/* * Copyright(c) 2015, 2016 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "hfi.h" #include "efivar.h" #include "eprom.h" static int validate_scratch_checksum(struct hfi1_devdata *dd) { u64 checksum = 0, temp_scratch = 0; int i, j, version; temp_scratch = read_csr(dd, ASIC_CFG_SCRATCH); version = (temp_scratch & BITMAP_VERSION_SMASK) >> BITMAP_VERSION_SHIFT; /* Prevent power on default of all zeroes from passing checksum */ if (!version) { dd_dev_err(dd, "%s: Config bitmap uninitialized\n", __func__); dd_dev_err(dd, "%s: Please update your BIOS to support active channels\n", __func__); return 0; } /* * ASIC scratch 0 only contains the checksum and bitmap version as * fields of interest, both of which are handled separately from the * loop below, so skip it */ checksum += version; for (i = 1; i < ASIC_NUM_SCRATCH; i++) { temp_scratch = read_csr(dd, ASIC_CFG_SCRATCH + (8 * i)); for (j = sizeof(u64); j != 0; j -= 2) { checksum += (temp_scratch & 0xFFFF); temp_scratch >>= 16; } } while (checksum >> 16) checksum = (checksum & CHECKSUM_MASK) + (checksum >> 16); temp_scratch = read_csr(dd, ASIC_CFG_SCRATCH); temp_scratch &= CHECKSUM_SMASK; temp_scratch >>= CHECKSUM_SHIFT; if (checksum + temp_scratch == 0xFFFF) return 1; dd_dev_err(dd, "%s: Configuration bitmap corrupted\n", __func__); return 0; } static void save_platform_config_fields(struct hfi1_devdata *dd) { struct hfi1_pportdata *ppd = dd->pport; u64 temp_scratch = 0, temp_dest = 0; temp_scratch = read_csr(dd, ASIC_CFG_SCRATCH_1); temp_dest = temp_scratch & (dd->hfi1_id ? PORT1_PORT_TYPE_SMASK : PORT0_PORT_TYPE_SMASK); ppd->port_type = temp_dest >> (dd->hfi1_id ? PORT1_PORT_TYPE_SHIFT : PORT0_PORT_TYPE_SHIFT); temp_dest = temp_scratch & (dd->hfi1_id ? PORT1_LOCAL_ATTEN_SMASK : PORT0_LOCAL_ATTEN_SMASK); ppd->local_atten = temp_dest >> (dd->hfi1_id ? PORT1_LOCAL_ATTEN_SHIFT : PORT0_LOCAL_ATTEN_SHIFT); temp_dest = temp_scratch & (dd->hfi1_id ? PORT1_REMOTE_ATTEN_SMASK : PORT0_REMOTE_ATTEN_SMASK); ppd->remote_atten = temp_dest >> (dd->hfi1_id ? PORT1_REMOTE_ATTEN_SHIFT : PORT0_REMOTE_ATTEN_SHIFT); temp_dest = temp_scratch & (dd->hfi1_id ? PORT1_DEFAULT_ATTEN_SMASK : PORT0_DEFAULT_ATTEN_SMASK); ppd->default_atten = temp_dest >> (dd->hfi1_id ? PORT1_DEFAULT_ATTEN_SHIFT : PORT0_DEFAULT_ATTEN_SHIFT); temp_scratch = read_csr(dd, dd->hfi1_id ? ASIC_CFG_SCRATCH_3 : ASIC_CFG_SCRATCH_2); ppd->tx_preset_eq = (temp_scratch & TX_EQ_SMASK) >> TX_EQ_SHIFT; ppd->tx_preset_noeq = (temp_scratch & TX_NO_EQ_SMASK) >> TX_NO_EQ_SHIFT; ppd->rx_preset = (temp_scratch & RX_SMASK) >> RX_SHIFT; ppd->max_power_class = (temp_scratch & QSFP_MAX_POWER_SMASK) >> QSFP_MAX_POWER_SHIFT; ppd->config_from_scratch = true; } void get_platform_config(struct hfi1_devdata *dd) { int ret = 0; u8 *temp_platform_config = NULL; u32 esize; if (is_integrated(dd)) { if (validate_scratch_checksum(dd)) { save_platform_config_fields(dd); return; } } else { ret = eprom_read_platform_config(dd, (void **)&temp_platform_config, &esize); if (!ret) { /* success */ dd->platform_config.data = temp_platform_config; dd->platform_config.size = esize; return; } } dd_dev_err(dd, "%s: Failed to get platform config, falling back to sub-optimal default file\n", __func__); /* fall back to request firmware */ platform_config_load = 1; } void free_platform_config(struct hfi1_devdata *dd) { if (!platform_config_load) { /* * was loaded from EFI or the EPROM, release memory * allocated by read_efi_var/eprom_read_platform_config */ kfree(dd->platform_config.data); } /* * else do nothing, dispose_firmware will release * struct firmware platform_config on driver exit */ } void get_port_type(struct hfi1_pportdata *ppd) { int ret; u32 temp; ret = get_platform_config_field(ppd->dd, PLATFORM_CONFIG_PORT_TABLE, 0, PORT_TABLE_PORT_TYPE, &temp, 4); if (ret) { ppd->port_type = PORT_TYPE_UNKNOWN; return; } ppd->port_type = temp; } int set_qsfp_tx(struct hfi1_pportdata *ppd, int on) { u8 tx_ctrl_byte = on ? 0x0 : 0xF; int ret = 0; ret = qsfp_write(ppd, ppd->dd->hfi1_id, QSFP_TX_CTRL_BYTE_OFFS, &tx_ctrl_byte, 1); /* we expected 1, so consider 0 an error */ if (ret == 0) ret = -EIO; else if (ret == 1) ret = 0; return ret; } static int qual_power(struct hfi1_pportdata *ppd) { u32 cable_power_class = 0, power_class_max = 0; u8 *cache = ppd->qsfp_info.cache; int ret = 0; ret = get_platform_config_field( ppd->dd, PLATFORM_CONFIG_SYSTEM_TABLE, 0, SYSTEM_TABLE_QSFP_POWER_CLASS_MAX, &power_class_max, 4); if (ret) return ret; cable_power_class = get_qsfp_power_class(cache[QSFP_MOD_PWR_OFFS]); if (cable_power_class > power_class_max) ppd->offline_disabled_reason = HFI1_ODR_MASK(OPA_LINKDOWN_REASON_POWER_POLICY); if (ppd->offline_disabled_reason == HFI1_ODR_MASK(OPA_LINKDOWN_REASON_POWER_POLICY)) { dd_dev_err( ppd->dd, "%s: Port disabled due to system power restrictions\n", __func__); ret = -EPERM; } return ret; } static int qual_bitrate(struct hfi1_pportdata *ppd) { u16 lss = ppd->link_speed_supported, lse = ppd->link_speed_enabled; u8 *cache = ppd->qsfp_info.cache; if ((lss & OPA_LINK_SPEED_25G) && (lse & OPA_LINK_SPEED_25G) && cache[QSFP_NOM_BIT_RATE_250_OFFS] < 0x64) ppd->offline_disabled_reason = HFI1_ODR_MASK(OPA_LINKDOWN_REASON_LINKSPEED_POLICY); if ((lss & OPA_LINK_SPEED_12_5G) && (lse & OPA_LINK_SPEED_12_5G) && cache[QSFP_NOM_BIT_RATE_100_OFFS] < 0x7D) ppd->offline_disabled_reason = HFI1_ODR_MASK(OPA_LINKDOWN_REASON_LINKSPEED_POLICY); if (ppd->offline_disabled_reason == HFI1_ODR_MASK(OPA_LINKDOWN_REASON_LINKSPEED_POLICY)) { dd_dev_err( ppd->dd, "%s: Cable failed bitrate check, disabling port\n", __func__); return -EPERM; } return 0; } static int set_qsfp_high_power(struct hfi1_pportdata *ppd) { u8 cable_power_class = 0, power_ctrl_byte = 0; u8 *cache = ppd->qsfp_info.cache; int ret; cable_power_class = get_qsfp_power_class(cache[QSFP_MOD_PWR_OFFS]); if (cable_power_class > QSFP_POWER_CLASS_1) { power_ctrl_byte = cache[QSFP_PWR_CTRL_BYTE_OFFS]; power_ctrl_byte |= 1; power_ctrl_byte &= ~(0x2); ret = qsfp_write(ppd, ppd->dd->hfi1_id, QSFP_PWR_CTRL_BYTE_OFFS, &power_ctrl_byte, 