rxs[pool]; memory = rxq->out.limit; } if (memory == limit) { return 0; } else { PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit); kfree (limit - total); return -ENOMEM; } } /********** destruction of communication queues **********/ static void destroy_queues (amb_dev * dev) { // all queues assumed empty void * memory = dev->cq.ptrs.start; // includes txq.in, txq.out, rxq[].in and rxq[].out PRINTD (DBG_FLOW, "destroy_queues %p", dev); PRINTD (DBG_INIT, "freeing queues at %p", memory); kfree (memory); return; } /********** basic loader commands and error handling **********/ // centisecond timeouts - guessing away here static unsigned int command_timeouts [] = { [host_memory_test] = 15, [read_adapter_memory] = 2, [write_adapter_memory] = 2, [adapter_start] = 50, [get_version_number] = 10, [interrupt_host] = 1, [flash_erase_sector] = 1, [adap_download_block] = 1, [adap_erase_flash] = 1, [adap_run_in_iram] = 1, [adap_end_download] = 1 }; static unsigned int command_successes [] = { [host_memory_test] = COMMAND_PASSED_TEST, [read_adapter_memory] = COMMAND_READ_DATA_OK, [write_adapter_memory] = COMMAND_WRITE_DATA_OK, [adapter_start] = COMMAND_COMPLETE, [get_version_number] = COMMAND_COMPLETE, [interrupt_host] = COMMAND_COMPLETE, [flash_erase_sector] = COMMAND_COMPLETE, [adap_download_block] = COMMAND_COMPLETE, [adap_erase_flash] = COMMAND_COMPLETE, [adap_run_in_iram] = COMMAND_COMPLETE, [adap_end_download] = COMMAND_COMPLETE }; static int decode_loader_result (loader_command cmd, u32 result) { int res; const char *msg; if (result == command_successes[cmd]) return 0; switch (result) { case BAD_COMMAND: res = -EINVAL; msg = "bad command"; break; case COMMAND_IN_PROGRESS: res = -ETIMEDOUT; msg = "command in progress"; break; case COMMAND_PASSED_TEST: res = 0; msg = "command passed test"; break; case COMMAND_FAILED_TEST: res = -EIO; msg = "command failed test"; break; case COMMAND_READ_DATA_OK: res = 0; msg = "command read data ok"; break; case COMMAND_READ_BAD_ADDRESS: res = -EINVAL; msg = "command read bad address"; break; case COMMAND_WRITE_DATA_OK: res = 0; msg = "command write data ok"; break; case COMMAND_WRITE_BAD_ADDRESS: res = -EINVAL; msg = "command write bad address"; break; case COMMAND_WRITE_FLASH_FAILURE: res = -EIO; msg = "command write flash failure"; break; case COMMAND_COMPLETE: res = 0; msg = "command complete"; break; case COMMAND_FLASH_ERASE_FAILURE: res = -EIO; msg = "command flash erase failure"; break; case COMMAND_WRITE_BAD_DATA: res = -EINVAL; msg = "command write bad data"; break; default: res = -EINVAL; msg = "unknown error"; PRINTD (DBG_LOAD|DBG_ERR, "decode_loader_result got %d=%x !", result, result); break; } PRINTK (KERN_ERR, "%s", msg); return res; } static int do_loader_command(volatile loader_block *lb, const amb_dev *dev, loader_command cmd) { unsigned long timeout; PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command"); /* do a command Set the return value to zero, set the command type and set the valid entry to the right magic value. The payload is already correctly byte-ordered so we leave it alone. Hit the doorbell with the bus address of this structure. */ lb->result = 0; lb->command = cpu_to_be32 (cmd); lb->valid = cpu_to_be32 (DMA_VALID); // dump_registers (dev); // dump_loader_block (lb); wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask); timeout = command_timeouts[cmd] * 10; while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS)) if (timeout) { timeout = msleep_interruptible(timeout); } else { PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd); dump_registers (dev); dump_loader_block (lb); return -ETIMEDOUT; } if (cmd == adapter_start) { // wait for start command to acknowledge... timeout = 100; while (rd_plain (dev, offsetof(amb_mem, doorbell))) if (timeout) { timeout = msleep_interruptible(timeout); } else { PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x", be32_to_cpu (lb->result)); dump_registers (dev); return -ETIMEDOUT; } return 0; } else { return decode_loader_result (cmd, be32_to_cpu (lb->result)); } } /* loader: determine loader version */ static int get_loader_version(loader_block *lb, const amb_dev *dev, u32 *version) { int res; PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version"); res = do_loader_command (lb, dev, get_version_number); if (res) return res; if (version) *version = be32_to_cpu (lb->payload.version); return 0; } /* loader: write memory data blocks */ static int loader_write(loader_block *lb, const amb_dev *dev, const struct ihex_binrec *rec) { transfer_block * tb = &lb->payload.transfer; PRINTD (DBG_FLOW|DBG_LOAD, "loader_write"); tb->address = rec->addr; tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4); memcpy(tb->data, rec->data, be16_to_cpu(rec->len)); return do_loader_command (lb, dev, write_adapter_memory); } /* loader: verify memory data blocks */ static int loader_verify(loader_block *lb, const amb_dev *dev, const struct ihex_binrec *rec) { transfer_block * tb = &lb->payload.transfer; int res; PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify"); tb->address = rec->addr; tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4); res = do_loader_command (lb, dev, read_adapter_memory); if (!res && memcmp(tb->data, rec->data, be16_to_cpu(rec->len))) res = -EINVAL; return res; } /* loader: start microcode */ static int loader_start(loader_block *lb, const amb_dev *dev, u32 address) { PRINTD (DBG_FLOW|DBG_LOAD, "loader_start"); lb->payload.start = cpu_to_be32 (address); return do_loader_command (lb, dev, adapter_start); } /********** reset card **********/ static inline void sf (const char * msg) { PRINTK (KERN_ERR, "self-test failed: %s", msg); } static int amb_reset (amb_dev * dev, int diags) { u32 word; PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset"); word = rd_plain (dev, offsetof(amb_mem, reset_control)); // put card into reset state wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS); // wait a short while udelay (10); #if 1 // put card into known good state wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS); // clear all interrupts just in case wr_plain (dev, offsetof(amb_mem, interrupt), -1); #endif // clear self-test done flag wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0); // take card out of reset state wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS); if (diags) { unsigned long timeout; // 4.2 second wait msleep(4200); // half second time-out timeout = 500; while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready))) if (timeout) { timeout = msleep_interruptible(timeout); } else { PRINTD (DBG_LOAD|DBG_ERR, "reset timed out"); return -ETIMEDOUT; } // get results of self-test // XXX double check byte-order word = rd_mem (dev, offsetof(amb_mem, mb.loader.result)); if (word & SELF_TEST_FAILURE) { if (word & GPINT_TST_FAILURE) sf ("interrupt"); if (word & SUNI_DATA_PATTERN_FAILURE) sf ("SUNI data pattern"); if (word & SUNI_DATA_BITS_FAILURE) sf ("SUNI data bits"); if (word & SUNI_UTOPIA_FAILURE) sf ("SUNI UTOPIA interface"); if (word & SUNI_FIFO_FAILURE) sf ("SUNI cell buffer FIFO"); if (word & SRAM_FAILURE) sf ("bad SRAM"); // better return value? return -EIO; } } return 0; } /********** transfer and start the microcode **********/ static int ucode_init(loader_block *lb, amb_dev *dev) { const struct firmware *fw; unsigned long start_address; const struct ihex_binrec *rec; const char *errmsg = NULL; int res; res = request_ihex_firmware(&fw, "atmsar11.fw", &dev->pci_dev->dev); if (res) { PRINTK (KERN_ERR, "Cannot load microcode data"); return res; } /* First record contains just the start address */ rec = (const struct