/* * dvb_frontend.c: DVB frontend tuning interface/thread * * * Copyright (C) 1999-2001 Ralph Metzler * Marcus Metzler * Holger Waechtler * for convergence integrated media GmbH * * Copyright (C) 2004 Andrew de Quincey (tuning thread cleanup) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * To obtain the license, point your browser to * http://www.gnu.org/copyleft/gpl.html */ /* Enables DVBv3 compatibility bits at the headers */ #define __DVB_CORE__ #define pr_fmt(fmt) "dvb_frontend: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dvb_frontend.h" #include "dvbdev.h" #include static int dvb_frontend_debug; static int dvb_shutdown_timeout; static int dvb_force_auto_inversion; static int dvb_override_tune_delay; static int dvb_powerdown_on_sleep = 1; static int dvb_mfe_wait_time = 5; module_param_named(frontend_debug, dvb_frontend_debug, int, 0644); MODULE_PARM_DESC(frontend_debug, "Turn on/off frontend core debugging (default:off)."); module_param(dvb_shutdown_timeout, int, 0644); MODULE_PARM_DESC(dvb_shutdown_timeout, "wait seconds after close() before suspending hardware"); module_param(dvb_force_auto_inversion, int, 0644); MODULE_PARM_DESC(dvb_force_auto_inversion, "0: normal (default), 1: INVERSION_AUTO forced always"); module_param(dvb_override_tune_delay, int, 0644); MODULE_PARM_DESC(dvb_override_tune_delay, "0: normal (default), >0 => delay in milliseconds to wait for lock after a tune attempt"); module_param(dvb_powerdown_on_sleep, int, 0644); MODULE_PARM_DESC(dvb_powerdown_on_sleep, "0: do not power down, 1: turn LNB voltage off on sleep (default)"); module_param(dvb_mfe_wait_time, int, 0644); MODULE_PARM_DESC(dvb_mfe_wait_time, "Wait up to seconds on open() for multi-frontend to become available (default:5 seconds)"); #define dprintk(fmt, arg...) \ printk(KERN_DEBUG pr_fmt("%s: " fmt), __func__, ##arg) #define FESTATE_IDLE 1 #define FESTATE_RETUNE 2 #define FESTATE_TUNING_FAST 4 #define FESTATE_TUNING_SLOW 8 #define FESTATE_TUNED 16 #define FESTATE_ZIGZAG_FAST 32 #define FESTATE_ZIGZAG_SLOW 64 #define FESTATE_DISEQC 128 #define FESTATE_ERROR 256 #define FESTATE_WAITFORLOCK (FESTATE_TUNING_FAST | FESTATE_TUNING_SLOW | FESTATE_ZIGZAG_FAST | FESTATE_ZIGZAG_SLOW | FESTATE_DISEQC) #define FESTATE_SEARCHING_FAST (FESTATE_TUNING_FAST | FESTATE_ZIGZAG_FAST) #define FESTATE_SEARCHING_SLOW (FESTATE_TUNING_SLOW | FESTATE_ZIGZAG_SLOW) #define FESTATE_LOSTLOCK (FESTATE_ZIGZAG_FAST | FESTATE_ZIGZAG_SLOW) /* * FESTATE_IDLE. No tuning parameters have been supplied and the loop is idling. * FESTATE_RETUNE. Parameters have been supplied, but we have not yet performed the first tune. * FESTATE_TUNING_FAST. Tuning parameters have been supplied and fast zigzag scan is in progress. * FESTATE_TUNING_SLOW. Tuning parameters have been supplied. Fast zigzag failed, so we're trying again, but slower. * FESTATE_TUNED. The frontend has successfully locked on. * FESTATE_ZIGZAG_FAST. The lock has been lost, and a fast zigzag has been initiated to try and regain it. * FESTATE_ZIGZAG_SLOW. The lock has been lost. Fast zigzag has been failed, so we're trying again, but slower. * FESTATE_DISEQC. A DISEQC command has just been issued. * FESTATE_WAITFORLOCK. When we're waiting for a lock. * FESTATE_SEARCHING_FAST. When we're searching for a signal using a fast zigzag scan. * FESTATE_SEARCHING_SLOW. When we're searching for a signal using a slow zigzag scan. * FESTATE_LOSTLOCK. When the lock has been lost, and we're searching it again. */ static DEFINE_MUTEX(frontend_mutex); struct dvb_frontend_private { /* thread/frontend values */ struct dvb_device *dvbdev; struct dvb_frontend_parameters parameters_out; struct dvb_fe_events events; struct semaphore sem; struct list_head list_head; wait_queue_head_t wait_queue; struct task_struct *thread; unsigned long release_jiffies; unsigned int wakeup; enum fe_status status; unsigned long tune_mode_flags; unsigned int delay; unsigned int reinitialise; int tone; int voltage; /* swzigzag values */ unsigned int state; unsigned int bending; int lnb_drift; unsigned int inversion; unsigned int auto_step; unsigned int auto_sub_step; unsigned int started_auto_step; unsigned int min_delay; unsigned int max_drift; unsigned int step_size; int quality; unsigned int check_wrapped; enum dvbfe_search algo_status; #if defined(CONFIG_MEDIA_CONTROLLER_DVB) struct media_pipeline pipe; #endif }; static void dvb_frontend_invoke_release(struct dvb_frontend *fe, void (*release)(struct dvb_frontend *fe)); static void dvb_frontend_free(struct kref *ref) { struct dvb_frontend *fe = container_of(ref, struct dvb_frontend, refcount); struct dvb_frontend_private *fepriv = fe->frontend_priv; dvb_free_device(fepriv->dvbdev); dvb_frontend_invoke_release(fe, fe->ops.release); kfree(fepriv); } static void dvb_frontend_put(struct dvb_frontend *fe) { kref_put(&fe->refcount, dvb_frontend_free); } static void dvb_frontend_get(struct dvb_frontend *fe) { kref_get(&fe->refcount); } static void dvb_frontend_wakeup(struct dvb_frontend *fe); static int dtv_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *c, struct dvb_frontend_parameters *p_out); static int dtv_property_legacy_params_sync(struct dvb_frontend *fe, const struct dtv_frontend_properties *c, struct dvb_frontend_parameters *p); static bool has_get_frontend(struct dvb_frontend *fe) { return fe->ops.get_frontend != NULL; } /* * Due to DVBv3 API calls, a delivery system should be mapped into one of * the 4 DVBv3 delivery systems (FE_QPSK, FE_QAM, FE_OFDM or FE_ATSC), * otherwise, a DVBv3 call will fail. */ enum dvbv3_emulation_type { DVBV3_UNKNOWN, DVBV3_QPSK, DVBV3_QAM, DVBV3_OFDM, DVBV3_ATSC, }; static enum dvbv3_emulation_type dvbv3_type(u32 delivery_system) { switch (delivery_system) { case SYS_DVBC_ANNEX_A: case SYS_DVBC_ANNEX_C: return DVBV3_QAM; case SYS_DVBS: case SYS_DVBS2: case SYS_TURBO: case SYS_ISDBS: case SYS_DSS: return DVBV3_QPSK; case SYS_DVBT: case SYS_DVBT2: case SYS_ISDBT: case SYS_DTMB: return DVBV3_OFDM; case SYS_ATSC: case SYS_ATSCMH: case SYS_DVBC_ANNEX_B: return DVBV3_ATSC; case SYS_UNDEFINED: case SYS_ISDBC: case SYS_DVBH: case SYS_DAB: default: /* * Doesn't know how to emulate those types and/or * there's no frontend driver from this type yet * with some emulation code, so, we're not sure yet how * to handle them, or they're not compatible with a DVBv3 call. */ return DVBV3_UNKNOWN; } } static void dvb_frontend_add_event(struct dvb_frontend *fe, enum fe_status status) { struct dvb_frontend_private *fepriv = fe->frontend_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct dvb_fe_events *events = &fepriv->events; struct dvb_frontend_event *e; int wp; dev_dbg(fe->dvb->device, "%s:\n", __func__); if ((status & FE_HAS_LOCK) && has_get_frontend(fe)) dtv_get_frontend(fe, c, &fepriv->parameters_out); mutex_lock(&events->mtx); wp = (events->eventw + 1) % MAX_EVENT; if (wp == events->eventr) { events->overflow = 1; events->eventr = (events->eventr + 1) % MAX_EVENT; } e = &events->events[events->eventw]; e->status = status; e->parameters = fepriv->parameters_out; events->eventw = wp; mutex_unlock(&events->mtx); wake_up_interruptible (&events->wait_queue); } static int dvb_frontend_get_event(struct dvb_frontend *fe, struct dvb_frontend_event *event, int flags) { struct dvb_frontend_private *fepriv = fe->frontend_priv; struct dvb_fe_events *events = &fepriv->events; dev_dbg(fe->dvb->device, "%s:\n", __func__); if (events->overflow) { events->overflow = 0; return -EOVERFLOW; } if (events->eventw == events->eventr) { int ret; if (flags & O_NONBLOCK) return -EWOULDBLOCK; up(&fepriv->sem); ret = wait_event_interruptible (events->wait_queue, events->eventw != events->eventr); if (down_interruptible (&fepriv->sem)) return -ERESTARTSYS; if (ret < 0) return ret; } mutex_lock(&events->mtx); *event = events->events[events->eventr]; events->eventr = (events->eventr + 1) % MAX_EVENT; mutex_unlock(&events->mtx); return 0; } static void dvb_frontend_clear_events(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = fe->frontend_priv; struct dvb_fe_events *events = &fepriv->events; mutex_lock(&events->mtx); events->eventr = events->eventw; mutex_unlock(&events->mtx); } static void dvb_frontend_init(struct dvb_frontend *fe) { dev_dbg(fe->dvb->device, "%s: initialising adapter %i frontend %i (%s)...