/* ppa.c -- low level driver for the IOMEGA PPA3 * parallel port SCSI host adapter. * * (The PPA3 is the embedded controller in the ZIP drive.) * * (c) 1995,1996 Grant R. Guenther, grant@torque.net, * under the terms of the GNU General Public License. * */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/blkdev.h> #include <linux/parport.h> #include <linux/workqueue.h> #include <linux/delay.h> #include <linux/jiffies.h> #include <asm/io.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> static void ppa_reset_pulse(unsigned int base); typedef struct { struct pardevice *dev; /* Parport device entry */ int base; /* Actual port address */ int mode; /* Transfer mode */ struct scsi_cmnd *cur_cmd; /* Current queued command */ struct delayed_work ppa_tq; /* Polling interrupt stuff */ unsigned long jstart; /* Jiffies at start */ unsigned long recon_tmo; /* How many usecs to wait for reconnection (6th bit) */ unsigned int failed:1; /* Failure flag */ unsigned wanted:1; /* Parport sharing busy flag */ unsigned int dev_no; /* Device number */ wait_queue_head_t *waiting; struct Scsi_Host *host; struct list_head list; } ppa_struct; #include "ppa.h" static inline ppa_struct *ppa_dev(struct Scsi_Host *host) { return *(ppa_struct **)&host->hostdata; } static DEFINE_SPINLOCK(arbitration_lock); static void got_it(ppa_struct *dev) { dev->base = dev->dev->port->base; if (dev->cur_cmd) dev->cur_cmd->SCp.phase = 1; else wake_up(dev->waiting); } static void ppa_wakeup(void *ref) { ppa_struct *dev = (ppa_struct *) ref; unsigned long flags; spin_lock_irqsave(&arbitration_lock, flags); if (dev->wanted) { parport_claim(dev->dev); got_it(dev); dev->wanted = 0; } spin_unlock_irqrestore(&arbitration_lock, flags); return; } static int ppa_pb_claim(ppa_struct *dev) { unsigned long flags; int res = 1; spin_lock_irqsave(&arbitration_lock, flags); if (parport_claim(dev->dev) == 0) { got_it(dev); res = 0; } dev->wanted = res; spin_unlock_irqrestore(&arbitration_lock, flags); return res; } static void ppa_pb_dismiss(ppa_struct *dev) { unsigned long flags; int wanted; spin_lock_irqsave(&arbitration_lock, flags); wanted = dev->wanted; dev->wanted = 0; spin_unlock_irqrestore(&arbitration_lock, flags); if (!wanted) parport_release(dev->dev); } static inline void ppa_pb_release(ppa_struct *dev) { parport_release(dev->dev); } /* * Start of Chipset kludges */ /* This is to give the ppa driver a way to modify the timings (and other * parameters) by writing to the /proc/scsi/ppa/0 file. * Very simple method really... (To simple, no error checking :( ) * Reason: Kernel hackers HATE having to unload and reload modules for * testing... * Also gives a method to use a script to obtain optimum timings (TODO) */ static inline int ppa_write_info(struct Scsi_Host *host, char *buffer, int length) { ppa_struct *dev = ppa_dev(host); unsigned long x; if ((length > 5) && (strncmp(buffer, "mode=", 5) == 0)) { x = simple_strtoul(buffer + 5, NULL, 0); dev->mode = x; return length; } if ((length > 10) && (strncmp(buffer, "recon_tmo=", 10) == 0)) { x = simple_strtoul(buffer + 10, NULL, 0); dev->recon_tmo = x; printk(KERN_INFO "ppa: recon_tmo set to %ld\n", x); return length; } printk(KERN_WARNING "ppa /proc: invalid variable\n"); return -EINVAL; } static int ppa_show_info(struct seq_file *m, struct Scsi_Host *host) { ppa_struct *dev = ppa_dev(host); seq_printf(m, "Version : %s\n", PPA_VERSION); seq_printf(m, "Parport : %s\n", dev->dev->port->name); seq_printf(m, "Mode : %s\n", PPA_MODE_STRING[dev->mode]); #if PPA_DEBUG > 0 seq_printf(m, "recon_tmo : %lu\n", dev->recon_tmo); #endif return 0; } static int device_check(ppa_struct *dev); #if PPA_DEBUG > 0 #define ppa_fail(x,y) printk("ppa: ppa_fail(%i) from %s at