ihex_binrec *)fw->data; if (be16_to_cpu(rec->len) != sizeof(__be32) || be32_to_cpu(rec->addr)) { errmsg = "no start record"; goto fail; } start_address = be32_to_cpup((__be32 *)rec->data); rec = ihex_next_binrec(rec); PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init"); while (rec) { PRINTD (DBG_LOAD, "starting region (%x, %u)", be32_to_cpu(rec->addr), be16_to_cpu(rec->len)); if (be16_to_cpu(rec->len) > 4 * MAX_TRANSFER_DATA) { errmsg = "record too long"; goto fail; } if (be16_to_cpu(rec->len) & 3) { errmsg = "odd number of bytes"; goto fail; } res = loader_write(lb, dev, rec); if (res) break; res = loader_verify(lb, dev, rec); if (res) break; rec = ihex_next_binrec(rec); } release_firmware(fw); if (!res) res = loader_start(lb, dev, start_address); return res; fail: release_firmware(fw); PRINTK(KERN_ERR, "Bad microcode data (%s)", errmsg); return -EINVAL; } /********** give adapter parameters **********/ static inline __be32 bus_addr(void * addr) { return cpu_to_be32 (virt_to_bus (addr)); } static int amb_talk(amb_dev *dev) { adap_talk_block a; unsigned char pool; unsigned long timeout; PRINTD (DBG_FLOW, "amb_talk %p", dev); a.command_start = bus_addr (dev->cq.ptrs.start); a.command_end = bus_addr (dev->cq.ptrs.limit); a.tx_start = bus_addr (dev->txq.in.start); a.tx_end = bus_addr (dev->txq.in.limit); a.txcom_start = bus_addr (dev->txq.out.start); a.txcom_end = bus_addr (dev->txq.out.limit); for (pool = 0; pool < NUM_RX_POOLS; ++pool) { // the other "a" items are set up by the adapter a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start); a.rec_struct[pool].buffer_end = bus_addr (dev->rxq[pool].in.limit); a.rec_struct[pool].rx_start = bus_addr (dev->rxq[pool].out.start); a.rec_struct[pool].rx_end = bus_addr (dev->rxq[pool].out.limit); a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size); } #ifdef AMB_NEW_MICROCODE // disable fast PLX prefetching a.init_flags = 0; #endif // pass the structure wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a)); // 2.2 second wait (must not touch doorbell during 2 second DMA test) msleep(2200); // give the adapter another half second? timeout = 500; while (rd_plain (dev, offsetof(amb_mem, doorbell))) if (timeout) { timeout = msleep_interruptible(timeout); } else { PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out"); return -ETIMEDOUT; } return 0; } // get microcode version static void amb_ucode_version(amb_dev *dev) { u32 major; u32 minor; command cmd; cmd.request = cpu_to_be32 (SRB_GET_VERSION); while (command_do (dev, &cmd)) { set_current_state(TASK_UNINTERRUPTIBLE); schedule(); } major = be32_to_cpu (cmd.args.version.major); minor = be32_to_cpu (cmd.args.version.minor); PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor); } // get end station address static void amb_esi(amb_dev *dev, u8 *esi) { u32 lower4; u16 upper2; command cmd; cmd.request = cpu_to_be32 (SRB_GET_BIA); while (command_do (dev, &cmd)) { set_current_state(TASK_UNINTERRUPTIBLE); schedule(); } lower4 = be32_to_cpu (cmd.args.bia.lower4); upper2 = be32_to_cpu (cmd.args.bia.upper2); PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2); if (esi) { unsigned int i; PRINTDB (DBG_INIT, "ESI:"); for (i = 0; i < ESI_LEN; ++i) { if (i < 4) esi[i] = bitrev8(lower4>>(8*i)); else esi[i] = bitrev8(upper2>>(8*(i-4))); PRINTDM (DBG_INIT, " %02x", esi[i]); } PRINTDE (DBG_INIT, ""); } return; } static void fixup_plx_window (amb_dev *dev, loader_block *lb) { // fix up the PLX-mapped window base address to match the block unsigned long blb; u32 mapreg; blb = virt_to_bus(lb); // the kernel stack had better not ever cross a 1Gb boundary! mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10])); mapreg &= ~onegigmask; mapreg |= blb & onegigmask; wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg); return; } static int amb_init(amb_dev *dev) { loader_block lb; u32 version; if (amb_reset (dev, 1)) { PRINTK (KERN_ERR, "card reset failed!"); } else { fixup_plx_window (dev, &lb); if (get_loader_version (&lb, dev, &version)) { PRINTK (KERN_INFO, "failed to get loader version"); } else { PRINTK (KERN_INFO, "loader version is %08x", version); if (ucode_init (&lb, dev)) { PRINTK (KERN_ERR, "microcode failure"); } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) { PRINTK (KERN_ERR, "failed to get memory for queues"); } else { if (amb_talk (dev)) { PRINTK (KERN_ERR, "adapter did not accept queues"); } else { amb_ucode_version (dev); return 0; } /* amb_talk */ destroy_queues (dev); } /* create_queues, ucode_init */ amb_reset (dev, 0); } /* get_loader_version */ } /* amb_reset */ return -EINVAL; } static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev) { unsigned char pool; // set up known dev items straight away dev->pci_dev = pci_dev; pci_set_drvdata(pci_dev, dev); dev->iobase = pci_resource_start (pci_dev, 1); dev->irq = pci_dev->irq; dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0)); // flags (currently only dead) dev->flags = 0; // Allocate cell rates (fibre) // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53 // to be really pedantic, this should be ATM_OC3c_PCR dev->tx_avail = ATM_OC3_PCR; dev->rx_avail = ATM_OC3_PCR; // semaphore for txer/rxer modifications - we cannot use a // spinlock as the critical region needs to switch processes mutex_init(&dev->vcc_sf); // queue manipulation spinlocks; we want atomic reads and // writes to the queue descriptors (handles IRQ and SMP) // consider replacing "int pending" -> "atomic_t available" // => problem related to who gets to move queue pointers spin_lock_init (&dev->cq.lock); spin_lock_init (&dev->txq.lock); for (pool = 0; pool < NUM_RX_POOLS; ++pool) spin_lock_init (&dev->rxq[pool].lock); } static void setup_pci_dev(struct pci_dev *pci_dev) { unsigned char lat; // enable bus master accesses pci_set_master(pci_dev); // frobnicate latency (upwards, usually) pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat); if (!pci_lat) pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat; if (lat != pci_lat) { PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu", lat, pci_lat); pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat); } } static int amb_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) { amb_dev * dev; int err; unsigned int irq; err = pci_enable_device(pci_dev); if (err < 0) { PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card"); goto out; } // read resources from PCI configuration space irq = pci_dev->irq; if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) { PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card"); err = -EINVAL; goto out_disable; } PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at" " IO %llx, IRQ %u, MEM %p", (unsigned long long)pci_resource_start(pci_dev, 1), irq, bus_to_virt(pci_resource_start(pci_dev, 0))); // check IO region err = pci_request_region(pci_dev, 1, DEV_LABEL); if (err < 0) { PRINTK (KERN_ERR, "IO range already in use!"); goto out_disable; } dev = kzalloc(sizeof(amb_dev), GFP_KERNEL); if (!dev) { PRINTK (KERN_ERR, "out of memory!"); err = -ENOMEM; goto out_release; } setup_dev(dev, pci_dev); err = amb_init(dev); if (err < 0) { PRINTK (KERN_ERR, "adapter initialisation failure"); goto out_free; } setup_pci_dev(pci_dev); // grab (but share) IRQ and install handler err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev); if (err < 0) { PRINTK (KERN_ERR, "request IRQ failed!"); goto out_reset; } dev->atm_dev = atm_dev_register (DEV_LABEL, &pci_dev->dev, &amb_ops, -1, NULL); if (!dev->atm_dev) { PRINTD (DBG_ERR, "failed to register Madge ATM adapter"); err = -EINVAL; goto