\n", __func__, fe->dvb->num, fe->id, fe->ops.info.name); if (fe->ops.init) fe->ops.init(fe); if (fe->ops.tuner_ops.init) { if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); fe->ops.tuner_ops.init(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } } void dvb_frontend_reinitialise(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = fe->frontend_priv; fepriv->reinitialise = 1; dvb_frontend_wakeup(fe); } EXPORT_SYMBOL(dvb_frontend_reinitialise); static void dvb_frontend_swzigzag_update_delay(struct dvb_frontend_private *fepriv, int locked) { int q2; struct dvb_frontend *fe = fepriv->dvbdev->priv; dev_dbg(fe->dvb->device, "%s:\n", __func__); if (locked) (fepriv->quality) = (fepriv->quality * 220 + 36*256) / 256; else (fepriv->quality) = (fepriv->quality * 220 + 0) / 256; q2 = fepriv->quality - 128; q2 *= q2; fepriv->delay = fepriv->min_delay + q2 * HZ / (128*128); } /** * Performs automatic twiddling of frontend parameters. * * @param fe The frontend concerned. * @param check_wrapped Checks if an iteration has completed. DO NOT SET ON THE FIRST ATTEMPT * @returns Number of complete iterations that have been performed. */ static int dvb_frontend_swzigzag_autotune(struct dvb_frontend *fe, int check_wrapped) { int autoinversion; int ready = 0; int fe_set_err = 0; struct dvb_frontend_private *fepriv = fe->frontend_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache, tmp; int original_inversion = c->inversion; u32 original_frequency = c->frequency; /* are we using autoinversion? */ autoinversion = ((!(fe->ops.info.caps & FE_CAN_INVERSION_AUTO)) && (c->inversion == INVERSION_AUTO)); /* setup parameters correctly */ while(!ready) { /* calculate the lnb_drift */ fepriv->lnb_drift = fepriv->auto_step * fepriv->step_size; /* wrap the auto_step if we've exceeded the maximum drift */ if (fepriv->lnb_drift > fepriv->max_drift) { fepriv->auto_step = 0; fepriv->auto_sub_step = 0; fepriv->lnb_drift = 0; } /* perform inversion and +/- zigzag */ switch(fepriv->auto_sub_step) { case 0: /* try with the current inversion and current drift setting */ ready = 1; break; case 1: if (!autoinversion) break; fepriv->inversion = (fepriv->inversion == INVERSION_OFF) ? INVERSION_ON : INVERSION_OFF; ready = 1; break; case 2: if (fepriv->lnb_drift == 0) break; fepriv->lnb_drift = -fepriv->lnb_drift; ready = 1; break; case 3: if (fepriv->lnb_drift == 0) break; if (!autoinversion) break; fepriv->inversion = (fepriv->inversion == INVERSION_OFF) ? INVERSION_ON : INVERSION_OFF; fepriv->lnb_drift = -fepriv->lnb_drift; ready = 1; break; default: fepriv->auto_step++; fepriv->auto_sub_step = -1; /* it'll be incremented to 0 in a moment */ break; } if (!ready) fepriv->auto_sub_step++; } /* if this attempt would hit where we started, indicate a complete * iteration has occurred */ if ((fepriv->auto_step == fepriv->started_auto_step) && (fepriv->auto_sub_step == 0) && check_wrapped) { return 1; } dev_dbg(fe->dvb->device, "%s: drift:%i inversion:%i auto_step:%i " \ "auto_sub_step:%i started_auto_step:%i\n", __func__, fepriv->lnb_drift, fepriv->inversion, fepriv->auto_step, fepriv->auto_sub_step, fepriv->started_auto_step); /* set the frontend itself */ c->frequency += fepriv->lnb_drift; if (autoinversion) c->inversion = fepriv->inversion; tmp = *c; if (fe->ops.set_frontend) fe_set_err = fe->ops.set_frontend(fe); *c = tmp; if (fe_set_err < 0) { fepriv->state = FESTATE_ERROR; return fe_set_err; } c->frequency = original_frequency; c->inversion = original_inversion; fepriv->auto_sub_step++; return 0; } static void dvb_frontend_swzigzag(struct dvb_frontend *fe) { enum fe_status s = FE_NONE; int retval = 0; struct dvb_frontend_private *fepriv = fe->frontend_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache, tmp; /* if we've got no parameters, just keep idling */ if (fepriv->state & FESTATE_IDLE) { fepriv->delay = 3*HZ; fepriv->quality = 0; return; } /* in SCAN mode, we just set the frontend when asked and leave it alone */ if (fepriv->tune_mode_flags & FE_TUNE_MODE_ONESHOT) { if (fepriv->state & FESTATE_RETUNE) { tmp = *c; if (fe->ops.set_frontend) retval = fe->ops.set_frontend(fe); *c = tmp; if (retval < 0) fepriv->state = FESTATE_ERROR; else fepriv->state = FESTATE_TUNED; } fepriv->delay = 3*HZ; fepriv->quality = 0; return; } /* get the frontend status */ if (fepriv->state & FESTATE_RETUNE) { s = 0; } else { if (fe->ops.read_status) fe->ops.read_status(fe, &s); if (s != fepriv->status) { dvb_frontend_add_event(fe, s); fepriv->status = s; } } /* if we're not tuned, and we have a lock, move to the TUNED state */ if ((fepriv->state & FESTATE_WAITFORLOCK) && (s & FE_HAS_LOCK)) { dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK); fepriv->state = FESTATE_TUNED; /* if we're tuned, then we have determined the correct inversion */ if ((!(fe->ops.info.caps & FE_CAN_INVERSION_AUTO)) && (c->inversion == INVERSION_AUTO)) { c->inversion = fepriv->inversion; } return; } /* if we are tuned already, check we're still locked */ if (fepriv->state & FESTATE_TUNED) { dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK); /* we're tuned, and the lock is still good... */ if (s & FE_HAS_LOCK) { return; } else { /* if we _WERE_ tuned, but now don't have a lock */ fepriv->state = FESTATE_ZIGZAG_FAST; fepriv->started_auto_step = fepriv->auto_step; fepriv->check_wrapped = 0; } } /* don't actually do anything if we're in the LOSTLOCK state, * the frontend is set to FE_CAN_RECOVER, and the max_drift is 0 */ if ((fepriv->state & FESTATE_LOSTLOCK) && (fe->ops.info.caps & FE_CAN_RECOVER) && (fepriv->max_drift == 0)) { dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK); return; } /* don't do anything if we're in the DISEQC state, since this * might be someone with a motorized dish controlled by DISEQC. * If its actually a re-tune, there will be a SET_FRONTEND soon enough. */ if (fepriv->state & FESTATE_DISEQC) { dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK); return; } /* if we're in the RETUNE state, set everything up for a brand * new scan, keeping the current inversion setting, as the next * tune is _very_ likely to require the same */ if (fepriv->state & FESTATE_RETUNE) { fepriv->lnb_drift = 0; fepriv->auto_step = 0; fepriv->auto_sub_step = 0; fepriv->started_auto_step = 0; fepriv->check_wrapped = 0; } /* fast zigzag. */ if ((fepriv->state & FESTATE_SEARCHING_FAST) || (fepriv->state & FESTATE_RETUNE)) { fepriv->delay = fepriv->min_delay; /* perform a tune */ retval = dvb_frontend_swzigzag_autotune(fe, fepriv->check_wrapped); if (retval < 0) { return; } else if (retval) { /* OK, if we've run out of trials at the fast speed. * Drop back to slow for the _next_ attempt */ fepriv->state = FESTATE_SEARCHING_SLOW; fepriv->started_auto_step = fepriv->auto_step; return; } fepriv->check_wrapped = 1; /* if we've just retuned, enter the ZIGZAG_FAST state. * This ensures we cannot return from an * FE_SET_FRONTEND ioctl before the first frontend tune * occurs */ if (fepriv->state & FESTATE_RETUNE) { fepriv->state = FESTATE_TUNING_FAST; } } /* slow zigzag */ if (fepriv->state & FESTATE_SEARCHING_SLOW) { dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK); /* Note: don't bother checking for wrapping; we stay in this * state until we get a lock */ dvb_frontend_swzigzag_autotune(fe, 0); } } static int dvb_frontend_is_exiting(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = fe->frontend_priv; if (fe->exit != DVB_FE_NO_EXIT) return 1; if (fepriv->dvbdev->writers == 1) if (time_after_eq(jiffies, fepriv->release_jiffies + dvb_shutdown_timeout * HZ)) return 1; return 0; } static int dvb_frontend_should_wakeup(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = fe->frontend_priv; if (fepriv->wakeup) { fepriv->wakeup = 0; return 1; } return dvb_frontend_is_exiting(fe); } static void dvb_frontend_wakeup(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = fe->frontend_priv; fepriv->wakeup = 1; wake_up_interruptible(&fepriv->wait_queue); } static int dvb_frontend_thread(void *data) { struct dvb_frontend *fe = data; struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct dvb_frontend_private *fepriv = fe->frontend_priv; enum fe_status s = FE_NONE; enum dvbfe_algo algo; bool re_tune = false; bool semheld = false; dev_dbg(fe->dvb->device, "%s:\n", __func__); fepriv->check_wrapped = 0; fepriv->quality = 0; fepriv->delay = 3*HZ; fepriv->status = 0; fepriv->wakeup = 0; fepriv->reinitialise = 0; dvb_frontend_init(fe); set_freezable(); while (1) { up(&fepriv->sem); /* is locked when we enter the thread... */ restart: wait_event_interruptible_timeout(fepriv->wait_queue, dvb_frontend_should_wakeup(fe) || kthread_should_stop() || freezing(current), fepriv->delay); if (kthread_should_stop() || dvb_frontend_is_exiting(fe)) { /* got signal or quitting */ if (!down_interruptible(&fepriv->sem)) semheld = true; fe->exit = DVB_FE_NORMAL_EXIT; break; } if (try_to_freeze()) goto restart; if (down_interruptible(&fepriv->sem)) break; if (fepriv->reinitialise) { dvb_frontend_init(fe); if (fe->ops.set_tone && fepriv->tone != -1) fe->ops.set_tone(fe, fepriv->tone); if (fe->ops.set_voltage && fepriv->voltage != -1) fe->ops.set_voltage(fe, fepriv->voltage); fepriv->reinitialise = 0; } /* do an iteration of the tuning loop */ if (fe->ops.get_frontend_algo) { algo = fe->ops.get_frontend_algo(fe); switch (algo) { case DVBFE_ALGO_HW: dev_dbg(fe->dvb->device, "%s: Frontend ALGO = DVBFE_ALGO_HW\n", __func__); if (fepriv->state & FESTATE_RETUNE) { dev_dbg(fe->dvb->device, "%s: Retune requested, FESTATE_RETUNE\n", __func__); re_tune = true; fepriv->state = FESTATE_TUNED; } else { re_tune = false; } if (fe->ops.tune) fe->ops.tune(fe, re_tune, fepriv->tune_mode_flags, &fepriv->delay, &s); if (s != fepriv->status && !