/* * Copyright (c) 2007 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include #include #include #include #include #include #include "mlx4_en.h" static int mlx4_en_alloc_frag(struct mlx4_en_priv *priv, struct mlx4_en_rx_desc *rx_desc, struct skb_frag_struct *skb_frags, struct mlx4_en_rx_alloc *ring_alloc, int i) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_frag_info *frag_info = &priv->frag_info[i]; struct mlx4_en_rx_alloc *page_alloc = &ring_alloc[i]; struct page *page; dma_addr_t dma; if (page_alloc->offset == frag_info->last_offset) { /* Allocate new page */ page = alloc_pages(GFP_ATOMIC | __GFP_COMP, MLX4_EN_ALLOC_ORDER); if (!page) return -ENOMEM; skb_frags[i].page = page_alloc->page; skb_frags[i].page_offset = page_alloc->offset; page_alloc->page = page; page_alloc->offset = frag_info->frag_align; } else { page = page_alloc->page; get_page(page); skb_frags[i].page = page; skb_frags[i].page_offset = page_alloc->offset; page_alloc->offset += frag_info->frag_stride; } dma = pci_map_single(mdev->pdev, page_address(skb_frags[i].page) + skb_frags[i].page_offset, frag_info->frag_size, PCI_DMA_FROMDEVICE); rx_desc->data[i].addr = cpu_to_be64(dma); return 0; } static int mlx4_en_init_allocator(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring) { struct mlx4_en_rx_alloc *page_alloc; int i; for (i = 0; i < priv->num_frags; i++) { page_alloc = &ring->page_alloc[i]; page_alloc->page = alloc_pages(GFP_ATOMIC | __GFP_COMP, MLX4_EN_ALLOC_ORDER); if (!page_alloc->page) goto out; page_alloc->offset = priv->frag_info[i].frag_align; en_dbg(DRV, priv, "Initialized allocator:%d with page:%p\n", i, page_alloc->page); } return 0; out: while (i--) { page_alloc = &ring->page_alloc[i]; put_page(page_alloc->page); page_alloc->page = NULL; } return -ENOMEM; } static void mlx4_en_destroy_allocator(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring) { struct mlx4_en_rx_alloc *page_alloc; int i; for (i = 0; i < priv->num_frags; i++) { page_alloc = &ring->page_alloc[i]; en_dbg(DRV, priv, "Freeing allocator:%d count:%d\n", i, page_count(page_alloc->page)); put_page(page_alloc->page); page_alloc->page = NULL; } } static void mlx4_en_init_rx_desc(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring, int index) { struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index; struct skb_frag_struct *skb_frags = ring->rx_info + (index << priv->log_rx_info); int possible_frags; int i; /* Set size and memtype fields */ for (i = 0; i < priv->num_frags; i++) { skb_frag_size_set(&skb_frags[i], priv->frag_info[i].frag_size); rx_desc->data[i].byte_count = cpu_to_be32(priv->frag_info[i].frag_size); rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key); } /* If the number of used fragments does not fill up the ring stride, * remaining (unused) fragments must be padded with null address/size * and a special memory key */ possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE; for (i = priv->num_frags; i < possible_frags; i++) { rx_desc->data[i].byte_count = 0; rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD); rx_desc->data[i].addr = 0; } } static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring, int index) { struct mlx4_en_rx_desc *rx_desc = ring->buf + (index * ring->stride); struct skb_frag_struct *skb_frags = ring->rx_info + (index << priv->log_rx_info); int i; for (i = 0; i < priv->num_frags; i++) if (mlx4_en_alloc_frag(priv, rx_desc, skb_frags, ring->page_alloc, i)) goto err; return 0; err: while (i--) put_page(skb_frags[i].page); return -ENOMEM; } static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring) { *ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff); } static void mlx4_en_free_rx_desc(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring, int