1); if (ret != 1) return -EIO; if (cable_power_class > QSFP_POWER_CLASS_4) { power_ctrl_byte |= (1 << 2); ret = qsfp_write(ppd, ppd->dd->hfi1_id, QSFP_PWR_CTRL_BYTE_OFFS, &power_ctrl_byte, 1); if (ret != 1) return -EIO; } /* SFF 8679 rev 1.7 LPMode Deassert time */ msleep(300); } return 0; } static void apply_rx_cdr(struct hfi1_pportdata *ppd, u32 rx_preset_index, u8 *cdr_ctrl_byte) { u32 rx_preset; u8 *cache = ppd->qsfp_info.cache; int cable_power_class; if (!((cache[QSFP_MOD_PWR_OFFS] & 0x4) && (cache[QSFP_CDR_INFO_OFFS] & 0x40))) return; /* RX CDR present, bypass supported */ cable_power_class = get_qsfp_power_class(cache[QSFP_MOD_PWR_OFFS]); if (cable_power_class <= QSFP_POWER_CLASS_3) { /* Power class <= 3, ignore config & turn RX CDR on */ *cdr_ctrl_byte |= 0xF; return; } get_platform_config_field( ppd->dd, PLATFORM_CONFIG_RX_PRESET_TABLE, rx_preset_index, RX_PRESET_TABLE_QSFP_RX_CDR_APPLY, &rx_preset, 4); if (!rx_preset) { dd_dev_info( ppd->dd, "%s: RX_CDR_APPLY is set to disabled\n", __func__); return; } get_platform_config_field( ppd->dd, PLATFORM_CONFIG_RX_PRESET_TABLE, rx_preset_index, RX_PRESET_TABLE_QSFP_RX_CDR, &rx_preset, 4); /* Expand cdr setting to all 4 lanes */ rx_preset = (rx_preset | (rx_preset << 1) | (rx_preset << 2) | (rx_preset << 3)); if (rx_preset) { *cdr_ctrl_byte |= rx_preset; } else { *cdr_ctrl_byte &= rx_preset; /* Preserve current TX CDR status */ *cdr_ctrl_byte |= (cache[QSFP_CDR_CTRL_BYTE_OFFS] & 0xF0); } } static void apply_tx_cdr(struct hfi1_pportdata *ppd, u32 tx_preset_index, u8 *cdr_ctrl_byte) { u32 tx_preset; u8 *cache = ppd->qsfp_info.cache; int cable_power_class; if (!((cache[QSFP_MOD_PWR_OFFS] & 0x8) && (cache[QSFP_CDR_INFO_OFFS] & 0x80))) return; /* TX CDR present, bypass supported */ cable_power_class = get_qsfp_power_class(cache[QSFP_MOD_PWR_OFFS]); if (cable_power_class <= QSFP_POWER_CLASS_3) { /* Power class <= 3, ignore config & turn TX CDR on */ *cdr_ctrl_byte |= 0xF0; return; } get_platform_config_field( ppd->dd, PLATFORM_CONFIG_TX_PRESET_TABLE, tx_preset_index, TX_PRESET_TABLE_QSFP_TX_CDR_APPLY, &tx_preset, 4); if (!tx_preset) { dd_dev_info( ppd->dd, "%s: TX_CDR_APPLY is set to disabled\n", __func__); return; } get_platform_config_field( ppd->dd, PLATFORM_CONFIG_TX_PRESET_TABLE, tx_preset_index, TX_PRESET_TABLE_QSFP_TX_CDR, &tx_preset, 4); /* Expand cdr setting to all 4 lanes */ tx_preset = (tx_preset | (tx_preset << 1) | (tx_preset << 2) | (tx_preset << 3)); if (tx_preset) *cdr_ctrl_byte |= (tx_preset << 4); else /* Preserve current/determined RX CDR status */ *cdr_ctrl_byte &= ((tx_preset << 4) | 0xF); } static void apply_cdr_settings( struct hfi1_pportdata *ppd, u32 rx_preset_index, u32 tx_preset_index) { u8 *cache = ppd->qsfp_info.cache; u8 cdr_ctrl_byte = cache[QSFP_CDR_CTRL_BYTE_OFFS]; apply_rx_cdr(ppd, rx_preset_index, &cdr_ctrl_byte); apply_tx_cdr(ppd, tx_preset_index, &cdr_ctrl_byte); qsfp_write(ppd, ppd->dd->hfi1_id, QSFP_CDR_CTRL_BYTE_OFFS, &cdr_ctrl_byte, 1); } static void apply_tx_eq_auto(struct hfi1_pportdata *ppd) { u8 *cache = ppd->qsfp_info.cache; u8 tx_eq; if (!