(fepriv->tune_mode_flags & FE_TUNE_MODE_ONESHOT)) { dev_dbg(fe->dvb->device, "%s: state changed, adding current state\n", __func__); dvb_frontend_add_event(fe, s); fepriv->status = s; } break; case DVBFE_ALGO_SW: dev_dbg(fe->dvb->device, "%s: Frontend ALGO = DVBFE_ALGO_SW\n", __func__); dvb_frontend_swzigzag(fe); break; case DVBFE_ALGO_CUSTOM: dev_dbg(fe->dvb->device, "%s: Frontend ALGO = DVBFE_ALGO_CUSTOM, state=%d\n", __func__, fepriv->state); if (fepriv->state & FESTATE_RETUNE) { dev_dbg(fe->dvb->device, "%s: Retune requested, FESTAT_RETUNE\n", __func__); fepriv->state = FESTATE_TUNED; } /* Case where we are going to search for a carrier * User asked us to retune again for some reason, possibly * requesting a search with a new set of parameters */ if (fepriv->algo_status & DVBFE_ALGO_SEARCH_AGAIN) { if (fe->ops.search) { fepriv->algo_status = fe->ops.search(fe); /* We did do a search as was requested, the flags are * now unset as well and has the flags wrt to search. */ } else { fepriv->algo_status &= ~DVBFE_ALGO_SEARCH_AGAIN; } } /* Track the carrier if the search was successful */ if (fepriv->algo_status != DVBFE_ALGO_SEARCH_SUCCESS) { fepriv->algo_status |= DVBFE_ALGO_SEARCH_AGAIN; fepriv->delay = HZ / 2; } dtv_property_legacy_params_sync(fe, c, &fepriv->parameters_out); fe->ops.read_status(fe, &s); if (s != fepriv->status) { dvb_frontend_add_event(fe, s); /* update event list */ fepriv->status = s; if (!(s & FE_HAS_LOCK)) { fepriv->delay = HZ / 10; fepriv->algo_status |= DVBFE_ALGO_SEARCH_AGAIN; } else { fepriv->delay = 60 * HZ; } } break; default: dev_dbg(fe->dvb->device, "%s: UNDEFINED ALGO !\n", __func__); break; } } else { dvb_frontend_swzigzag(fe); } } if (dvb_powerdown_on_sleep) { if (fe->ops.set_voltage) fe->ops.set_voltage(fe, SEC_VOLTAGE_OFF); if (fe->ops.tuner_ops.sleep) { if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); fe->ops.tuner_ops.sleep(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } if (fe->ops.sleep) fe->ops.sleep(fe); } fepriv->thread = NULL; if (kthread_should_stop()) fe->exit = DVB_FE_DEVICE_REMOVED; else fe->exit = DVB_FE_NO_EXIT; mb(); if (semheld) up(&fepriv->sem); dvb_frontend_wakeup(fe); return 0; } static void dvb_frontend_stop(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = fe->frontend_priv; dev_dbg(fe->dvb->device, "%s:\n", __func__); if (fe->exit != DVB_FE_DEVICE_REMOVED) fe->exit = DVB_FE_NORMAL_EXIT; mb(); if (!fepriv->thread) return; kthread_stop(fepriv->thread); sema_init(&fepriv->sem, 1); fepriv->state = FESTATE_IDLE; /* paranoia check in case a signal arrived */ if (fepriv->thread) dev_warn(fe->dvb->device, "dvb_frontend_stop: warning: thread %p won't exit\n", fepriv->thread); } /* * Sleep for the amount of time given by add_usec parameter * * This needs to be as precise as possible, as it affects the detection of * the dish tone command at the satellite subsystem. The precision is improved * by using a scheduled msleep followed by udelay for the remainder. */ void dvb_frontend_sleep_until(ktime_t *waketime, u32 add_usec) { s32 delta; *waketime = ktime_add_us(*waketime, add_usec); delta = ktime_us_delta(ktime_get_boottime(), *waketime); if (delta > 2500) { msleep((delta - 1500) / 1000); delta = ktime_us_delta(ktime_get_boottime(), *waketime); } if (delta > 0) udelay(delta); } EXPORT_SYMBOL(dvb_frontend_sleep_until); static int dvb_frontend_start(struct dvb_frontend *fe) { int ret; struct dvb_frontend_private *fepriv = fe->frontend_priv; struct task_struct *fe_thread; dev_dbg(fe->dvb->device, "%s:\n", __func__); if (fepriv->thread) { if (fe->exit == DVB_FE_NO_EXIT) return 0; else dvb_frontend_stop (fe); } if (signal_pending(current)) return -EINTR; if (down_interruptible (&fepriv->sem)) return -EINTR; fepriv->state = FESTATE_IDLE; fe->exit = DVB_FE_NO_EXIT; fepriv->thread = NULL; mb(); fe_thread = kthread_run(dvb_frontend_thread, fe, "kdvb-ad-%i-fe-%i", fe->dvb->num,fe->id); if (IS_ERR(fe_thread)) { ret = PTR_ERR(fe_thread); dev_warn(fe->dvb->device, "dvb_frontend_start: failed to start kthread (%d)\n", ret); up(&fepriv->sem); return ret; } fepriv->thread = fe_thread; return 0; } static void dvb_frontend_get_frequency_limits(struct dvb_frontend *fe, u32 *freq_min, u32 *freq_max) { *freq_min = max(fe->ops.info.frequency_min, fe->ops.tuner_ops.info.frequency_min); if (fe->ops.info.frequency_max == 0) *freq_max = fe->ops.tuner_ops.info.frequency_max; else if (fe->ops.tuner_ops.info.frequency_max == 0) *freq_max = fe->ops.info.frequency_max; else *freq_max = min(fe->ops.info.frequency_max, fe->ops.tuner_ops.info.frequency_max); if (*freq_min == 0 || *freq_max == 0) dev_warn(fe->dvb->device, "DVB: adapter %i frontend %u frequency limits undefined - fix the driver\n", fe->dvb->num, fe->id); } static int dvb_frontend_check_parameters(struct dvb_frontend *fe) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; u32 freq_min; u32 freq_max; /* range check: frequency */ dvb_frontend_get_frequency_limits(fe, &freq_min, &freq_max); if ((freq_min && c->frequency < freq_min) || (freq_max && c->frequency > freq_max)) { dev_warn(fe->dvb->device, "DVB: adapter %i frontend %i frequency %u out of range (%u..%u)\n", fe->dvb->num, fe->id, c->frequency, freq_min, freq_max); return -EINVAL; } /* range check: symbol rate */ switch (c->delivery_system) { case SYS_DVBS: case SYS_DVBS2: case SYS_TURBO: case SYS_DVBC_ANNEX_A: case SYS_DVBC_ANNEX_C: if ((fe->ops.info.symbol_rate_min && c->symbol_rate < fe->ops.info.symbol_rate_min) || (fe->ops.info.symbol_rate_max && c->symbol_rate > fe->ops.info.symbol_rate_max)) { dev_warn(fe->dvb->device, "DVB: adapter %i frontend %i symbol rate %u out of range (%u..%u)\n", fe->dvb->num, fe->id, c->symbol_rate, fe->ops.info.symbol_rate_min, fe->ops.info.symbol_rate_max); return -EINVAL; } default: break; } return 0; } static int dvb_frontend_clear_cache(struct dvb_frontend *fe) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; int i; u32 delsys; delsys = c->delivery_system; memset(c, 0, offsetof(struct dtv_frontend_properties, strength)); c->delivery_system = delsys; c->state = DTV_CLEAR; dev_dbg(fe->dvb->device, "%s: Clearing cache for delivery system %d\n", __func__, c->delivery_system); c->transmission_mode = TRANSMISSION_MODE_AUTO; c->bandwidth_hz = 0; /* AUTO */ c->guard_interval = GUARD_INTERVAL_AUTO; c->hierarchy = HIERARCHY_AUTO; c->symbol_rate = 0; c->code_rate_HP = FEC_AUTO; c->code_rate_LP = FEC_AUTO; c->fec_inner = FEC_AUTO; c->rolloff = ROLLOFF_AUTO; c->voltage = SEC_VOLTAGE_OFF; c->sectone = SEC_TONE_OFF; c->pilot = PILOT_AUTO; c->isdbt_partial_reception = 0; c->isdbt_sb_mode = 0; c->isdbt_sb_subchannel = 0; c->isdbt_sb_segment_idx = 0; c->isdbt_sb_segment_count = 0; c->isdbt_layer_enabled = 0; for (i = 0; i < 3; i++) { c->layer[i].fec = FEC_AUTO; c->layer[i].modulation = QAM_AUTO; c->layer[i].interleaving = 0; c->layer[i].segment_count = 0; } c->stream_id = NO_STREAM_ID_FILTER; switch (c->delivery_system) { case SYS_DVBS: case SYS_DVBS2: case SYS_TURBO: c->modulation = QPSK; /* implied for DVB-S in legacy API */ c->rolloff = ROLLOFF_35;/* implied for DVB-S */ break; case SYS_ATSC: c->modulation = VSB_8; break; case SYS_ISDBS: c->symbol_rate = 28860000; c->rolloff = ROLLOFF_35; c->bandwidth_hz = c->symbol_rate / 100 * 135; break; default: c->modulation = QAM_AUTO; break; } c->lna = LNA_AUTO; return 0; } #define _DTV_CMD(n, s, b) \ [n] = { \ .name = #n, \ .cmd = n, \ .set = s,\ .buffer = b \ } struct dtv_cmds_h { char *name; /* A display name for debugging purposes */ __u32 cmd; /* A unique ID */ /* Flags */ __u32 set:1; /* Either a set or get property */ __u32 buffer:1; /* Does this property use the buffer? */ __u32 reserved:30; /* Align */ }; static struct dtv_cmds_h dtv_cmds[DTV_MAX_COMMAND + 1] = { _DTV_CMD(DTV_TUNE, 1, 0), _DTV_CMD(DTV_CLEAR, 1, 0), /* Set */ _DTV_CMD(DTV_FREQUENCY, 1, 0), _DTV_CMD(DTV_BANDWIDTH_HZ, 1, 0), _DTV_CMD(DTV_MODULATION, 1, 0), _DTV_CMD(DTV_INVERSION, 1, 0), _DTV_CMD(DTV_DISEQC_MASTER, 1, 1), _DTV_CMD(DTV_SYMBOL_RATE, 1, 0), _DTV_CMD(DTV_INNER_FEC, 1, 0), _DTV_CMD(DTV_VOLTAGE, 1, 0), _DTV_CMD(DTV_TONE, 1, 0), _DTV_CMD(DTV_PILOT, 1, 0), _DTV_CMD(DTV_ROLLOFF, 1, 0), _DTV_CMD(DTV_DELIVERY_SYSTEM, 1, 0), _DTV_CMD(DTV_HIERARCHY, 1, 0), _DTV_CMD(DTV_CODE_RATE_HP, 1, 0), _DTV_CMD(DTV_CODE_RATE_LP, 1, 0), _DTV_CMD(DTV_GUARD_INTERVAL, 1, 0), _DTV_CMD(DTV_TRANSMISSION_MODE, 1, 0), _DTV_CMD(DTV_INTERLEAVING, 1, 