index) { struct mlx4_en_dev *mdev = priv->mdev; struct skb_frag_struct *skb_frags; struct mlx4_en_rx_desc *rx_desc = ring->buf + (index << ring->log_stride); dma_addr_t dma; int nr; skb_frags = ring->rx_info + (index << priv->log_rx_info); for (nr = 0; nr < priv->num_frags; nr++) { en_dbg(DRV, priv, "Freeing fragment:%d\n", nr); dma = be64_to_cpu(rx_desc->data[nr].addr); en_dbg(DRV, priv, "Unmapping buffer at dma:0x%llx\n", (u64) dma); pci_unmap_single(mdev->pdev, dma, skb_frag_size(&skb_frags[nr]), PCI_DMA_FROMDEVICE); put_page(skb_frags[nr].page); } } static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv) { struct mlx4_en_rx_ring *ring; int ring_ind; int buf_ind; int new_size; for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) { for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { ring = &priv->rx_ring[ring_ind]; if (mlx4_en_prepare_rx_desc(priv, ring, ring->actual_size)) { if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) { en_err(priv, "Failed to allocate " "enough rx buffers\n"); return -ENOMEM; } else { new_size = rounddown_pow_of_two(ring->actual_size); en_warn(priv, "Only %d buffers allocated " "reducing ring size to %d", ring->actual_size, new_size); goto reduce_rings; } } ring->actual_size++; ring->prod++; } } return 0; reduce_rings: for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { ring = &priv->rx_ring[ring_ind]; while (ring->actual_size > new_size) { ring->actual_size--; ring->prod--; mlx4_en_free_rx_desc(priv, ring, ring->actual_size); } } return 0; } static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring) { int index; en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n", ring->cons, ring->prod); /* Unmap and free Rx buffers */ BUG_ON((u32) (ring->prod - ring->cons) > ring->actual_size); while (ring->cons != ring->prod) { index = ring->cons & ring->size_mask; en_dbg(DRV, priv, "Processing descriptor:%d\n", index); mlx4_en_free_rx_desc(priv, ring, index); ++ring->cons; } } int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring, u32 size, u16 stride) { struct mlx4_en_dev *mdev = priv->mdev; int err; int tmp; ring->prod = 0; ring->cons = 0; ring->size = size; ring->size_mask = size - 1; ring->stride = stride; ring->log_stride = ffs(ring->stride) - 1; ring->buf_size = ring->size * ring->stride + TXBB_SIZE; tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS * sizeof(struct skb_frag_struct)); ring->rx_info = vmalloc(tmp); if (!ring->rx_info) { en_err(priv, "Failed allocating rx_info ring\n"); return -ENOMEM; } en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n", ring->rx_info, tmp); err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size, 2 * PAGE_SIZE); if (err) goto err_ring; err = mlx4_en_map_buffer(&ring->wqres.buf); if (err) { en_err(priv, "Failed to map RX buffer\n"); goto err_hwq; } ring->buf = ring->wqres.buf.direct.buf; return 0; err_hwq: mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); err_ring: vfree(ring->rx_info); ring->rx_info = NULL; return err; } int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv) { struct mlx4_en_rx_ring *ring; int i; int ring_ind; int err; int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) + DS_SIZE * priv->num_frags); for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { ring = &priv->rx_ring[ring_ind]; ring->prod = 0; ring->cons = 0; ring->actual_size = 0; ring->cqn = priv->rx_cq[ring_ind].mcq.cqn; ring->stride = stride; if (ring->stride <= TXBB_SIZE) ring->buf += TXBB_SIZE; ring->log_stride = ffs(ring->stride) - 1; ring->buf_size = ring->size * ring->stride; memset(ring->buf, 0, ring->buf_size); mlx4_en_update_rx_prod_db(ring); /* Initailize all descriptors */ for (i = 0; i < ring->size; i++) mlx4_en_init_rx_desc(priv, ring, i); /* Initialize page allocators */ err = mlx4_en_init_allocator(priv, ring); if (err) { en_err(priv, "Failed initializing ring allocator\n"); if (ring->stride <= TXBB_SIZE) ring->buf -= TXBB_SIZE; ring_ind--; goto err_allocator; } } err = mlx4_en_fill_rx_buffers(priv); if (err) goto err_buffers; for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { ring = &priv->rx_ring[ring_ind]; ring->size_mask = ring->actual_size - 1; mlx4_en_update_rx_prod_db(ring); } return 0; err_buffers: for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) mlx4_en_free_rx_buf(priv, &priv->rx_ring[ring_ind]); ring_ind = priv->rx_ring_num - 1; err_allocator: while (ring_ind >= 0) { if (priv->rx_ring[ring_ind].stride <= TXBB_SIZE) priv->rx_ring[ring_ind].buf -= TXBB_SIZE; mlx4_en_destroy_allocator(priv, &priv->rx_ring[ring_ind]); ring_ind--; } return err; } void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring) { struct mlx4_en_dev *mdev = priv->mdev; mlx4_en_unmap_buffer(&ring->wqres.buf); mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size + TXBB_SIZE); vfree(ring->rx_info); ring->rx_info = NULL; } void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring) { mlx4_en_free_rx_buf(priv, ring); if (ring->stride <= TXBB_SIZE) ring->buf -= TXBB_SIZE; mlx4_en_destroy_allocator(priv, ring); } /* Unmap a completed descriptor and free unused pages */ static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv, struct mlx4_en_rx_desc *rx_desc, struct skb_frag_struct *skb_frags, struct sk_buff *skb, struct mlx4_en_rx_alloc *page_alloc, int length) { struct skb_frag_struct *skb_frags_rx = skb_shinfo(skb)->frags; struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_frag_info *frag_info; int nr; dma_addr_t dma; /* Collect used fragments while replacing them in the HW descirptors */ for (nr = 0; nr < priv->num_frags; nr++) { frag_info = &priv->frag_info[nr]; if (length <= frag_info->frag_prefix_size) break; /* Save page reference in skb */ skb_frags_rx[nr].page = skb_frags[nr].page; skb_frag_size_set(&skb_frags_rx[nr], skb_frag_size(&skb_frags[nr])); skb_frags_rx[nr].page_offset = skb_frags[nr].page_offset; skb->truesize += frag_info->frag_stride; dma = be64_to_cpu(rx_desc->data[nr].addr); /* Allocate a replacement page */ if (mlx4_en_alloc_frag(priv, rx_desc, skb_frags, page_alloc, nr)) goto fail; /* Unmap buffer */ pci_unmap_single(mdev->pdev, dma, skb_frag_size(&skb_frags_rx[nr]), PCI_DMA_FROMDEVICE); } /* Adjust size of last fragment to match actual length */ if (nr > 0) skb_frag_size_set(&skb_frags_rx[nr - 1], length - priv->frag_info[nr - 1].frag_prefix_size); return nr; fail: /* Drop all accumulated fragments (which have already been replaced in * the descriptor) of this packet; remaining fragments are reused... */ while (nr > 0) { nr--; put_page(skb_frags_rx[nr].page); } return 0; } static struct sk_buff *mlx4_en_rx_skb(struct mlx4_en_priv *priv, struct mlx4_en_rx_desc *rx_desc, struct skb_frag_struct *skb_frags, struct mlx4_en_rx_alloc *page_alloc, unsigned int length) { struct mlx4_en_dev *mdev = priv->mdev; struct sk_buff *skb; void *va; int used_frags; dma_addr_t dma; skb = dev_alloc_skb(SMALL_PACKET_SIZE + NET_IP_ALIGN); if (!skb) { en_dbg(RX_ERR, priv, "Failed allocating skb\n"); return NULL; } skb->dev = priv->dev; skb_reserve(skb, NET_IP_ALIGN); skb->len = length; /* Get pointer to first fragment so we could copy the headers into the * (linear part of the) skb */ va = page_address(skb_frags[0].page) + skb_frags[0].page_offset; if (length <= SMALL_PACKET_SIZE) { /* We are copying all relevant data to the skb - temporarily * synch buffers for the copy */ dma = be64_to_cpu(rx_desc->data[0].addr); dma_sync_single_for_cpu(&mdev->pdev->dev, dma, length, DMA_FROM_DEVICE); skb_copy_to_linear_data(skb, va, length); dma_sync_single_for_device(&mdev->pdev->dev, dma, length, DMA_FROM_DEVICE); skb->tail += length; } else { /* Move relevant fragments to skb */ used_frags = mlx4_en_complete_rx_desc(priv, rx_desc, skb_frags, skb, page_alloc, length); if (unlikely(!used_frags)) { kfree_skb(skb); return NULL; } skb_shinfo(skb)->nr_frags = used_frags; /* Copy headers into the skb linear buffer */ memcpy(skb->data, va, HEADER_COPY_SIZE); skb->tail += HEADER_COPY_SIZE; /* Skip headers in first fragment */ skb_shinfo(skb)->frags[0].page_offset += HEADER_COPY_SIZE; /* Adjust size of first fragment */ skb_frag_size_sub(&skb_shinfo(skb)->frags[0], HEADER_COPY_SIZE); skb->data_len = length - HEADER_COPY_SIZE; } return skb; } static void validate_loopback(struct mlx4_en_priv *priv, struct sk_buff *skb) { int i; int offset = ETH_HLEN; for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++, offset++) { if (*(skb->data + offset) != (unsigned char) (i & 0xff)) goto out_loopback; } /* Loopback found */ priv->loopback_ok = 1; out_loopback: dev_kfree_skb_any(skb); } int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget) { struct mlx4_en_priv *priv = netdev_priv(dev); struct mlx4_cqe *cqe; struct mlx4_en_rx_ring *ring = &priv->rx_ring[cq->ring]; struct skb_frag_struct *skb_frags; struct mlx4_en_rx_desc *rx_desc; struct sk_buff *skb; int index; int nr; unsigned int length; int polled = 0; int ip_summed; if (!priv->port_up) return 0; /* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx * descriptor offset can be deduced from the CQE index instead of * reading 'cqe->index' */ index = cq->mcq.cons_index & ring->size_mask; cqe = &cq->buf[index]; /* Process all completed CQEs */ while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, cq->mcq.cons_index & cq->size)) { skb_frags = ring->rx_info + (index << priv->log_rx_info); rx_desc = ring->buf + (index << ring->log_stride); /* * make sure we read the CQE after we read the ownership bit */ rmb(); /* Drop packet on bad receive or bad checksum */ if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == MLX4_CQE_OPCODE_ERROR)) { en_err(priv, "CQE completed in error - vendor " "syndrom:%d syndrom:%d\n", ((struct mlx4_err_cqe *) cqe)->vendor_err_syndrome, ((struct mlx4_err_cqe *) cqe)->syndrome); goto next; } if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) { en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n"); goto next; } /* * Packet is OK - process it. */ length = be32_to_cpu(cqe->byte_cnt); ring->bytes += length; ring->packets++; if (likely(dev->features & NETIF_F_RXCSUM)) { if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) && (cqe->checksum == cpu_to_be16(0xffff))) { ring->csum_ok++; /* This packet is eligible for LRO if it is: * - DIX Ethernet (type interpretation) * - TCP/IP (v4) * - without IP options * - not an IP fragment */ if (dev->features & NETIF_F_GRO) { struct sk_buff *gro_skb = napi_get_frags(&cq->napi); if (!gro_skb) goto next; nr = mlx4_en_complete_rx_desc( priv, rx_desc, skb_frags, gro_skb, ring->page_alloc, length); if (!nr) goto next; skb_shinfo(gro_skb)->nr_frags = nr; gro_skb->len = length; gro_skb->data_len = length; gro_skb->ip_summed = CHECKSUM_UNNECESSARY; if (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_VLAN_PRESENT_MASK)) { u16 vid = be16_to_cpu(cqe->sl_vid); __vlan_hwaccel_put_tag(gro_skb, vid); } if (dev->features & NETIF_F_RXHASH) gro_skb->rxhash = be32_to_cpu(cqe->immed_rss_invalid); skb_record_rx_queue(gro_skb, cq->ring); napi_gro_frags(&cq->napi); goto next; } /* LRO not possible, complete processing here */ ip_summed = CHECKSUM_UNNECESSARY; } else { ip_summed = CHECKSUM_NONE; ring->csum_none++; } } else { ip_summed = CHECKSUM_NONE; ring->csum_none++; } skb = mlx4_en_rx_skb(priv, rx_desc, skb_frags, ring->page_alloc, length); if (!skb) { priv->stats.rx_dropped++; goto next; } if (unlikely(priv->validate_loopback)) { validate_loopback(priv, skb); goto next; } skb->ip_summed = ip_summed; skb->protocol = eth_type_trans(skb, dev); skb_record_rx_queue(skb, cq->ring); if (dev->features & NETIF_F_RXHASH) skb->rxhash = be32_to_cpu(cqe->immed_rss_invalid); if (be32_to_cpu(cqe->vlan_my_qpn) & MLX4_CQE_VLAN_PRESENT_MASK) __vlan_hwaccel_put_tag(skb, be16_to_cpu(cqe->sl_vid)); /* Push it up the stack */ netif_receive_skb(skb); next: ++cq->mcq.cons_index; index = (cq->mcq.cons_index) & ring->size_mask; cqe = &cq->buf[index]; if (++polled == budget) { /* We are here because we reached the NAPI budget - * flush only pending LRO sessions */ goto out; } } out: AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled); mlx4_cq_set_ci(&cq->mcq); wmb(); /* ensure HW sees CQ consumer before we post new buffers */ ring->cons = cq->mcq.cons_index; ring->prod += polled; /* Polled descriptors were realocated in place */ mlx4_en_update_rx_prod_db(ring); return polled; } void mlx4_en_rx_irq(struct mlx4_cq *mcq) { struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); struct mlx4_en_priv *priv = netdev_priv(cq->dev); if (priv->port_up) napi_schedule(&cq->napi); else mlx4_en_arm_cq(priv, cq); } /* Rx CQ polling - called by NAPI */ int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget) { struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi); struct net_device *dev = cq->dev; struct mlx4_en_priv *priv = netdev_priv(dev); int done; done = mlx4_en_process_rx_cq(dev, cq, budget); /* If we used up all the quota - we're probably not done yet... */ if (done == budget) INC_PERF_COUNTER(priv->pstats.napi_quota); else { /* Done for now */ napi_complete(napi); mlx4_en_arm_cq(priv, cq); } return done; } /* Calculate the last offset position that accommodates a full fragment * (assuming fagment size = stride-align) */ static int mlx4_en_last_alloc_offset(struct mlx4_en_priv *priv, u16 stride, u16 align) { u16 res = MLX4_EN_ALLOC_SIZE % stride; u16 offset = MLX4_EN_ALLOC_SIZE - stride - res + align; en_dbg(DRV, priv, "Calculated last offset for stride:%d align:%d " "res:%d offset:%d\n", stride, align, res, offset); return offset; } static int frag_sizes[] = { FRAG_SZ0, FRAG_SZ1, FRAG_SZ2, FRAG_SZ3 }; void mlx4_en_calc_rx_buf(struct net_device *dev) { struct mlx4_en_priv *priv = netdev_priv(dev); int eff_mtu = dev->mtu + ETH_HLEN + VLAN_HLEN + ETH_LLC_SNAP_SIZE; int buf_size = 0; int i = 0; while (buf_size < eff_mtu) { priv->frag_info[i].frag_size = (eff_mtu > buf_size + frag_sizes[i]) ? frag_sizes[i] : eff_mtu - buf_size; priv->frag_info[i].frag_prefix_size = buf_size; if (!i) { priv->frag_info[i].frag_align = NET_IP_ALIGN; priv->frag_info[i].frag_stride = ALIGN(frag_sizes[i] + NET_IP_ALIGN, SMP_CACHE_BYTES); } else { priv->frag_info[i].frag_align = 0; priv->frag_info[i].frag_stride = ALIGN(frag_sizes[i], SMP_CACHE_BYTES); } priv->frag_info[i].last_offset = mlx4_en_last_alloc_offset( priv, priv->frag_info[i].frag_stride, priv->frag_info[i].frag_align); buf_size += priv->frag_info[i].frag_size; i++; } priv->num_frags = i; priv->rx_skb_size = eff_mtu; priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct skb_frag_struct)); en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d " "num_frags:%d):\n", eff_mtu, priv->num_frags); for (i = 0; i < priv->num_frags; i++) { en_dbg(DRV, priv, " frag:%d - size:%d prefix:%d align:%d " "stride:%d last_offset:%d\n", i, priv->frag_info[i].frag_size, priv->frag_info[i].frag_prefix_size, priv->frag_info[i].frag_align, priv->frag_info[i].frag_stride, priv->frag_info[i].last_offset); } } /* RSS