out_free_irq; } PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p", dev->atm_dev->number, dev, dev->atm_dev); dev->atm_dev->dev_data = (void *) dev; // register our address amb_esi (dev, dev->atm_dev->esi); // 0 bits for vpi, 10 bits for vci dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS; dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS; timer_setup(&dev->housekeeping, do_housekeeping, 0); mod_timer(&dev->housekeeping, jiffies); // enable host interrupts interrupts_on (dev); out: return err; out_free_irq: free_irq(irq, dev); out_reset: amb_reset(dev, 0); out_free: kfree(dev); out_release: pci_release_region(pci_dev, 1); out_disable: pci_disable_device(pci_dev); goto out; } static void amb_remove_one(struct pci_dev *pci_dev) { struct amb_dev *dev; dev = pci_get_drvdata(pci_dev); PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev); del_timer_sync(&dev->housekeeping); // the drain should not be necessary drain_rx_pools(dev); interrupts_off(dev); amb_reset(dev, 0); free_irq(dev->irq, dev); pci_disable_device(pci_dev); destroy_queues(dev); atm_dev_deregister(dev->atm_dev); kfree(dev); pci_release_region(pci_dev, 1); } static void __init amb_check_args (void) { unsigned char pool; unsigned int max_rx_size; #ifdef DEBUG_AMBASSADOR PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK); #else if (debug) PRINTK (KERN_NOTICE, "no debugging support"); #endif if (cmds < MIN_QUEUE_SIZE) PRINTK (KERN_NOTICE, "cmds has been raised to %u", cmds = MIN_QUEUE_SIZE); if (txs < MIN_QUEUE_SIZE) PRINTK (KERN_NOTICE, "txs has been raised to %u", txs = MIN_QUEUE_SIZE); for (pool = 0; pool < NUM_RX_POOLS; ++pool) if (rxs[pool] < MIN_QUEUE_SIZE) PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u", pool, rxs[pool] = MIN_QUEUE_SIZE); // buffers sizes should be greater than zero and strictly increasing max_rx_size = 0; for (pool = 0; pool < NUM_RX_POOLS; ++pool) if (rxs_bs[pool] <= max_rx_size) PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)", pool, rxs_bs[pool]); else max_rx_size = rxs_bs[pool]; if (rx_lats < MIN_RX_BUFFERS) PRINTK (KERN_NOTICE, "rx_lats has been raised to %u", rx_lats = MIN_RX_BUFFERS); return; } /********** module stuff **********/ MODULE_AUTHOR(maintainer_string); MODULE_DESCRIPTION(description_string); MODULE_LICENSE("GPL"); MODULE_FIRMWARE("atmsar11.fw"); module_param(debug, ushort, 0644); module_param(cmds, uint, 0); module_param(txs, uint, 0); module_param_array(rxs, uint, NULL, 0); module_param_array(rxs_bs, uint, NULL, 0); module_param(rx_lats, uint, 0); module_param(pci_lat, byte, 0); MODULE_PARM_DESC(debug, "debug bitmap, see .h file"); MODULE_PARM_DESC(cmds, "number of command queue entries"); MODULE_PARM_DESC(txs, "number of TX queue entries"); MODULE_PARM_DESC(rxs, "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]"); MODULE_PARM_DESC(rxs_bs, "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]"); MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies"); MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles"); /********** module entry **********/ static const struct pci_device_id amb_pci_tbl[] = { { PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR), 0 }, { PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD), 0 }, { 0, } }; MODULE_DEVICE_TABLE(pci, amb_pci_tbl); static struct pci_driver amb_driver = { .name = "amb", .probe = amb_probe, .remove = amb_remove_one, .id_table = amb_pci_tbl, }; static int __init amb_module_init (void) { PRINTD (DBG_FLOW|DBG_INIT, "init_module"); BUILD_BUG_ON(sizeof(amb_mem) != 4*16 + 4*12); show_version(); amb_check_args(); // get the juice return pci_register_driver(&amb_driver); } /********** module exit **********/ static void __exit amb_module_exit (void) { PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module"); pci_unregister_driver(&amb_driver); } module_init(amb_module_init); module_exit(amb_module_exit);