0), _DTV_CMD(DTV_ISDBT_PARTIAL_RECEPTION, 1, 0), _DTV_CMD(DTV_ISDBT_SOUND_BROADCASTING, 1, 0), _DTV_CMD(DTV_ISDBT_SB_SUBCHANNEL_ID, 1, 0), _DTV_CMD(DTV_ISDBT_SB_SEGMENT_IDX, 1, 0), _DTV_CMD(DTV_ISDBT_SB_SEGMENT_COUNT, 1, 0), _DTV_CMD(DTV_ISDBT_LAYER_ENABLED, 1, 0), _DTV_CMD(DTV_ISDBT_LAYERA_FEC, 1, 0), _DTV_CMD(DTV_ISDBT_LAYERA_MODULATION, 1, 0), _DTV_CMD(DTV_ISDBT_LAYERA_SEGMENT_COUNT, 1, 0), _DTV_CMD(DTV_ISDBT_LAYERA_TIME_INTERLEAVING, 1, 0), _DTV_CMD(DTV_ISDBT_LAYERB_FEC, 1, 0), _DTV_CMD(DTV_ISDBT_LAYERB_MODULATION, 1, 0), _DTV_CMD(DTV_ISDBT_LAYERB_SEGMENT_COUNT, 1, 0), _DTV_CMD(DTV_ISDBT_LAYERB_TIME_INTERLEAVING, 1, 0), _DTV_CMD(DTV_ISDBT_LAYERC_FEC, 1, 0), _DTV_CMD(DTV_ISDBT_LAYERC_MODULATION, 1, 0), _DTV_CMD(DTV_ISDBT_LAYERC_SEGMENT_COUNT, 1, 0), _DTV_CMD(DTV_ISDBT_LAYERC_TIME_INTERLEAVING, 1, 0), _DTV_CMD(DTV_STREAM_ID, 1, 0), _DTV_CMD(DTV_DVBT2_PLP_ID_LEGACY, 1, 0), _DTV_CMD(DTV_LNA, 1, 0), /* Get */ _DTV_CMD(DTV_DISEQC_SLAVE_REPLY, 0, 1), _DTV_CMD(DTV_API_VERSION, 0, 0), _DTV_CMD(DTV_ENUM_DELSYS, 0, 0), _DTV_CMD(DTV_ATSCMH_PARADE_ID, 1, 0), _DTV_CMD(DTV_ATSCMH_RS_FRAME_ENSEMBLE, 1, 0), _DTV_CMD(DTV_ATSCMH_FIC_VER, 0, 0), _DTV_CMD(DTV_ATSCMH_NOG, 0, 0), _DTV_CMD(DTV_ATSCMH_TNOG, 0, 0), _DTV_CMD(DTV_ATSCMH_SGN, 0, 0), _DTV_CMD(DTV_ATSCMH_PRC, 0, 0), _DTV_CMD(DTV_ATSCMH_RS_FRAME_MODE, 0, 0), _DTV_CMD(DTV_ATSCMH_RS_CODE_MODE_PRI, 0, 0), _DTV_CMD(DTV_ATSCMH_RS_CODE_MODE_SEC, 0, 0), _DTV_CMD(DTV_ATSCMH_SCCC_BLOCK_MODE, 0, 0), _DTV_CMD(DTV_ATSCMH_SCCC_CODE_MODE_A, 0, 0), _DTV_CMD(DTV_ATSCMH_SCCC_CODE_MODE_B, 0, 0), _DTV_CMD(DTV_ATSCMH_SCCC_CODE_MODE_C, 0, 0), _DTV_CMD(DTV_ATSCMH_SCCC_CODE_MODE_D, 0, 0), /* Statistics API */ _DTV_CMD(DTV_STAT_SIGNAL_STRENGTH, 0, 0), _DTV_CMD(DTV_STAT_CNR, 0, 0), _DTV_CMD(DTV_STAT_PRE_ERROR_BIT_COUNT, 0, 0), _DTV_CMD(DTV_STAT_PRE_TOTAL_BIT_COUNT, 0, 0), _DTV_CMD(DTV_STAT_POST_ERROR_BIT_COUNT, 0, 0), _DTV_CMD(DTV_STAT_POST_TOTAL_BIT_COUNT, 0, 0), _DTV_CMD(DTV_STAT_ERROR_BLOCK_COUNT, 0, 0), _DTV_CMD(DTV_STAT_TOTAL_BLOCK_COUNT, 0, 0), }; static void dtv_property_dump(struct dvb_frontend *fe, bool is_set, struct dtv_property *tvp) { int i; if (tvp->cmd <= 0 || tvp->cmd > DTV_MAX_COMMAND) { dev_warn(fe->dvb->device, "%s: %s tvp.cmd = 0x%08x undefined\n", __func__, is_set ? "SET" : "GET", tvp->cmd); return; } dev_dbg(fe->dvb->device, "%s: %s tvp.cmd = 0x%08x (%s)\n", __func__, is_set ? "SET" : "GET", tvp->cmd, dtv_cmds[tvp->cmd].name); if (dtv_cmds[tvp->cmd].buffer) { dev_dbg(fe->dvb->device, "%s: tvp.u.buffer.len = 0x%02x\n", __func__, tvp->u.buffer.len); for(i = 0; i < tvp->u.buffer.len; i++) dev_dbg(fe->dvb->device, "%s: tvp.u.buffer.data[0x%02x] = 0x%02x\n", __func__, i, tvp->u.buffer.data[i]); } else { dev_dbg(fe->dvb->device, "%s: tvp.u.data = 0x%08x\n", __func__, tvp->u.data); } } /* Synchronise the legacy tuning parameters into the cache, so that demodulator * drivers can use a single set_frontend tuning function, regardless of whether * it's being used for the legacy or new API, reducing code and complexity. */ static int dtv_property_cache_sync(struct dvb_frontend *fe, struct dtv_frontend_properties *c, const struct dvb_frontend_parameters *p) { c->frequency = p->frequency; c->inversion = p->inversion; switch (dvbv3_type(c->delivery_system)) { case DVBV3_QPSK: dev_dbg(fe->dvb->device, "%s: Preparing QPSK req\n", __func__); c->symbol_rate = p->u.qpsk.symbol_rate; c->fec_inner = p->u.qpsk.fec_inner; break; case DVBV3_QAM: dev_dbg(fe->dvb->device, "%s: Preparing QAM req\n", __func__); c->symbol_rate = p->u.qam.symbol_rate; c->fec_inner = p->u.qam.fec_inner; c->modulation = p->u.qam.modulation; break; case DVBV3_OFDM: dev_dbg(fe->dvb->device, "%s: Preparing OFDM req\n", __func__); switch (p->u.ofdm.bandwidth) { case BANDWIDTH_10_MHZ: c->bandwidth_hz = 10000000; break; case BANDWIDTH_8_MHZ: c->bandwidth_hz = 8000000; break; case BANDWIDTH_7_MHZ: c->bandwidth_hz = 7000000; break; case BANDWIDTH_6_MHZ: c->bandwidth_hz = 6000000; break; case BANDWIDTH_5_MHZ: c->bandwidth_hz = 5000000; break; case BANDWIDTH_1_712_MHZ: c->bandwidth_hz = 1712000; break; case BANDWIDTH_AUTO: c->bandwidth_hz = 0; } c->code_rate_HP = p->u.ofdm.code_rate_HP; c->code_rate_LP = p->u.ofdm.code_rate_LP; c->modulation = p->u.ofdm.constellation; c->transmission_mode = p->u.ofdm.transmission_mode; c->guard_interval = p->u.ofdm.guard_interval; c->hierarchy = p->u.ofdm.hierarchy_information; break; case DVBV3_ATSC: dev_dbg(fe->dvb->device, "%s: Preparing ATSC req\n", __func__); c->modulation = p->u.vsb.modulation; if (c->delivery_system == SYS_ATSCMH) break; if ((c->modulation == VSB_8) || (c->modulation == VSB_16)) c->delivery_system = SYS_ATSC; else c->delivery_system = SYS_DVBC_ANNEX_B; break; case DVBV3_UNKNOWN: dev_err(fe->dvb->device, "%s: doesn't know how to handle a DVBv3 call to delivery system %i\n", __func__, c->delivery_system); return -EINVAL; } return 0; } /* Ensure the cached values are set correctly in the frontend * legacy tuning structures, for the advanced tuning API. */ static int dtv_property_legacy_params_sync(struct dvb_frontend *fe, const struct dtv_frontend_properties *c, struct dvb_frontend_parameters *p) { p->frequency = c->frequency; p->inversion = c->inversion; switch (dvbv3_type(c->delivery_system)) { case DVBV3_UNKNOWN: dev_err(fe->dvb->device, "%s: doesn't know how to handle a DVBv3 call to delivery system %i\n", __func__, c->delivery_system); return -EINVAL; case DVBV3_QPSK: dev_dbg(fe->dvb->device, "%s: Preparing QPSK req\n", __func__); p->u.qpsk.symbol_rate = c->symbol_rate; p->u.qpsk.fec_inner = c->fec_inner; break; case DVBV3_QAM: dev_dbg(fe->dvb->device, "%s: Preparing QAM req\n", __func__); p->u.qam.symbol_rate = c->symbol_rate; p->u.qam.fec_inner = c->fec_inner; p->u.qam.modulation = c->modulation; break; case DVBV3_OFDM: dev_dbg(fe->dvb->device, "%s: Preparing OFDM req\n", __func__); switch (c->bandwidth_hz) { case 10000000: p->u.ofdm.bandwidth = BANDWIDTH_10_MHZ; break; case 8000000: p->u.ofdm.bandwidth = BANDWIDTH_8_MHZ; break; case 7000000: p->u.ofdm.bandwidth = BANDWIDTH_7_MHZ; break; case 6000000: p->u.ofdm.bandwidth = BANDWIDTH_6_MHZ; break; case 5000000: p->u.ofdm.bandwidth = BANDWIDTH_5_MHZ; break; case 1712000: p->u.ofdm.bandwidth = BANDWIDTH_1_712_MHZ; break; case 0: default: p->u.ofdm.bandwidth = BANDWIDTH_AUTO; } p->u.ofdm.code_rate_HP = c->code_rate_HP; p->u.ofdm.code_rate_LP = c->code_rate_LP; p->u.ofdm.constellation = c->modulation; p->u.ofdm.transmission_mode = c->transmission_mode; p->u.ofdm.guard_interval = c->guard_interval; p->u.ofdm.hierarchy_information = c->hierarchy; break; case DVBV3_ATSC: dev_dbg(fe->dvb->device, "%s: Preparing VSB req\n", __func__); p->u.vsb.modulation = c->modulation; break; } return 0; } /** * dtv_get_frontend - calls a callback for retrieving DTV parameters * @fe: struct dvb_frontend pointer * @c: struct dtv_frontend_properties pointer (DVBv5 cache) * @p_out struct dvb_frontend_parameters pointer (DVBv3 FE struct) * * This routine calls either the DVBv3 or DVBv5 get_frontend call. * If c is not null, it will update the DVBv5 cache struct pointed by it. * If p_out is not null, it will update the DVBv3 params pointed by it. */ static int dtv_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *c, struct dvb_frontend_parameters *p_out) { int r; if (fe->ops.get_frontend) { r = fe->ops.get_frontend(fe, c); if (unlikely(r < 0)) return r; if (p_out) dtv_property_legacy_params_sync(fe, c, p_out); return 0; } /* As everything is in cache, get_frontend fops are always supported */ return 0; } static int dvb_frontend_ioctl_legacy(struct file *file, unsigned int cmd, void *parg); static int dvb_frontend_ioctl_properties(struct file *file, unsigned int cmd, void *parg); static int dtv_property_process_get(struct dvb_frontend *fe, const struct dtv_frontend_properties *c, struct dtv_property *tvp, struct file *file) { int ncaps; switch(tvp->cmd) { case DTV_ENUM_DELSYS: ncaps = 0; while (ncaps < MAX_DELSYS && fe->ops.delsys[ncaps]) { tvp->u.buffer.data[ncaps] = fe->ops.delsys[ncaps]; ncaps++; } tvp->u.buffer.len = ncaps; break; case DTV_FREQUENCY: tvp->u.data = c->frequency; break; case DTV_MODULATION: tvp->u.data = c->modulation; break; case DTV_BANDWIDTH_HZ: tvp->u.data = c->bandwidth_hz; break; case DTV_INVERSION: tvp->u.data = c->inversion; break; case DTV_SYMBOL_RATE: tvp->u.data = c->symbol_rate; break; case DTV_INNER_FEC: tvp->u.data = c->fec_inner; break; case DTV_PILOT: tvp->u.data = c->pilot; break; case DTV_ROLLOFF: tvp->u.data = c->rolloff; break; case DTV_DELIVERY_SYSTEM: tvp->u.data = c->delivery_system; break; case DTV_VOLTAGE: tvp->u.data = c->voltage; break; case DTV_TONE: tvp->u.data = c->sectone; break; case DTV_API_VERSION: tvp->u.data = (DVB_API_VERSION << 8) | DVB_API_VERSION_MINOR; break; case DTV_CODE_RATE_HP: tvp->u.data = c->code_rate_HP; break; case