/* * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved. * * Authors: * Alexander Graf * Kevin Wolf * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include "trace.h" #define PTE_SIZE 12 #define VSID_ALL 0 void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte) { ppc_md.hpte_invalidate(pte->slot, pte->host_va, MMU_PAGE_4K, MMU_SEGSIZE_256M, false); } /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using * a hash, so we don't waste cycles on looping */ static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid) { return hash_64(gvsid, SID_MAP_BITS); } static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid) { struct kvmppc_sid_map *map; u16 sid_map_mask; if (vcpu->arch.shared->msr & MSR_PR) gvsid |= VSID_PR; sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); map = &to_book3s(vcpu)->sid_map[sid_map_mask]; if (map->valid && (map->guest_vsid == gvsid)) { trace_kvm_book3s_slb_found(gvsid, map->host_vsid); return map; } map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask]; if (map->valid && (map->guest_vsid == gvsid)) { trace_kvm_book3s_slb_found(gvsid, map->host_vsid); return map; } trace_kvm_book3s_slb_fail(sid_map_mask, gvsid); return NULL; } int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte) { pfn_t hpaddr; ulong hash, hpteg, va; u64 vsid; int ret; int rflags = 0x192; int vflags = 0; int attempt = 0; struct kvmppc_sid_map *map; /* Get host physical address for gpa */ hpaddr = kvmppc_gfn_to_pfn(vcpu, orig_pte->raddr >> PAGE_SHIFT); if (is_error_pfn(hpaddr)) { printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", orig_pte->eaddr); return -EINVAL; } hpaddr <<= PAGE_SHIFT; hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK); /* and write the mapping ea -> hpa into the pt */ vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid); map = find_sid_vsid(vcpu, vsid); if (!map) { ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr); WARN_ON(ret < 0); map = find_sid_vsid(vcpu, vsid); } if (!map) { printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n", vsid, orig_pte->eaddr); WARN_ON(true); return -EINVAL; } vsid = map->host_vsid; va = hpt_va(orig_pte->eaddr, vsid, MMU_SEGSIZE_256M); if (!orig_pte->may_write) rflags |= HPTE_R_PP; else mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT); if (!orig_pte->may_execute) rflags |= HPTE_R_N; hash = hpt_hash(va, PTE_SIZE, MMU_SEGSIZE_256M); map_again: hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); /* In case we tried normal mapping already, let's nuke old entries */ if (attempt > 1) if (ppc_md.hpte_remove(hpteg) < 0) return -1; ret = ppc_md.hpte_insert(hpteg, va, hpaddr, rflags, vflags, MMU_PAGE_4K, MMU_SEGSIZE_256M); if (ret < 0) { /* If we couldn't map a primary PTE, try a secondary */ hash = ~hash; vflags ^= HPTE_V_SECONDARY; attempt++; goto map_again; } else { struct hpte_cache *pte = kvmppc_mmu_hpte_cache_next(vcpu); trace_kvm_book3s_64_mmu_map(rflags, hpteg, va, hpaddr, orig_pte); /* The ppc_md code may give us a secondary entry even though we asked for a primary. Fix up. */ if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) { hash = ~hash; hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); } pte->slot = hpteg + (ret & 7); pte->host_va = va; pte->pte = *orig_pte; pte->pfn = hpaddr >> PAGE_SHIFT; kvmppc_mmu_hpte_cache_map(vcpu, pte); } return 0; } static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid) { struct kvmppc_sid_map *map; struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); u16 sid_map_mask; static int backwards_map = 0; if (vcpu->arch.shared->msr & MSR_PR) gvsid |= VSID_PR; /* We might get collisions that trap in preceding order, so let's map them differently */ sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); if (backwards_map) sid_map_mask = SID_MAP_MASK - sid_map_mask; map = &to_book3s(vcpu)->sid_map[sid_map_mask]; /* Make sure we're taking the other map next time */ backwards_map = !backwards_map; /* Uh-oh ... out of mappings. Let's flush! */ if (vcpu_book3s->vsid_next == vcpu_book3s->vsid_max) { vcpu_book3s->vsid_next = vcpu_book3s->vsid_first; memset(vcpu_book3s->sid_map, 0, sizeof(struct kvmppc_sid_map) * SID_MAP_NUM); kvmppc_mmu_pte_flush(vcpu, 0, 0); kvmppc_mmu_flush_segments(vcpu); } map->host_vsid = vcpu_book3s->vsid_next++; map->guest_vsid = gvsid; map->valid = true; trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid); return map; } static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid) { int i; int max_slb_size = 64; int found_inval = -1; int r; if (!to_svcpu(vcpu)->slb_max) to_svcpu(vcpu)->slb_max = 1; /* Are we overwriting? */ for (i = 1; i < to_svcpu(vcpu)->slb_max; i++) { if (!(to_svcpu(vcpu)->slb[i].esid & SLB_ESID_V)) found_inval = i; else if ((to_svcpu(vcpu)->slb[i].esid & ESID_MASK) == esid) return i; } /* Found a spare entry that was invalidated before */ if (found_inval > 0) return found_inval; /* No spare invalid entry, so create one */ if (mmu_slb_size < 64) max_slb_size = mmu_slb_size; /* Overflowing -> purge */ if ((to_svcpu(vcpu)->slb_max) == max_slb_size) kvmppc_mmu_flush_segments(vcpu); r = to_svcpu(vcpu)->slb_max; to_svcpu(vcpu)->slb_max++; return r; } int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr) { u64 esid = eaddr >> SID_SHIFT; u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V; u64 slb_vsid = SLB_VSID_USER; u64 gvsid; int slb_index; struct kvmppc_sid_map *map; slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK); if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) { /* Invalidate an entry */ to_svcpu(vcpu)->slb[slb_index].esid = 0; return -ENOENT; } map = find_sid_vsid(vcpu, gvsid); if (!map) map = create_sid_map(vcpu, gvsid); map->guest_esid = esid; slb_vsid |= (map->host_vsid << 12); slb_vsid &= ~SLB_VSID_KP; slb_esid |= slb_index; to_svcpu(vcpu)->slb[slb_index].esid = slb_esid; to_svcpu(vcpu)->slb[slb_index].vsid = slb_vsid; trace_kvm_book3s_slbmte(slb_vsid, slb_esid); return 0; } void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu) { to_svcpu(vcpu)->slb_max = 1; to_svcpu(vcpu)->slb[0].esid = 0; } void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) { kvmppc_mmu_hpte_destroy(vcpu); __destroy_context(to_book3s(vcpu)->context_id); } int kvmppc_mmu_init(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); int err; err = __init_new_context(); if (err < 0) return -1; vcpu3s->context_id = err; vcpu3s->vsid_max = ((vcpu3s->context_id + 1) << USER_ESID_BITS) - 1; vcpu3s->vsid_first = vcpu3s->context_id << USER_ESID_BITS; vcpu3s->vsid_next = vcpu3s->vsid_first; kvmppc_mmu_hpte_init(vcpu); return 0; }