(cache[QSFP_EQ_INFO_OFFS] & 0x8)) return; /* Disable adaptive TX EQ if present */ tx_eq = cache[(128 * 3) + 241]; tx_eq &= 0xF0; qsfp_write(ppd, ppd->dd->hfi1_id, (256 * 3) + 241, &tx_eq, 1); } static void apply_tx_eq_prog(struct hfi1_pportdata *ppd, u32 tx_preset_index) { u8 *cache = ppd->qsfp_info.cache; u32 tx_preset; u8 tx_eq; if (!(cache[QSFP_EQ_INFO_OFFS] & 0x4)) return; get_platform_config_field( ppd->dd, PLATFORM_CONFIG_TX_PRESET_TABLE, tx_preset_index, TX_PRESET_TABLE_QSFP_TX_EQ_APPLY, &tx_preset, 4); if (!tx_preset) { dd_dev_info( ppd->dd, "%s: TX_EQ_APPLY is set to disabled\n", __func__); return; } get_platform_config_field( ppd->dd, PLATFORM_CONFIG_TX_PRESET_TABLE, tx_preset_index, TX_PRESET_TABLE_QSFP_TX_EQ, &tx_preset, 4); if (((cache[(128 * 3) + 224] & 0xF0) >> 4) < tx_preset) { dd_dev_info( ppd->dd, "%s: TX EQ %x unsupported\n", __func__, tx_preset); dd_dev_info( ppd->dd, "%s: Applying EQ %x\n", __func__, cache[608] & 0xF0); tx_preset = (cache[608] & 0xF0) >> 4; } tx_eq = tx_preset | (tx_preset << 4); qsfp_write(ppd, ppd->dd->hfi1_id, (256 * 3) + 234, &tx_eq, 1); qsfp_write(ppd, ppd->dd->hfi1_id, (256 * 3) + 235, &tx_eq, 1); } static void apply_rx_eq_emp(struct hfi1_pportdata *ppd, u32 rx_preset_index) { u32 rx_preset; u8 rx_eq, *cache = ppd->qsfp_info.cache; if (!(cache[QSFP_EQ_INFO_OFFS] & 0x2)) return; get_platform_config_field( ppd->dd, PLATFORM_CONFIG_RX_PRESET_TABLE, rx_preset_index, RX_PRESET_TABLE_QSFP_RX_EMP_APPLY, &rx_preset, 4); if (!rx_preset) { dd_dev_info( ppd->dd, "%s: RX_EMP_APPLY is set to disabled\n", __func__); return; } get_platform_config_field( ppd->dd, PLATFORM_CONFIG_RX_PRESET_TABLE, rx_preset_index, RX_PRESET_TABLE_QSFP_RX_EMP, &rx_preset, 4); if ((cache[(128 * 3) + 224] & 0xF) < rx_preset) { dd_dev_info( ppd->dd, "%s: Requested RX EMP %x\n", __func__, rx_preset); dd_dev_info( ppd->dd, "%s: Applying supported EMP %x\n", __func__, cache[608] & 0xF); rx_preset = cache[608] & 0xF; } rx_eq = rx_preset | (rx_preset << 4); qsfp_write(ppd, ppd->dd->hfi1_id, (256 * 3) + 236, &rx_eq, 1); qsfp_write(ppd, ppd->dd->hfi1_id, (256 * 3) + 237, &rx_eq, 1); } static void apply_eq_settings(struct hfi1_pportdata *ppd, u32 rx_preset_index, u32 tx_preset_index) { u8 *cache = ppd->qsfp_info.cache; /* no point going on w/o a page 3 */ if (cache[2] & 4) { dd_dev_info(ppd->dd, "%s: Upper page 03 not present\n", __func__); return; } apply_tx_eq_auto(ppd); apply_tx_eq_prog(ppd, tx_preset_index); apply_rx_eq_emp(ppd, rx_preset_index); } static void apply_rx_amplitude_settings( struct hfi1_pportdata *ppd, u32 rx_preset_index, u32 tx_preset_index) { u32 rx_preset; u8 rx_amp = 0, i = 0, preferred = 0, *cache = ppd->qsfp_info.cache; /* no point going on w/o a page 3 */ if (cache[2] & 4) { dd_dev_info(ppd->dd, "%s: Upper page 03 not present\n", __func__); return; } if (!