DTV_CODE_RATE_LP: tvp->u.data = c->code_rate_LP; break; case DTV_GUARD_INTERVAL: tvp->u.data = c->guard_interval; break; case DTV_TRANSMISSION_MODE: tvp->u.data = c->transmission_mode; break; case DTV_HIERARCHY: tvp->u.data = c->hierarchy; break; case DTV_INTERLEAVING: tvp->u.data = c->interleaving; break; /* ISDB-T Support here */ case DTV_ISDBT_PARTIAL_RECEPTION: tvp->u.data = c->isdbt_partial_reception; break; case DTV_ISDBT_SOUND_BROADCASTING: tvp->u.data = c->isdbt_sb_mode; break; case DTV_ISDBT_SB_SUBCHANNEL_ID: tvp->u.data = c->isdbt_sb_subchannel; break; case DTV_ISDBT_SB_SEGMENT_IDX: tvp->u.data = c->isdbt_sb_segment_idx; break; case DTV_ISDBT_SB_SEGMENT_COUNT: tvp->u.data = c->isdbt_sb_segment_count; break; case DTV_ISDBT_LAYER_ENABLED: tvp->u.data = c->isdbt_layer_enabled; break; case DTV_ISDBT_LAYERA_FEC: tvp->u.data = c->layer[0].fec; break; case DTV_ISDBT_LAYERA_MODULATION: tvp->u.data = c->layer[0].modulation; break; case DTV_ISDBT_LAYERA_SEGMENT_COUNT: tvp->u.data = c->layer[0].segment_count; break; case DTV_ISDBT_LAYERA_TIME_INTERLEAVING: tvp->u.data = c->layer[0].interleaving; break; case DTV_ISDBT_LAYERB_FEC: tvp->u.data = c->layer[1].fec; break; case DTV_ISDBT_LAYERB_MODULATION: tvp->u.data = c->layer[1].modulation; break; case DTV_ISDBT_LAYERB_SEGMENT_COUNT: tvp->u.data = c->layer[1].segment_count; break; case DTV_ISDBT_LAYERB_TIME_INTERLEAVING: tvp->u.data = c->layer[1].interleaving; break; case DTV_ISDBT_LAYERC_FEC: tvp->u.data = c->layer[2].fec; break; case DTV_ISDBT_LAYERC_MODULATION: tvp->u.data = c->layer[2].modulation; break; case DTV_ISDBT_LAYERC_SEGMENT_COUNT: tvp->u.data = c->layer[2].segment_count; break; case DTV_ISDBT_LAYERC_TIME_INTERLEAVING: tvp->u.data = c->layer[2].interleaving; break; /* Multistream support */ case DTV_STREAM_ID: case DTV_DVBT2_PLP_ID_LEGACY: tvp->u.data = c->stream_id; break; /* ATSC-MH */ case DTV_ATSCMH_FIC_VER: tvp->u.data = fe->dtv_property_cache.atscmh_fic_ver; break; case DTV_ATSCMH_PARADE_ID: tvp->u.data = fe->dtv_property_cache.atscmh_parade_id; break; case DTV_ATSCMH_NOG: tvp->u.data = fe->dtv_property_cache.atscmh_nog; break; case DTV_ATSCMH_TNOG: tvp->u.data = fe->dtv_property_cache.atscmh_tnog; break; case DTV_ATSCMH_SGN: tvp->u.data = fe->dtv_property_cache.atscmh_sgn; break; case DTV_ATSCMH_PRC: tvp->u.data = fe->dtv_property_cache.atscmh_prc; break; case DTV_ATSCMH_RS_FRAME_MODE: tvp->u.data = fe->dtv_property_cache.atscmh_rs_frame_mode; break; case DTV_ATSCMH_RS_FRAME_ENSEMBLE: tvp->u.data = fe->dtv_property_cache.atscmh_rs_frame_ensemble; break; case DTV_ATSCMH_RS_CODE_MODE_PRI: tvp->u.data = fe->dtv_property_cache.atscmh_rs_code_mode_pri; break; case DTV_ATSCMH_RS_CODE_MODE_SEC: tvp->u.data = fe->dtv_property_cache.atscmh_rs_code_mode_sec; break; case DTV_ATSCMH_SCCC_BLOCK_MODE: tvp->u.data = fe->dtv_property_cache.atscmh_sccc_block_mode; break; case DTV_ATSCMH_SCCC_CODE_MODE_A: tvp->u.data = fe->dtv_property_cache.atscmh_sccc_code_mode_a; break; case DTV_ATSCMH_SCCC_CODE_MODE_B: tvp->u.data = fe->dtv_property_cache.atscmh_sccc_code_mode_b; break; case DTV_ATSCMH_SCCC_CODE_MODE_C: tvp->u.data = fe->dtv_property_cache.atscmh_sccc_code_mode_c; break; case DTV_ATSCMH_SCCC_CODE_MODE_D: tvp->u.data = fe->dtv_property_cache.atscmh_sccc_code_mode_d; break; case DTV_LNA: tvp->u.data = c->lna; break; /* Fill quality measures */ case DTV_STAT_SIGNAL_STRENGTH: tvp->u.st = c->strength; break; case DTV_STAT_CNR: tvp->u.st = c->cnr; break; case DTV_STAT_PRE_ERROR_BIT_COUNT: tvp->u.st = c->pre_bit_error; break; case DTV_STAT_PRE_TOTAL_BIT_COUNT: tvp->u.st = c->pre_bit_count; break; case DTV_STAT_POST_ERROR_BIT_COUNT: tvp->u.st = c->post_bit_error; break; case DTV_STAT_POST_TOTAL_BIT_COUNT: tvp->u.st = c->post_bit_count; break; case DTV_STAT_ERROR_BLOCK_COUNT: tvp->u.st = c->block_error; break; case DTV_STAT_TOTAL_BLOCK_COUNT: tvp->u.st = c->block_count; break; default: dev_dbg(fe->dvb->device, "%s: FE property %d doesn't exist\n", __func__, tvp->cmd); return -EINVAL; } dtv_property_dump(fe, false, tvp); return 0; } static int dtv_set_frontend(struct dvb_frontend *fe); static bool is_dvbv3_delsys(u32 delsys) { return (delsys == SYS_DVBT) || (delsys == SYS_DVBC_ANNEX_A) || (delsys == SYS_DVBS) || (delsys == SYS_ATSC); } /** * emulate_delivery_system - emulate a DVBv5 delivery system with a DVBv3 type * @fe: struct frontend; * @delsys: DVBv5 type that will be used for emulation * * Provides emulation for delivery systems that are compatible with the old * DVBv3 call. Among its usages, it provices support for ISDB-T, and allows * using a DVB-S2 only frontend just like it were a DVB-S, if the frontent * parameters are compatible with DVB-S spec. */ static int emulate_delivery_system(struct dvb_frontend *fe, u32 delsys) { int i; struct dtv_frontend_properties *c = &fe->dtv_property_cache; c->delivery_system = delsys; /* * If the call is for ISDB-T, put it into full-seg, auto mode, TV */ if (c->delivery_system == SYS_ISDBT) { dev_dbg(fe->dvb->device, "%s: Using defaults for SYS_ISDBT\n", __func__); if (!c->bandwidth_hz) c->bandwidth_hz = 6000000; c->isdbt_partial_reception = 0; c->isdbt_sb_mode = 0; c->isdbt_sb_subchannel = 0; c->isdbt_sb_segment_idx = 0; c->isdbt_sb_segment_count = 0; c->isdbt_layer_enabled = 7; for (i = 0; i < 3; i++) { c->layer[i].fec = FEC_AUTO; c->layer[i].modulation = QAM_AUTO; c->layer[i].interleaving = 0; c->layer[i].segment_count = 0; } } dev_dbg(fe->dvb->device, "%s: change delivery system on cache to %d\n", __func__, c->delivery_system); return 0; } /** * dvbv5_set_delivery_system - Sets the delivery system for a DVBv5 API call * @fe: frontend struct * @desired_system: delivery system requested by the user * * A DVBv5 call know what's the desired system it wants. So, set it. * * There are, however, a few known issues with early DVBv5 applications that * are also handled by this logic: * * 1) Some early apps use SYS_UNDEFINED as the desired delivery system. * This is an API violation, but, as we don't want to break userspace, * convert it to the first supported delivery system. * 2) Some apps might be using a DVBv5 call in a wrong way, passing, for * example, SYS_DVBT instead of SYS_ISDBT. This is because early usage of * ISDB-T provided backward compat with DVB-T. */ static int dvbv5_set_delivery_system(struct dvb_frontend *fe, u32 desired_system) { int ncaps; u32 delsys = SYS_UNDEFINED; struct dtv_frontend_properties *c = &fe->dtv_property_cache; enum dvbv3_emulation_type type; /* * It was reported that some old DVBv5 applications were * filling delivery_system with SYS_UNDEFINED. If this happens, * assume that the application wants to use the first supported * delivery system. */ if (desired_system == SYS_UNDEFINED) desired_system = fe->ops.delsys[0]; /* * This is a DVBv5 call. So, it likely knows the supported * delivery systems. So, check if the desired delivery system is * supported */ ncaps = 0; while (ncaps < MAX_DELSYS && fe->ops.delsys[ncaps]) { if (fe->ops.delsys[ncaps] == desired_system) { c->delivery_system = desired_system; dev_dbg(fe->dvb->device, "%s: Changing delivery system to %d\n", __func__, desired_system); return 0; } ncaps++; } /* * The requested delivery system isn't supported. Maybe userspace * is requesting a DVBv3 compatible delivery system. * * The emulation only works if the desired system is one of the * delivery systems supported by DVBv3 API */ if (!is_dvbv3_delsys(desired_system)) { dev_dbg(fe->dvb->device, "%s: Delivery system %d not supported.\n", __func__, desired_system); return -EINVAL; } type = dvbv3_type(desired_system); /* * Get the last non-DVBv3 delivery system that has the same type * of the desired system */ ncaps = 0; while (ncaps < MAX_DELSYS && fe->ops.delsys[ncaps]) { if (dvbv3_type(fe->ops.delsys[ncaps]) == type) delsys = fe->ops.delsys[ncaps]; ncaps++; } /* There's nothing compatible with the desired delivery system */ if (delsys == SYS_UNDEFINED) { dev_dbg(fe->dvb->device, "%s: Delivery system %d not supported on emulation mode.