line %d\n",\ y, __func__, __LINE__); ppa_fail_func(x,y); static inline void ppa_fail_func(ppa_struct *dev, int error_code) #else static inline void ppa_fail(ppa_struct *dev, int error_code) #endif { /* If we fail a device then we trash status / message bytes */ if (dev->cur_cmd) { dev->cur_cmd->result = error_code << 16; dev->failed = 1; } } /* * Wait for the high bit to be set. * * In principle, this could be tied to an interrupt, but the adapter * doesn't appear to be designed to support interrupts. We spin on * the 0x80 ready bit. */ static unsigned char ppa_wait(ppa_struct *dev) { int k; unsigned short ppb = dev->base; unsigned char r; k = PPA_SPIN_TMO; /* Wait for bit 6 and 7 - PJC */ for (r = r_str(ppb); ((r & 0xc0) != 0xc0) && (k); k--) { udelay(1); r = r_str(ppb); } /* * return some status information. * Semantics: 0xc0 = ZIP wants more data * 0xd0 = ZIP wants to send more data * 0xe0 = ZIP is expecting SCSI command data * 0xf0 = end of transfer, ZIP is sending status */ if (k) return (r & 0xf0); /* Counter expired - Time out occurred */ ppa_fail(dev, DID_TIME_OUT); printk(KERN_WARNING "ppa timeout in ppa_wait\n"); return 0; /* command timed out */ } /* * Clear EPP Timeout Bit */ static inline void epp_reset(unsigned short ppb) { int i; i = r_str(ppb); w_str(ppb, i); w_str(ppb, i & 0xfe); } /* * Wait for empty ECP fifo (if we are in ECP fifo mode only) */ static inline void ecp_sync(ppa_struct *dev) { int i, ppb_hi = dev->dev->port->base_hi; if (ppb_hi == 0) return; if ((r_ecr(ppb_hi) & 0xe0) == 0x60) { /* mode 011 == ECP fifo mode */ for (i = 0; i < 100; i++) { if (r_ecr(ppb_hi) & 0x01) return; udelay(5); } printk(KERN_WARNING "ppa: ECP sync failed as data still present in FIFO.\n"); } } static int ppa_byte_out(unsigned short base, const char *buffer, int len) { int i; for (i = len; i; i--) { w_dtr(base, *buffer++); w_ctr(base, 0xe); w_ctr(base, 0xc); } return 1; /* All went well - we hope! */ } static int ppa_byte_in(unsigned short base, char *buffer, int len) { int i; for (i = len; i; i--) { *buffer++ = r_dtr(base); w_ctr(base, 0x27); w_ctr(base, 0x25); } return 1; /* All went well - we hope! */ } static int ppa_nibble_in(unsigned short base, char *buffer, int len) { for (; len; len--) { unsigned char h; w_ctr(base, 0x4); h = r_str(base) & 0xf0; w_ctr(base, 0x6); *buffer++ = h | ((r_str(base) & 0xf0) >> 4); } return 1; /* All went well - we hope! */ } static int ppa_out(ppa_struct *dev, char *buffer, int len) { int r; unsigned short ppb = dev->base; r = ppa_wait(dev); if ((r & 0x50) != 0x40) { ppa_fail(dev, DID_ERROR); return 0; } switch (dev->mode) { case PPA_NIBBLE: case PPA_PS2: /* 8 bit output, with a loop */ r = ppa_byte_out(ppb, buffer, len); break; case PPA_EPP_32: case PPA_EPP_16: case PPA_EPP_8: epp_reset(ppb); w_ctr(ppb, 0x4); #ifdef CONFIG_SCSI_IZIP_EPP16 if (!(((long) buffer | len) & 0x01)) outsw(ppb + 4, buffer, len >> 1); #else if (!(((long) buffer | len) & 0x03)) outsl(ppb + 4, buffer, len >> 2); #endif else outsb(ppb + 4, buffer, len); w_ctr(ppb, 0xc); r = !(r_str(ppb) & 0x01); w_ctr(ppb, 0xc); ecp_sync(dev); break; default: printk(KERN_ERR "PPA: bug in ppa_out()\n"); r = 0; } return r; } static int ppa_in(ppa_struct *dev, char *buffer, int len) { int r; unsigned short ppb = dev->base; r = ppa_wait(dev); if ((r & 0x50) != 0x50) { ppa_fail(dev, DID_ERROR); return 0; } switch (dev->mode) { case PPA_NIBBLE: /* 4 bit input, with a loop */ r = ppa_nibble_in(ppb, buffer, len); w_ctr(ppb, 0xc); break; case PPA_PS2: /* 8 bit input, with a loop */ w_ctr(ppb, 0x25); r = ppa_byte_in(ppb, buffer, len); w_ctr(ppb, 0x4); w_ctr(ppb, 0xc); break; case PPA_EPP_32: case PPA_EPP_16: case PPA_EPP_8: epp_reset(ppb); w_ctr(ppb, 0x24); #ifdef CONFIG_SCSI_IZIP_EPP16 if (!