(cache[QSFP_EQ_INFO_OFFS] & 0x1)) { dd_dev_info(ppd->dd, "%s: RX_AMP_APPLY is set to disabled\n", __func__); return; } get_platform_config_field(ppd->dd, PLATFORM_CONFIG_RX_PRESET_TABLE, rx_preset_index, RX_PRESET_TABLE_QSFP_RX_AMP_APPLY, &rx_preset, 4); if (!rx_preset) { dd_dev_info(ppd->dd, "%s: RX_AMP_APPLY is set to disabled\n", __func__); return; } get_platform_config_field(ppd->dd, PLATFORM_CONFIG_RX_PRESET_TABLE, rx_preset_index, RX_PRESET_TABLE_QSFP_RX_AMP, &rx_preset, 4); dd_dev_info(ppd->dd, "%s: Requested RX AMP %x\n", __func__, rx_preset); for (i = 0; i < 4; i++) { if (cache[(128 * 3) + 225] & (1 << i)) { preferred = i; if (preferred == rx_preset) break; } } /* * Verify that preferred RX amplitude is not just a * fall through of the default */ if (!preferred && !(cache[(128 * 3) + 225] & 0x1)) { dd_dev_info(ppd->dd, "No supported RX AMP, not applying\n"); return; } dd_dev_info(ppd->dd, "%s: Applying RX AMP %x\n", __func__, preferred); rx_amp = preferred | (preferred << 4); qsfp_write(ppd, ppd->dd->hfi1_id, (256 * 3) + 238, &rx_amp, 1); qsfp_write(ppd, ppd->dd->hfi1_id, (256 * 3) + 239, &rx_amp, 1); } #define OPA_INVALID_INDEX 0xFFF static void apply_tx_lanes(struct hfi1_pportdata *ppd, u8 field_id, u32 config_data, const char *message) { u8 i; int ret = HCMD_SUCCESS; for (i = 0; i < 4; i++) { ret = load_8051_config(ppd->dd, field_id, i, config_data); if (ret != HCMD_SUCCESS) { dd_dev_err( ppd->dd, "%s: %s for lane %u failed\n", message, __func__, i); } } } /* * Return a special SerDes setting for low power AOC cables. The power class * threshold and setting being used were all found by empirical testing. * * Summary of the logic: * * if (QSFP and QSFP_TYPE == AOC and QSFP_POWER_CLASS < 4) * return 0xe * return 0; // leave at default */ static u8 aoc_low_power_setting(struct hfi1_pportdata *ppd) { u8 *cache = ppd->qsfp_info.cache; int power_class; /* QSFP only */ if (ppd->port_type != PORT_TYPE_QSFP) return 0; /* leave at default */ /* active optical cables only */ switch ((cache[QSFP_MOD_TECH_OFFS] & 0xF0) >> 4) { case 0x0 ... 0x9: /* fallthrough */ case 0xC: /* fallthrough */ case 0xE: /* active AOC */ power_class = get_qsfp_power_class(cache[QSFP_MOD_PWR_OFFS]); if (power_class < QSFP_POWER_CLASS_4) return 0xe; } return 0; /* leave at default */ } static void apply_tunings( struct hfi1_pportdata *ppd, u32 tx_preset_index, u8 tuning_method, u32 total_atten, u8 limiting_active) { int ret = 0; u32 config_data = 0, tx_preset = 0; u8 precur = 0, attn = 0, postcur = 0, external_device_config = 0; u8 *cache = ppd->qsfp_info.cache; /* Pass tuning method to 8051 */ read_8051_config(ppd->dd, LINK_TUNING_PARAMETERS, GENERAL_CONFIG, &config_data); config_data &= ~(0xff << TUNING_METHOD_SHIFT); config_data |= ((u32)tuning_method << TUNING_METHOD_SHIFT); ret = load_8051_config(ppd->dd, LINK_TUNING_PARAMETERS, GENERAL_CONFIG, config_data); if (ret != HCMD_SUCCESS) dd_dev_err(ppd->dd, "%s: Failed to set tuning method\n", __func__); /* Set same channel loss for both TX and RX */ config_data = 0 | (total_atten << 16) | (total_atten << 24); apply_tx_lanes(ppd, CHANNEL_LOSS_SETTINGS, config_data, "Setting