\n", __func__, desired_system); return -EINVAL; } dev_dbg(fe->dvb->device, "%s: Using delivery system %d emulated as if it were %d\n", __func__, delsys, desired_system); return emulate_delivery_system(fe, desired_system); } /** * dvbv3_set_delivery_system - Sets the delivery system for a DVBv3 API call * @fe: frontend struct * * A DVBv3 call doesn't know what's the desired system it wants. It also * doesn't allow to switch between different types. Due to that, userspace * should use DVBv5 instead. * However, in order to avoid breaking userspace API, limited backward * compatibility support is provided. * * There are some delivery systems that are incompatible with DVBv3 calls. * * This routine should work fine for frontends that support just one delivery * system. * * For frontends that support multiple frontends: * 1) It defaults to use the first supported delivery system. There's an * userspace application that allows changing it at runtime; * * 2) If the current delivery system is not compatible with DVBv3, it gets * the first one that it is compatible. * * NOTE: in order for this to work with applications like Kaffeine that * uses a DVBv5 call for DVB-S2 and a DVBv3 call to go back to * DVB-S, drivers that support both DVB-S and DVB-S2 should have the * SYS_DVBS entry before the SYS_DVBS2, otherwise it won't switch back * to DVB-S. */ static int dvbv3_set_delivery_system(struct dvb_frontend *fe) { int ncaps; u32 delsys = SYS_UNDEFINED; struct dtv_frontend_properties *c = &fe->dtv_property_cache; /* If not set yet, defaults to the first supported delivery system */ if (c->delivery_system == SYS_UNDEFINED) c->delivery_system = fe->ops.delsys[0]; /* * Trivial case: just use the current one, if it already a DVBv3 * delivery system */ if (is_dvbv3_delsys(c->delivery_system)) { dev_dbg(fe->dvb->device, "%s: Using delivery system to %d\n", __func__, c->delivery_system); return 0; } /* * Seek for the first delivery system that it is compatible with a * DVBv3 standard */ ncaps = 0; while (ncaps < MAX_DELSYS && fe->ops.delsys[ncaps]) { if (dvbv3_type(fe->ops.delsys[ncaps]) != DVBV3_UNKNOWN) { delsys = fe->ops.delsys[ncaps]; break; } ncaps++; } if (delsys == SYS_UNDEFINED) { dev_dbg(fe->dvb->device, "%s: Couldn't find a delivery system that works with FE_SET_FRONTEND\n", __func__); return -EINVAL; } return emulate_delivery_system(fe, delsys); } static int dtv_property_process_set(struct dvb_frontend *fe, struct dtv_property *tvp, struct file *file) { int r = 0; struct dtv_frontend_properties *c = &fe->dtv_property_cache; /* Allow the frontend to validate incoming properties */ if (fe->ops.set_property) { r = fe->ops.set_property(fe, tvp); if (r < 0) return r; } dtv_property_dump(fe, true, tvp); switch(tvp->cmd) { case DTV_CLEAR: /* * Reset a cache of data specific to the frontend here. This does * not effect hardware. */ dvb_frontend_clear_cache(fe); break; case DTV_TUNE: /* interpret the cache of data, build either a traditional frontend * tunerequest so we can pass validation in the FE_SET_FRONTEND * ioctl. */ c->state = tvp->cmd; dev_dbg(fe->dvb->device, "%s: Finalised property cache\n", __func__); r = dtv_set_frontend(fe); break; case DTV_FREQUENCY: c->frequency = tvp->u.data; break; case DTV_MODULATION: c->modulation = tvp->u.data; break; case DTV_BANDWIDTH_HZ: c->bandwidth_hz = tvp->u.data; break; case DTV_INVERSION: c->inversion = tvp->u.data; break; case DTV_SYMBOL_RATE: c->symbol_rate = tvp->u.data; break; case DTV_INNER_FEC: c->fec_inner = tvp->u.data; break; case DTV_PILOT: c->pilot = tvp->u.data; break; case DTV_ROLLOFF: c->rolloff = tvp->u.data; break; case DTV_DELIVERY_SYSTEM: r = dvbv5_set_delivery_system(fe, tvp->u.data); break; case DTV_VOLTAGE: c->voltage = tvp->u.data; r = dvb_frontend_ioctl_legacy(file, FE_SET_VOLTAGE, (void *)c->voltage); break; case DTV_TONE: c->sectone = tvp->u.data; r = dvb_frontend_ioctl_legacy(file, FE_SET_TONE, (void *)c->sectone); break; case DTV_CODE_RATE_HP: c->code_rate_HP = tvp->u.data; break; case DTV_CODE_RATE_LP: c->code_rate_LP = tvp->u.data; break; case DTV_GUARD_INTERVAL: c->guard_interval = tvp->u.data; break; case DTV_TRANSMISSION_MODE: c->transmission_mode = tvp->u.data; break; case DTV_HIERARCHY: c->hierarchy = tvp->u.data; break; case DTV_INTERLEAVING: c->interleaving = tvp->u.data; break; /* ISDB-T Support here */ case DTV_ISDBT_PARTIAL_RECEPTION: c->isdbt_partial_reception = tvp->u.data; break; case DTV_ISDBT_SOUND_BROADCASTING: c->isdbt_sb_mode = tvp->u.data; break; case DTV_ISDBT_SB_SUBCHANNEL_ID: c->isdbt_sb_subchannel = tvp->u.data; break; case DTV_ISDBT_SB_SEGMENT_IDX: c->isdbt_sb_segment_idx = tvp->u.data; break; case DTV_ISDBT_SB_SEGMENT_COUNT: c->isdbt_sb_segment_count = tvp->u.data; break; case DTV_ISDBT_LAYER_ENABLED: c->isdbt_layer_enabled = tvp->u.data; break; case DTV_ISDBT_LAYERA_FEC: c->layer[0].fec = tvp->u.data; break; case DTV_ISDBT_LAYERA_MODULATION: c->layer[0].modulation = tvp->u.data; break; case DTV_ISDBT_LAYERA_SEGMENT_COUNT: c->layer[0].segment_count = tvp->u.data; break; case DTV_ISDBT_LAYERA_TIME_INTERLEAVING: c->layer[0].interleaving = tvp->u.data; break; case DTV_ISDBT_LAYERB_FEC: c->layer[1].fec = tvp->u.data; break; case DTV_ISDBT_LAYERB_MODULATION: c->layer[1].modulation = tvp->u.data; break; case DTV_ISDBT_LAYERB_SEGMENT_COUNT: c->layer[1].segment_count = tvp->u.data; break; case DTV_ISDBT_LAYERB_TIME_INTERLEAVING: c->layer[1].interleaving = tvp->u.data; break; case DTV_ISDBT_LAYERC_FEC: c->layer[2].fec = tvp->u.data; break; case DTV_ISDBT_LAYERC_MODULATION: c->layer[2].modulation = tvp->u.data; break; case DTV_ISDBT_LAYERC_SEGMENT_COUNT: c->layer[2].segment_count = tvp->u.data; break; case DTV_ISDBT_LAYERC_TIME_INTERLEAVING: c->layer[2].interleaving = tvp->u.data; break; /* Multistream support */ case DTV_STREAM_ID: case DTV_DVBT2_PLP_ID_LEGACY: c->stream_id = tvp->u.data; break; /* ATSC-MH */ case DTV_ATSCMH_PARADE_ID: fe->dtv_property_cache.atscmh_parade_id = tvp->u.data; break; case DTV_ATSCMH_RS_FRAME_ENSEMBLE: fe->dtv_property_cache.atscmh_rs_frame_ensemble = tvp->u.data; break; case DTV_LNA: c->lna = tvp->u.data; if (fe->ops.set_lna) r = fe->ops.set_lna(fe); if (r < 0) c->lna = LNA_AUTO; break; default: return -EINVAL; } return r; } static int dvb_frontend_ioctl(struct file *file, unsigned int cmd, void *parg) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct dvb_frontend_private *fepriv = fe->frontend_priv; int err = -EOPNOTSUPP; dev_dbg(fe->dvb->device, "%s: (%d)\n", __func__, _IOC_NR(cmd)); if (down_interruptible(&fepriv->sem)) return -ERESTARTSYS; if (fe->exit != DVB_FE_NO_EXIT) { up(&fepriv->sem); return -ENODEV; } if ((file->f_flags & O_ACCMODE) == O_RDONLY && (_IOC_DIR(cmd) != _IOC_READ || cmd == FE_GET_EVENT || cmd == FE_DISEQC_RECV_SLAVE_REPLY)) { up(&fepriv->sem); return -EPERM; } if ((cmd == FE_SET_PROPERTY) || (cmd == FE_GET_PROPERTY)) err = dvb_frontend_ioctl_properties(file, cmd, parg); else { c->state = DTV_UNDEFINED; err = dvb_frontend_ioctl_legacy(file, cmd, parg); } up(&fepriv->sem); return err; } static int dvb_frontend_ioctl_properties(struct file *file, unsigned int cmd, void *parg) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; struct dvb_frontend_private *fepriv = fe->frontend_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int err = 0; struct dtv_properties *tvps = parg; struct dtv_property *tvp = NULL; int i; dev_dbg(fe->dvb->device, "%s:\n", __func__); if (cmd == FE_SET_PROPERTY) { dev_dbg(fe->dvb->device, "%s: properties.num = %d\n", __func__, tvps->num); dev_dbg(fe->dvb->device, "%s: properties.props = %p\n", __func__, tvps->props); /* Put an arbitrary limit on the number of messages that can * be sent at once */ if ((tvps->num == 0) || (tvps->num > DTV_IOCTL_MAX_MSGS)) return -EINVAL; tvp = memdup_user(tvps->props, tvps->num * sizeof(*tvp)); if (IS_ERR(tvp)) return PTR_ERR(tvp); for (i = 0; i < tvps->num; i++) { err = dtv_property_process_set(fe, tvp + i, file); if (err < 0) goto out; (tvp + i)->result = err; } if (c->state == DTV_TUNE) dev_dbg(fe->dvb->device, "%s: Property cache is full, tuning\n", __func__); } else if (cmd == FE_GET_PROPERTY) { struct dtv_frontend_properties getp = fe->dtv_property_cache; dev_dbg(fe->dvb->device, "%s: properties.num = %d\n", __func__, tvps->num); dev_dbg(fe->dvb->device, "%s: properties.props = %p\n", __func__, tvps->props); /* Put an arbitrary limit on the number of messages that can * be sent at once */ if ((tvps->num == 0) || (tvps->num > DTV_IOCTL_MAX_MSGS)) return -EINVAL; tvp = memdup_user(tvps->props, tvps->num * sizeof(*tvp)); if (IS_ERR(tvp)) return PTR_ERR(tvp); /* * Let's use our own copy of property cache, in order to * avoid mangling with DTV zigzag logic, as drivers might * return crap, if they don't check if the data is available * before updating the properties cache. */ if (fepriv->state != FESTATE_IDLE) { err = dtv_get_frontend(fe, &getp, NULL); if (err < 0) goto out; } for (i = 0; i < tvps->num; i++) { err = dtv_property_process_get(fe, &getp, tvp + i, file); if (err < 0) goto out; (tvp + i)->result = err; } if (copy_to_user((void __user *)tvps->props, tvp, tvps->num * sizeof(struct dtv_property))) { err = -EFAULT; goto out; } } else err = -EOPNOTSUPP; out: kfree(tvp); return err; } static int dtv_set_frontend(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = fe->frontend_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct dvb_frontend_tune_settings fetunesettings; u32 rolloff = 0; if (dvb_frontend_check_parameters(fe) < 0) return -EINVAL; /* * Initialize output parameters to match the values given by * the user. FE_SET_FRONTEND triggers an initial frontend event * with status = 0, which copies output parameters to userspace. */ dtv_property_legacy_params_sync(fe, c, &fepriv->parameters_out); /* * Be sure that the bandwidth will be filled for all * non-satellite systems, as tuners need to know what * low pass/Nyquist half filter should be applied, in * order to avoid inter-channel noise. * * ISDB-T and DVB-T/T2 already sets bandwidth. * ATSC and DVB-C don't set, so, the core should fill it. * * On DVB-C Annex A and C, the bandwidth is a function of * the roll-off and symbol rate. Annex B defines different * roll-off factors depending on the modulation. Fortunately, * Annex B is only used with 6MHz, so there's no need to * calculate it. * * While not officially supported, a side effect of handling it at * the cache level is that a program could retrieve the bandwidth * via DTV_BANDWIDTH_HZ, which may be useful for test programs. */ switch (c->delivery_system) { case SYS_ATSC: case SYS_DVBC_ANNEX_B: c->bandwidth_hz = 6000000; break; case SYS_DVBC_ANNEX_A: rolloff = 115; break; case SYS_DVBC_ANNEX_C: rolloff = 113; break; case SYS_DVBS: case SYS_TURBO: case SYS_ISDBS: rolloff = 135; break; case SYS_DVBS2: switch (c->rolloff) { case ROLLOFF_20: rolloff = 120; break; case ROLLOFF_25: rolloff = 125; break; default: case ROLLOFF_35: rolloff = 135; } break; default: break; } if (rolloff) c->bandwidth_hz = mult_frac(c->symbol_rate, rolloff, 100); /* force auto frequency inversion if requested */ if (dvb_force_auto_inversion) c->inversion = INVERSION_AUTO; /* * without hierarchical coding code_rate_LP is irrelevant, * so we tolerate the otherwise invalid FEC_NONE setting */ if (c->hierarchy == HIERARCHY_NONE && c->code_rate_LP == FEC_NONE) c->code_rate_LP = FEC_AUTO; /* get frontend-specific tuning settings */ memset(&fetunesettings, 0, sizeof(struct dvb_frontend_tune_settings)); if (fe->ops.get_tune_settings && (fe->ops.get_tune_settings(fe, &fetunesettings) == 0)) { fepriv->min_delay = (fetunesettings.min_delay_ms * HZ) / 1000; fepriv->max_drift = fetunesettings.max_drift; fepriv->step_size = fetunesettings.step_size; } else { /* default values */ switch (c->delivery_system) { case SYS_DVBS: case SYS_DVBS2: case SYS_ISDBS: case SYS_TURBO: case SYS_DVBC_ANNEX_A: case SYS_DVBC_ANNEX_C: fepriv->min_delay = HZ / 20; fepriv->step_size = c->symbol_rate / 16000; fepriv->max_drift = c->symbol_rate / 2000; break; case SYS_DVBT: case SYS_DVBT2: case SYS_ISDBT: case SYS_DTMB: fepriv->min_delay = HZ / 20; fepriv->step_size = fe->ops.info.frequency_stepsize * 2; fepriv->max_drift = (fe->ops.info.frequency_stepsize * 2) + 1; break; default: /* * FIXME: This sounds wrong! if freqency_stepsize is * defined by the frontend, why not use it??? */ fepriv->min_delay = HZ / 20; fepriv->step_size = 0; /* no zigzag */ fepriv->max_drift = 0; break; } } if (dvb_override_tune_delay > 0) fepriv->min_delay = (dvb_override_tune_delay * HZ) / 1000; fepriv->state = FESTATE_RETUNE; /* Request the search algorithm to search */ fepriv->algo_status |= DVBFE_ALGO_SEARCH_AGAIN; dvb_frontend_clear_events(fe); dvb_frontend_add_event(fe, 0); dvb_frontend_wakeup(fe); fepriv->status = 0; return 0; } static int dvb_frontend_ioctl_legacy(struct file *file, unsigned int cmd, void *parg) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; struct dvb_frontend_private *fepriv = fe->frontend_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int err = -EOPNOTSUPP; switch (cmd) { case FE_GET_INFO: { struct dvb_frontend_info* info = parg; memcpy(info, &fe->ops.info, sizeof(struct dvb_frontend_info)); dvb_frontend_get_frequency_limits(fe, &info->frequency_min, &info->frequency_max); /* * Associate the 4 delivery systems supported by DVBv3 * API with their DVBv5 counterpart. For the other standards, * use the closest type, assuming that it would hopefully * work with a DVBv3 application. * It should be noticed that, on multi-frontend devices with * different types (terrestrial and cable, for example), * a pure DVBv3 application won't be able to use all delivery * systems. Yet, changing the DVBv5 cache to the other delivery * system should be enough for making it work. */ switch (dvbv3_type(c->delivery_system)) { case DVBV3_QPSK: info->type = FE_QPSK; break; case DVBV3_ATSC: info->type = FE_ATSC; break; case DVBV3_QAM: info->type = FE_QAM; break; case DVBV3_OFDM: info->type = FE_OFDM; break; default: dev_err(fe->dvb->device, "%s: doesn't know how to handle a DVBv3 call to delivery system %i\n", __func__, c->delivery_system); fe->ops.info.type = FE_OFDM; } dev_dbg(fe->dvb->device, "%s: current delivery system on cache: %d, V3 type: %d\n", __func__, c->delivery_system, fe->ops.info.type); /* Set CAN_INVERSION_AUTO bit on in other than oneshot mode */ if (!(fepriv->tune_mode_flags & FE_TUNE_MODE_ONESHOT)) info->caps |= FE_CAN_INVERSION_AUTO; err = 0; break; } case FE_READ_STATUS: { enum fe_status *status = parg; /* if retune was requested but hasn't occurred yet, prevent * that user get signal state from previous tuning */ if (fepriv->state == FESTATE_RETUNE || fepriv->state == FESTATE_ERROR) { err=0; *status = 0; break; } if (fe->ops.read_status) err = fe->ops.read_status(fe, status); break; } case FE_READ_BER: if (fe->ops.read_ber) { if (fepriv->thread) err = fe->ops.read_ber(fe, (__u32 *) parg); else err = -EAGAIN; } break; case FE_READ_SIGNAL_STRENGTH: if (fe->ops.read_signal_strength) { if (fepriv->thread) err = fe->ops.read_signal_strength(fe, (__u16 *) parg); else err = -EAGAIN; } break; case FE_READ_SNR: if (fe->ops.read_snr) { if (fepriv->thread) err = fe->ops.read_snr(fe, (__u16 *) parg); else err = -EAGAIN; } break; case FE_READ_UNCORRECTED_BLOCKS: if (fe->ops.read_ucblocks) { if (fepriv->thread) err = fe->ops.read_ucblocks(fe, (__u32 *) parg); else err = -EAGAIN; } break; case FE_DISEQC_RESET_OVERLOAD: if (fe->ops.diseqc_reset_overload) { err = fe->ops.diseqc_reset_overload(fe); fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_DISEQC_SEND_MASTER_CMD: if (fe->ops.diseqc_send_master_cmd) { struct dvb_diseqc_master_cmd *cmd = parg; if (cmd->msg_len > sizeof(cmd->msg)) { err = -EINVAL; break; } err = fe->ops.diseqc_send_master_cmd(fe, cmd); fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_DISEQC_SEND_BURST: if (fe->ops.diseqc_send_burst) { err = fe->ops.diseqc_send_burst(fe, (enum fe_sec_mini_cmd)parg); fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_SET_TONE: if (fe->ops.set_tone) { err = fe->ops.set_tone(fe, (enum fe_sec_tone_mode)parg); fepriv->tone = (enum fe_sec_tone_mode)parg; fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_SET_VOLTAGE: if (fe->ops.set_voltage) { err = fe->ops.set_voltage(fe, (enum fe_sec_voltage)parg); fepriv->voltage = (enum fe_sec_voltage)parg; fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_DISHNETWORK_SEND_LEGACY_CMD: if (fe->ops.dishnetwork_send_legacy_command) { err = fe->ops.dishnetwork_send_legacy_command(fe, (unsigned long)parg); fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } else if (fe->ops.set_voltage) { /* * NOTE: This is a fallback condition. Some frontends * (stv0299 for instance) take longer than 8msec to * respond to a set_voltage command. Those switches * need custom routines to switch properly. For all * other frontends, the following should work ok. * Dish network legacy switches (as used by Dish500) * are controlled by sending 9-bit command words * spaced 8msec apart. * the actual command word is switch/port dependent * so it is up to the userspace application to send * the right command. * The command must always start with a '0' after * initialization, so parg is 8 bits and does not * include the initialization or start bit */ unsigned long swcmd = ((unsigned long) parg) << 1; ktime_t nexttime; ktime_t tv[10]; int i; u8 last = 1; if (dvb_frontend_debug) dprintk("%s switch command: 0x%04lx\n", __func__, swcmd); nexttime = ktime_get_boottime(); if (dvb_frontend_debug) tv[0] = nexttime; /* before sending a command, initialize by sending * a 32ms 18V to the switch */ fe->ops.set_voltage(fe, SEC_VOLTAGE_18); dvb_frontend_sleep_until(&nexttime, 32000); for (i = 0; i < 9; i++) { if (dvb_frontend_debug) tv[i+1] = ktime_get_boottime(); if ((swcmd & 0x01) != last) { /* set voltage to (last ? 13V : 18V) */ fe->ops.set_voltage(fe, (last) ? SEC_VOLTAGE_13 : SEC_VOLTAGE_18); last = (last) ? 