(((long) buffer | len) & 0x01)) insw(ppb + 4, buffer, len >> 1); #else if (!(((long) buffer | len) & 0x03)) insl(ppb + 4, buffer, len >> 2); #endif else insb(ppb + 4, buffer, len); w_ctr(ppb, 0x2c); r = !(r_str(ppb) & 0x01); w_ctr(ppb, 0x2c); ecp_sync(dev); break; default: printk(KERN_ERR "PPA: bug in ppa_ins()\n"); r = 0; break; } return r; } /* end of ppa_io.h */ static inline void ppa_d_pulse(unsigned short ppb, unsigned char b) { w_dtr(ppb, b); w_ctr(ppb, 0xc); w_ctr(ppb, 0xe); w_ctr(ppb, 0xc); w_ctr(ppb, 0x4); w_ctr(ppb, 0xc); } static void ppa_disconnect(ppa_struct *dev) { unsigned short ppb = dev->base; ppa_d_pulse(ppb, 0); ppa_d_pulse(ppb, 0x3c); ppa_d_pulse(ppb, 0x20); ppa_d_pulse(ppb, 0xf); } static inline void ppa_c_pulse(unsigned short ppb, unsigned char b) { w_dtr(ppb, b); w_ctr(ppb, 0x4); w_ctr(ppb, 0x6); w_ctr(ppb, 0x4); w_ctr(ppb, 0xc); } static inline void ppa_connect(ppa_struct *dev, int flag) { unsigned short ppb = dev->base; ppa_c_pulse(ppb, 0); ppa_c_pulse(ppb, 0x3c); ppa_c_pulse(ppb, 0x20); if ((flag == CONNECT_EPP_MAYBE) && IN_EPP_MODE(dev->mode)) ppa_c_pulse(ppb, 0xcf); else ppa_c_pulse(ppb, 0x8f); } static int ppa_select(ppa_struct *dev, int target) { int k; unsigned short ppb = dev->base; /* * Bit 6 (0x40) is the device selected bit. * First we must wait till the current device goes off line... */ k = PPA_SELECT_TMO; do { k--; udelay(1); } while ((r_str(ppb) & 0x40) && (k)); if (!k) return 0; w_dtr(ppb, (1 << target)); w_ctr(ppb, 0xe); w_ctr(ppb, 0xc); w_dtr(ppb, 0x80); /* This is NOT the initator */ w_ctr(ppb, 0x8); k = PPA_SELECT_TMO; do { k--; udelay(1); } while (!(r_str(ppb) & 0x40) && (k)); if (!k) return 0; return 1; } /* * This is based on a trace of what the Iomega DOS 'guest' driver does. * I've tried several different kinds of parallel ports with guest and * coded this to react in the same ways that it does. * * The return value from this function is just a hint about where the * handshaking failed. * */ static int ppa_init(ppa_struct *dev) { int retv; unsigned short ppb = dev->base; ppa_disconnect(dev); ppa_connect(dev, CONNECT_NORMAL); retv = 2; /* Failed */ w_ctr(ppb, 0xe); if ((r_str(ppb) & 0x08) == 0x08) retv--; w_ctr(ppb, 0xc); if ((r_str(ppb) & 0x08) == 0x00) retv--; if (!retv) ppa_reset_pulse(ppb); udelay(1000); /* Allow devices to settle down */ ppa_disconnect(dev); udelay(1000); /* Another delay to allow devices to settle */ if (retv) return -EIO; return device_check(dev); } static inline int ppa_send_command(struct scsi_cmnd *cmd) { ppa_struct *dev = ppa_dev(cmd->device->host); int k; w_ctr(dev->base, 0x0c); for (k = 0; k < cmd->cmd_len; k++) if (!ppa_out(dev, &cmd->cmnd[k], 1)) return 0; return 1; } /* * The bulk flag enables some optimisations in the data transfer loops, * it should be true for any command that transfers data in integral * numbers of sectors. * * The driver appears to remain stable if we speed up the parallel port * i/o in this function, but not elsewhere. */ static int ppa_completion(struct scsi_cmnd *cmd) { /* Return codes: * -1 Error * 0 Told to schedule * 1 Finished data transfer */ ppa_struct *dev = ppa_dev(cmd->device->host); unsigned short ppb = dev->base; unsigned long start_jiffies = jiffies; unsigned char r, v; int fast, bulk, status; v = cmd->cmnd[0]; bulk = ((v == READ_6) || (v == READ_10) || (v == WRITE_6) || (v == WRITE_10)); /* * We only get here if the drive is ready to comunicate, * hence no need for a full ppa_wait. */ r = (r_str(ppb) & 0xf0); while (r != (unsigned char) 0xf0) { /* * If we have been running for more than a full timer tick * then take a rest. */ if (time_after(jiffies, start_jiffies + 1)) return 0; if ((cmd->SCp.this_residual <= 