channel loss"); /* Inform 8051 of cable capabilities */ if (ppd->qsfp_info.cache_valid) { external_device_config = ((cache[QSFP_MOD_PWR_OFFS] & 0x4) << 3) | ((cache[QSFP_MOD_PWR_OFFS] & 0x8) << 2) | ((cache[QSFP_EQ_INFO_OFFS] & 0x2) << 1) | (cache[QSFP_EQ_INFO_OFFS] & 0x4); ret = read_8051_config(ppd->dd, DC_HOST_COMM_SETTINGS, GENERAL_CONFIG, &config_data); /* Clear, then set the external device config field */ config_data &= ~(u32)0xFF; config_data |= external_device_config; ret = load_8051_config(ppd->dd, DC_HOST_COMM_SETTINGS, GENERAL_CONFIG, config_data); if (ret != HCMD_SUCCESS) dd_dev_err(ppd->dd, "%s: Failed set ext device config params\n", __func__); } if (tx_preset_index == OPA_INVALID_INDEX) { if (ppd->port_type == PORT_TYPE_QSFP && limiting_active) dd_dev_err(ppd->dd, "%s: Invalid Tx preset index\n", __func__); return; } /* Following for limiting active channels only */ get_platform_config_field( ppd->dd, PLATFORM_CONFIG_TX_PRESET_TABLE, tx_preset_index, TX_PRESET_TABLE_PRECUR, &tx_preset, 4); precur = tx_preset; get_platform_config_field( ppd->dd, PLATFORM_CONFIG_TX_PRESET_TABLE, tx_preset_index, TX_PRESET_TABLE_ATTN, &tx_preset, 4); attn = tx_preset; get_platform_config_field( ppd->dd, PLATFORM_CONFIG_TX_PRESET_TABLE, tx_preset_index, TX_PRESET_TABLE_POSTCUR, &tx_preset, 4); postcur = tx_preset; /* * NOTES: * o The aoc_low_power_setting is applied to all lanes even * though only lane 0's value is examined by the firmware. * o A lingering low power setting after a cable swap does * not occur. On cable unplug the 8051 is reset and * restarted on cable insert. This resets all settings to * their default, erasing any previous low power setting. */ config_data = precur | (attn << 8) | (postcur << 16) | (aoc_low_power_setting(ppd) << 24); apply_tx_lanes(ppd, TX_EQ_SETTINGS, config_data, "Applying TX settings"); } /* Must be holding the QSFP i2c resource */ static int tune_active_qsfp(struct hfi1_pportdata *ppd, u32 *ptr_tx_preset, u32 *ptr_rx_preset, u32 *ptr_total_atten) { int ret; u16 lss = ppd->link_speed_supported, lse = ppd->link_speed_enabled; u8 *cache = ppd->qsfp_info.cache; ppd->qsfp_info.limiting_active = 1; ret = set_qsfp_tx(ppd, 0); if (ret) return ret; ret = qual_power(ppd); if (ret) return ret; ret = qual_bitrate(ppd); if (ret) return ret; /* * We'll change the QSFP memory contents from here on out, thus we set a * flag here to remind ourselves to reset the QSFP module. This prevents * reuse of stale settings established in our previous pass through. */ if (ppd->qsfp_info.reset_needed) { reset_qsfp(ppd); refresh_qsfp_cache(ppd, &ppd->qsfp_info); } else { ppd->qsfp_info.reset_needed = 1; } ret = set_qsfp_high_power(ppd); if (ret) return ret; if (cache[QSFP_EQ_INFO_OFFS] & 0x4) { ret = get_platform_config_field( ppd->dd, PLATFORM_CONFIG_PORT_TABLE, 0, PORT_TABLE_TX_PRESET_IDX_ACTIVE_EQ, ptr_tx_preset, 4); if (ret) { *ptr_tx_preset = OPA_INVALID_INDEX; return ret; } } else { ret = get_platform_config_field( ppd->dd, PLATFORM_CONFIG_PORT_TABLE, 