0 : 1; } swcmd = swcmd >> 1; if (i != 8) dvb_frontend_sleep_until(&nexttime, 8000); } if (dvb_frontend_debug) { dprintk("%s(%d): switch delay (should be 32k followed by all 8k)\n", __func__, fe->dvb->num); for (i = 1; i < 10; i++) pr_info("%d: %d\n", i, (int) ktime_us_delta(tv[i], tv[i-1])); } err = 0; fepriv->state = FESTATE_DISEQC; fepriv->status = 0; } break; case FE_DISEQC_RECV_SLAVE_REPLY: if (fe->ops.diseqc_recv_slave_reply) err = fe->ops.diseqc_recv_slave_reply(fe, (struct dvb_diseqc_slave_reply*) parg); break; case FE_ENABLE_HIGH_LNB_VOLTAGE: if (fe->ops.enable_high_lnb_voltage) err = fe->ops.enable_high_lnb_voltage(fe, (long) parg); break; case FE_SET_FRONTEND: err = dvbv3_set_delivery_system(fe); if (err) break; err = dtv_property_cache_sync(fe, c, parg); if (err) break; err = dtv_set_frontend(fe); break; case FE_GET_EVENT: err = dvb_frontend_get_event (fe, parg, file->f_flags); break; case FE_GET_FRONTEND: { struct dtv_frontend_properties getp = fe->dtv_property_cache; /* * Let's use our own copy of property cache, in order to * avoid mangling with DTV zigzag logic, as drivers might * return crap, if they don't check if the data is available * before updating the properties cache. */ err = dtv_get_frontend(fe, &getp, parg); break; } case FE_SET_FRONTEND_TUNE_MODE: fepriv->tune_mode_flags = (unsigned long) parg; err = 0; break; } return err; } static unsigned int dvb_frontend_poll(struct file *file, struct poll_table_struct *wait) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; struct dvb_frontend_private *fepriv = fe->frontend_priv; dev_dbg_ratelimited(fe->dvb->device, "%s:\n", __func__); poll_wait (file, &fepriv->events.wait_queue, wait); if (fepriv->events.eventw != fepriv->events.eventr) return (POLLIN | POLLRDNORM | POLLPRI); return 0; } static int dvb_frontend_open(struct inode *inode, struct file *file) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; struct dvb_frontend_private *fepriv = fe->frontend_priv; struct dvb_adapter *adapter = fe->dvb; int ret; dev_dbg(fe->dvb->device, "%s:\n", __func__); if (fe->exit == DVB_FE_DEVICE_REMOVED) return -ENODEV; if (adapter->mfe_shared) { mutex_lock (&adapter->mfe_lock); if (adapter->mfe_dvbdev == NULL) adapter->mfe_dvbdev = dvbdev; else if (adapter->mfe_dvbdev != dvbdev) { struct dvb_device *mfedev = adapter->mfe_dvbdev; struct dvb_frontend *mfe = mfedev->priv; struct dvb_frontend_private *mfepriv = mfe->frontend_priv; int mferetry = (dvb_mfe_wait_time << 1); mutex_unlock (&adapter->mfe_lock); while (mferetry-- && (mfedev->users != -1 || mfepriv->thread != NULL)) { if(msleep_interruptible(500)) { if(signal_pending(current)) return -EINTR; } } mutex_lock (&adapter->mfe_lock); if(adapter->mfe_dvbdev != dvbdev) { mfedev = adapter->mfe_dvbdev; mfe = mfedev->priv; mfepriv = mfe->frontend_priv; if (mfedev->users != -1 || mfepriv->thread != NULL) { mutex_unlock (&adapter->mfe_lock); return -EBUSY; } adapter->mfe_dvbdev = dvbdev; } } } if (dvbdev->users == -1 && fe->ops.ts_bus_ctrl) { if ((ret = fe->ops.ts_bus_ctrl(fe, 1)) < 0) goto err0; /* If we took control of the bus, we need to force reinitialization. This is because many ts_bus_ctrl() functions strobe the RESET pin on the demod, and if the frontend thread already exists then the dvb_init() routine won't get called (which is what usually does initial register configuration). */ fepriv->reinitialise = 1; } if ((ret = dvb_generic_open (inode, file)) < 0) goto err1; if ((file->f_flags & O_ACCMODE) != O_RDONLY) { /* normal tune mode when opened R/W */ fepriv->tune_mode_flags &= ~FE_TUNE_MODE_ONESHOT; fepriv->tone = -1; fepriv->voltage = -1; #ifdef CONFIG_MEDIA_CONTROLLER_DVB if (fe->dvb->mdev) { mutex_lock(&fe->dvb->mdev->graph_mutex); if (fe->dvb->mdev->enable_source) ret = fe->dvb->mdev->enable_source( dvbdev->entity, &fepriv->pipe); mutex_unlock(&fe->dvb->mdev->graph_mutex); if (ret) { dev_err(fe->dvb->device, "Tuner is busy. Error %d\n", ret); goto err2; } } #endif ret = dvb_frontend_start (fe); if (ret) goto err3; /* empty event queue */ fepriv->events.eventr = fepriv->events.eventw = 0; } dvb_frontend_get(fe); if (adapter->mfe_shared) mutex_unlock (&adapter->mfe_lock); return ret; err3: #ifdef CONFIG_MEDIA_CONTROLLER_DVB if (fe->dvb->mdev) { mutex_lock(&fe->dvb->mdev->graph_mutex); if (fe->dvb->mdev->disable_source) fe->dvb->mdev->disable_source(dvbdev->entity); mutex_unlock(&fe->dvb->mdev->graph_mutex); } err2: #endif dvb_generic_release(inode, file); err1: if (dvbdev->users == -1 && fe->ops.ts_bus_ctrl) fe->ops.ts_bus_ctrl(fe, 0); err0: if (adapter->mfe_shared) mutex_unlock (&adapter->mfe_lock); return ret; } static int dvb_frontend_release(struct inode *inode, struct file *file) { struct dvb_device *dvbdev = file->private_data; struct dvb_frontend *fe = dvbdev->priv; struct dvb_frontend_private *fepriv = fe->frontend_priv; int ret; dev_dbg(fe->dvb->device, "%s:\n", __func__); if ((file->f_flags & O_ACCMODE) != O_RDONLY) { fepriv->release_jiffies = jiffies; mb(); } ret = dvb_generic_release (inode, file); if (dvbdev->users == -1) { wake_up(&fepriv->wait_queue); #ifdef CONFIG_MEDIA_CONTROLLER_DVB if (fe->dvb->mdev) { mutex_lock(&fe->dvb->mdev->graph_mutex); if (fe->dvb->mdev->disable_source) fe->dvb->mdev->disable_source(dvbdev->entity); mutex_unlock(&fe->dvb->mdev->graph_mutex); } #endif if (fe->exit != DVB_FE_NO_EXIT) wake_up(&dvbdev->wait_queue); if (fe->ops.ts_bus_ctrl) fe->ops.ts_bus_ctrl(fe, 0); } dvb_frontend_put(fe); return ret; } static const struct file_operations dvb_frontend_fops = { .owner = THIS_MODULE, .unlocked_ioctl = dvb_generic_ioctl, .poll = dvb_frontend_poll, .open = dvb_frontend_open, .release = dvb_frontend_release, .llseek = noop_llseek, }; int dvb_frontend_suspend(struct dvb_frontend *fe) { int ret = 0; dev_dbg(fe->dvb->device, "%s: adap=%d fe=%d\n", __func__, fe->dvb->num, fe->id); if (fe->ops.tuner_ops.suspend) ret = fe->ops.tuner_ops.suspend(fe); else if (fe->ops.tuner_ops.sleep) ret = fe->ops.tuner_ops.sleep(fe); if (fe->ops.sleep) ret = fe->ops.sleep(fe); return ret; } EXPORT_SYMBOL(dvb_frontend_suspend); int dvb_frontend_resume(struct dvb_frontend *fe) { struct dvb_frontend_private *fepriv = fe->frontend_priv; int ret = 0; dev_dbg(fe->dvb->device, "%s: adap=%d fe=%d\n", __func__, fe->dvb->num, fe->id); fe->exit = DVB_FE_DEVICE_RESUME; if (fe->ops.init) ret = fe->ops.init(fe); if (fe->ops.tuner_ops.resume) ret = fe->ops.tuner_ops.resume(fe); else if (fe->ops.tuner_ops.init) ret = fe->ops.tuner_ops.init(fe); if (fe->ops.set_tone && fepriv->tone != -1) fe->ops.set_tone(fe, fepriv->tone); if (fe->ops.set_voltage && fepriv->voltage != -1) fe->ops.set_voltage(fe, fepriv->voltage); fe->exit = DVB_FE_NO_EXIT; fepriv->state = FESTATE_RETUNE; dvb_frontend_wakeup(fe); return ret; } EXPORT_SYMBOL(dvb_frontend_resume); int dvb_register_frontend(struct dvb_adapter* dvb, struct dvb_frontend* fe) { struct dvb_frontend_private *fepriv; const struct dvb_device dvbdev_template = { .users = ~0, .writers = 1, .readers = (~0)-1, .fops = &dvb_frontend_fops, #if defined(CONFIG_MEDIA_CONTROLLER_DVB) .name = fe->ops.info.name, #endif .kernel_ioctl = dvb_frontend_ioctl }; dev_dbg(dvb->device, "%s:\n", __func__); if (mutex_lock_interruptible(&frontend_mutex)) return -ERESTARTSYS; fe->frontend_priv = kzalloc(sizeof(struct dvb_frontend_private), GFP_KERNEL); if (fe->frontend_priv == NULL) { mutex_unlock(&frontend_mutex); return -ENOMEM; } fepriv = fe->frontend_priv; kref_init(&fe->refcount); /* * After initialization, there need to be two references: one * for dvb_unregister_frontend(), and another one for * dvb_frontend_detach(). */ dvb_frontend_get(fe); sema_init(&fepriv->sem, 1); init_waitqueue_head (&fepriv->wait_queue); init_waitqueue_head (&fepriv->events.wait_queue); mutex_init(&fepriv->events.mtx); fe->dvb = dvb; fepriv->inversion = INVERSION_OFF; dev_info(fe->dvb->device, "DVB: registering adapter %i frontend %i (%s)...\n", fe->dvb->num, fe->id, fe->ops.info.name); dvb_register_device (fe->dvb, &fepriv->dvbdev, &dvbdev_template, fe, DVB_DEVICE_FRONTEND, 0); /* * Initialize the cache to the proper values according with the * first supported delivery system (ops->delsys[0]) */ fe->dtv_property_cache.delivery_system = fe->ops.delsys[0]; dvb_frontend_clear_cache(fe); mutex_unlock(&frontend_mutex); return 0; } EXPORT_SYMBOL(dvb_register_frontend); int dvb_unregister_frontend(struct dvb_frontend* fe) { struct dvb_frontend_private *fepriv = fe->frontend_priv; dev_dbg(fe->dvb->device, "%s:\n", __func__); mutex_lock(&frontend_mutex); dvb_frontend_stop(fe); dvb_remove_device(fepriv->dvbdev); /* fe is invalid now */ mutex_unlock(&frontend_mutex); dvb_frontend_put(fe); return 0; } EXPORT_SYMBOL(dvb_unregister_frontend); static void dvb_frontend_invoke_release(struct dvb_frontend *fe, void (*release)(struct dvb_frontend *fe)) { if (release) { release(fe); #ifdef CONFIG_MEDIA_ATTACH dvb_detach(release); #endif } } void dvb_frontend_detach(struct dvb_frontend* fe) { dvb_frontend_invoke_release(fe, fe->ops.release_sec); dvb_frontend_invoke_release(fe, fe->ops.tuner_ops.release); dvb_frontend_invoke_release(fe, fe->ops.analog_ops.release); dvb_frontend_invoke_release(fe, fe->ops.detach); dvb_frontend_put(fe); } EXPORT_SYMBOL(dvb_frontend_detach);