related functions */ static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn, struct mlx4_en_rx_ring *ring, enum mlx4_qp_state *state, struct mlx4_qp *qp) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_qp_context *context; int err = 0; context = kmalloc(sizeof *context , GFP_KERNEL); if (!context) { en_err(priv, "Failed to allocate qp context\n"); return -ENOMEM; } err = mlx4_qp_alloc(mdev->dev, qpn, qp); if (err) { en_err(priv, "Failed to allocate qp #%x\n", qpn); goto out; } qp->event = mlx4_en_sqp_event; memset(context, 0, sizeof *context); mlx4_en_fill_qp_context(priv, ring->actual_size, ring->stride, 0, 0, qpn, ring->cqn, context); context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma); /* Cancel FCS removal if FW allows */ if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) context->param3 |= cpu_to_be32(1 << 29); err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state); if (err) { mlx4_qp_remove(mdev->dev, qp); mlx4_qp_free(mdev->dev, qp); } mlx4_en_update_rx_prod_db(ring); out: kfree(context); return err; } /* Allocate rx qp's and configure them according to rss map */ int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_rss_map *rss_map = &priv->rss_map; struct mlx4_qp_context context; struct mlx4_en_rss_context *rss_context; void *ptr; u8 rss_mask = 0x3f; int i, qpn; int err = 0; int good_qps = 0; static const u32 rsskey[10] = { 0xD181C62C, 0xF7F4DB5B, 0x1983A2FC, 0x943E1ADB, 0xD9389E6B, 0xD1039C2C, 0xA74499AD, 0x593D56D9, 0xF3253C06, 0x2ADC1FFC}; en_dbg(DRV, priv, "Configuring rss steering\n"); err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num, priv->rx_ring_num, &rss_map->base_qpn); if (err) { en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num); return err; } for (i = 0; i < priv->rx_ring_num; i++) { qpn = rss_map->base_qpn + i; err = mlx4_en_config_rss_qp(priv, qpn, &priv->rx_ring[i], &rss_map->state[i], &rss_map->qps[i]); if (err) goto rss_err; ++good_qps; } /* Configure RSS indirection qp */ err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, &rss_map->indir_qp); if (err) { en_err(priv, "Failed to allocate RSS indirection QP\n"); goto rss_err; } rss_map->indir_qp.event = mlx4_en_sqp_event; mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn, priv->rx_ring[0].cqn, &context); ptr = ((void *) &context) + 0x3c; rss_context = ptr; rss_context->base_qpn = cpu_to_be32(ilog2(priv->rx_ring_num) << 24 | (rss_map->base_qpn)); rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn); rss_context->flags = rss_mask; rss_context->hash_fn = 1; for (i = 0; i < 10; i++) rss_context->rss_key[i] = rsskey[i]; if (priv->mdev->profile.udp_rss) rss_context->base_qpn_udp = rss_context->default_qpn; err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context, &rss_map->indir_qp, &rss_map->indir_state); if (err) goto indir_err; return 0; indir_err: mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp); mlx4_qp_remove(mdev->dev, &rss_map->indir_qp); mlx4_qp_free(mdev->dev, &rss_map->indir_qp); rss_err: for (i = 0; i < good_qps; i++) { mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); mlx4_qp_free(mdev->dev, &rss_map->qps[i]); } mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num); return err; } void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_rss_map *rss_map = &priv->rss_map; int i; mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp); mlx4_qp_remove(mdev->dev, &rss_map->indir_qp); mlx4_qp_free(mdev->dev, &rss_map->indir_qp); for (i = 0; i < priv->rx_ring_num; i++) { mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); mlx4_qp_free(mdev->dev, &rss_map->qps[i]); } mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num); }