0, PORT_TABLE_TX_PRESET_IDX_ACTIVE_NO_EQ, ptr_tx_preset, 4); if (ret) { *ptr_tx_preset = OPA_INVALID_INDEX; return ret; } } ret = get_platform_config_field( ppd->dd, PLATFORM_CONFIG_PORT_TABLE, 0, PORT_TABLE_RX_PRESET_IDX, ptr_rx_preset, 4); if (ret) { *ptr_rx_preset = OPA_INVALID_INDEX; return ret; } if ((lss & OPA_LINK_SPEED_25G) && (lse & OPA_LINK_SPEED_25G)) get_platform_config_field( ppd->dd, PLATFORM_CONFIG_PORT_TABLE, 0, PORT_TABLE_LOCAL_ATTEN_25G, ptr_total_atten, 4); else if ((lss & OPA_LINK_SPEED_12_5G) && (lse & OPA_LINK_SPEED_12_5G)) get_platform_config_field( ppd->dd, PLATFORM_CONFIG_PORT_TABLE, 0, PORT_TABLE_LOCAL_ATTEN_12G, ptr_total_atten, 4); apply_cdr_settings(ppd, *ptr_rx_preset, *ptr_tx_preset); apply_eq_settings(ppd, *ptr_rx_preset, *ptr_tx_preset); apply_rx_amplitude_settings(ppd, *ptr_rx_preset, *ptr_tx_preset); ret = set_qsfp_tx(ppd, 1); return ret; } static int tune_qsfp(struct hfi1_pportdata *ppd, u32 *ptr_tx_preset, u32 *ptr_rx_preset, u8 *ptr_tuning_method, u32 *ptr_total_atten) { u32 cable_atten = 0, remote_atten = 0, platform_atten = 0; u16 lss = ppd->link_speed_supported, lse = ppd->link_speed_enabled; int ret = 0; u8 *cache = ppd->qsfp_info.cache; switch ((cache[QSFP_MOD_TECH_OFFS] & 0xF0) >> 4) { case 0xA ... 0xB: ret = get_platform_config_field( ppd->dd, PLATFORM_CONFIG_PORT_TABLE, 0, PORT_TABLE_LOCAL_ATTEN_25G, &platform_atten, 4); if (ret) return ret; if ((lss & OPA_LINK_SPEED_25G) && (lse & OPA_LINK_SPEED_25G)) cable_atten = cache[QSFP_CU_ATTEN_12G_OFFS]; else if ((lss & OPA_LINK_SPEED_12_5G) && (lse & OPA_LINK_SPEED_12_5G)) cable_atten = cache[QSFP_CU_ATTEN_7G_OFFS]; /* Fallback to configured attenuation if cable memory is bad */ if (cable_atten == 0 || cable_atten > 36) { ret = get_platform_config_field( ppd->dd, PLATFORM_CONFIG_SYSTEM_TABLE, 0, SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G, &cable_atten, 4); if (ret) return ret; } ret = get_platform_config_field( ppd->dd, PLATFORM_CONFIG_PORT_TABLE, 0, PORT_TABLE_REMOTE_ATTEN_25G, &remote_atten, 4); if (ret) return ret; *ptr_total_atten = platform_atten + cable_atten + remote_atten; *ptr_tuning_method = OPA_PASSIVE_TUNING; break; case 0x0 ... 0x9: /* fallthrough */ case 0xC: /* fallthrough */ case 0xE: ret = tune_active_qsfp(ppd, ptr_tx_preset, ptr_rx_preset, ptr_total_atten); if (ret) return ret; *ptr_tuning_method = OPA_ACTIVE_TUNING; break; case 0xD: /* fallthrough */ case 0xF: default: dd_dev_warn(ppd->dd, "%s: Unknown/unsupported cable\n", __func__); break; } return ret; } /* * This function communicates its success or failure via ppd->driver_link_ready * Thus, it depends on its association with start_link(...) which checks * driver_link_ready before proceeding with the link negotiation and * initialization process. */ void tune_serdes(struct hfi1_pportdata *ppd) { int ret = 0; u32 total_atten = 0; u32 remote_atten = 0, platform_atten = 0; u32 rx_preset_index, tx_preset_index; u8 tuning_method = 0, limiting_active = 0; struct hfi1_devdata *dd = ppd->dd; rx_preset_index = OPA_INVALID_INDEX; tx_preset_index = OPA_INVALID_INDEX; /* the link defaults to enabled */ ppd->link_enabled = 1; /* the driver link ready state defaults to not ready */ ppd->driver_link_ready = 0; ppd->offline_disabled_reason = HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE); /* Skip the tuning for testing (loopback != none) and simulations */ if (loopback != LOOPBACK_NONE || ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { ppd->driver_link_ready = 1; return; } switch (ppd->port_type) { case PORT_TYPE_DISCONNECTED: ppd->offline_disabled_reason = HFI1_ODR_MASK(OPA_LINKDOWN_REASON_DISCONNECTED); dd_dev_warn(dd, "%s: Port disconnected, disabling port\n", __func__); goto bail; case PORT_TYPE_FIXED: /* platform_atten, remote_atten pre-zeroed to catch error */ get_platform_config_field( ppd->dd, PLATFORM_CONFIG_PORT_TABLE, 0, PORT_TABLE_LOCAL_ATTEN_25G, &platform_atten, 4); get_platform_config_field( ppd->dd, PLATFORM_CONFIG_PORT_TABLE, 0, PORT_TABLE_REMOTE_ATTEN_25G, &remote_atten, 4); total_atten = platform_atten + remote_atten; tuning_method = OPA_PASSIVE_TUNING; break; case PORT_TYPE_VARIABLE: if (qsfp_mod_present(ppd)) { /* * platform_atten, remote_atten pre-zeroed to * catch error */ get_platform_config_field( ppd->dd, PLATFORM_CONFIG_PORT_TABLE, 0, PORT_TABLE_LOCAL_ATTEN_25G, &platform_atten, 4); get_platform_config_field( ppd->dd, PLATFORM_CONFIG_PORT_TABLE, 0, PORT_TABLE_REMOTE_ATTEN_25G, &remote_atten, 4); total_atten = platform_atten + remote_atten; tuning_method = OPA_PASSIVE_TUNING; } else { ppd->offline_disabled_reason = HFI1_ODR_MASK(OPA_LINKDOWN_REASON_CHASSIS_CONFIG); goto bail; } break; case PORT_TYPE_QSFP: if (qsfp_mod_present(ppd)) { ret = acquire_chip_resource(ppd->dd, qsfp_resource(ppd->dd), QSFP_WAIT); if (ret) { dd_dev_err(ppd->dd, "%s: hfi%d: cannot lock i2c chain\n", __func__, (int)ppd->dd->hfi1_id); goto bail; } refresh_qsfp_cache(ppd, &ppd->qsfp_info); if (ppd->qsfp_info.cache_valid) { ret = tune_qsfp(ppd, &tx_preset_index, &rx_preset_index, &tuning_method, &total_atten); /* * We may have modified the QSFP memory, so * update the cache to reflect the changes */ refresh_qsfp_cache(ppd, &ppd->qsfp_info); limiting_active = ppd->qsfp_info.limiting_active; } else { dd_dev_err(dd, "%s: Reading QSFP memory failed\n", __func__); ret = -EINVAL; /* a fail indication */ } release_chip_resource(ppd->dd, qsfp_resource(ppd->dd)); if (ret) goto bail; } else { ppd->offline_disabled_reason = HFI1_ODR_MASK( OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED); goto bail; } break; default: dd_dev_warn(ppd->dd, "%s: Unknown port type\n", __func__); ppd->port_type = PORT_TYPE_UNKNOWN; tuning_method = OPA_UNKNOWN_TUNING; total_atten = 0; limiting_active = 0; tx_preset_index = OPA_INVALID_INDEX; break; } if (ppd->offline_disabled_reason == HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)) apply_tunings(ppd, tx_preset_index, tuning_method, total_atten, limiting_active); if (!ret) ppd->driver_link_ready = 1; return; bail: ppd->driver_link_ready = 0; }