0)) { ppa_fail(dev, DID_ERROR); return -1; /* ERROR_RETURN */ } /* On some hardware we have SCSI disconnected (6th bit low) * for about 100usecs. It is too expensive to wait a * tick on every loop so we busy wait for no more than * 500usecs to give the drive a chance first. We do not * change things for "normal" hardware since generally * the 6th bit is always high. * This makes the CPU load higher on some hardware * but otherwise we can not get more than 50K/secs * on this problem hardware. */ if ((r & 0xc0) != 0xc0) { /* Wait for reconnection should be no more than * jiffy/2 = 5ms = 5000 loops */ unsigned long k = dev->recon_tmo; for (; k && ((r = (r_str(ppb) & 0xf0)) & 0xc0) != 0xc0; k--) udelay(1); if (!k) return 0; } /* determine if we should use burst I/O */ fast = (bulk && (cmd->SCp.this_residual >= PPA_BURST_SIZE)) ? PPA_BURST_SIZE : 1; if (r == (unsigned char) 0xc0) status = ppa_out(dev, cmd->SCp.ptr, fast); else status = ppa_in(dev, cmd->SCp.ptr, fast); cmd->SCp.ptr += fast; cmd->SCp.this_residual -= fast; if (!status) { ppa_fail(dev, DID_BUS_BUSY); return -1; /* ERROR_RETURN */ } if (cmd->SCp.buffer && !cmd->SCp.this_residual) { /* if scatter/gather, advance to the next segment */ if (cmd->SCp.buffers_residual--) { cmd->SCp.buffer++; cmd->SCp.this_residual = cmd->SCp.buffer->length; cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); } } /* Now check to see if the drive is ready to comunicate */ r = (r_str(ppb) & 0xf0); /* If not, drop back down to the scheduler and wait a timer tick */ if (!(r & 0x80)) return 0; } return 1; /* FINISH_RETURN */ } /* * Since the PPA itself doesn't generate interrupts, we use * the scheduler's task queue to generate a stream of call-backs and * complete the request when the drive is ready. */ static void ppa_interrupt(struct work_struct *work) { ppa_struct *dev = container_of(work, ppa_struct, ppa_tq.work); struct scsi_cmnd *cmd = dev->cur_cmd; if (!cmd) { printk(KERN_ERR "PPA: bug in ppa_interrupt\n"); return; } if (ppa_engine(dev, cmd)) { schedule_delayed_work(&dev->ppa_tq, 1); return; } /* Command must of completed hence it is safe to let go... */ #if PPA_DEBUG > 0 switch ((cmd->result >> 16) & 0xff) { case DID_OK: break; case DID_NO_CONNECT: printk(KERN_DEBUG "ppa: no device at SCSI ID %i\n", cmd->device->target); break; case DID_BUS_BUSY: printk(KERN_DEBUG "ppa: BUS BUSY - EPP timeout detected\n"); break; case DID_TIME_OUT: printk(KERN_DEBUG "ppa: unknown timeout\n"); break; case DID_ABORT: printk(KERN_DEBUG "ppa: told to abort\n"); break; case DID_PARITY: printk(KERN_DEBUG "ppa: parity error (???)\n"); break; case DID_ERROR: printk(KERN_DEBUG "ppa: internal driver error\n"); break; case DID_RESET: printk(KERN_DEBUG "ppa: told to reset device\n"); break; case DID_BAD_INTR: printk(KERN_WARNING "ppa: bad interrupt (???)\n"); break; default: printk(KERN_WARNING "ppa: bad return code (%02x)\n", (cmd->result >> 16) & 0xff); } #endif if (cmd->SCp.phase > 1) ppa_disconnect(dev); ppa_pb_dismiss(dev); dev->cur_cmd = NULL; cmd->scsi_done(cmd); } static int ppa_engine(ppa_struct *dev, struct scsi_cmnd *cmd) { unsigned short ppb = dev->base; unsigned char l = 0, h = 0; int retv; /* First check for any errors that may of occurred * Here we check for internal errors */ if (dev->failed) return 0; switch (cmd->SCp.phase) { case 0: /* Phase 0 - Waiting for parport */ if (time_after(jiffies, dev->jstart + HZ)) { /* * We waited more than a second * for parport to call us */ ppa_fail(dev, DID_BUS_BUSY); return 0; } return 1; /* wait until ppa_wakeup claims parport */ case 1: /* Phase 1 - Connected */ { /* Perform a sanity check for cable unplugged */ int retv = 2; /* Failed */ ppa_connect(dev, CONNECT_EPP_MAYBE); w_ctr(ppb, 0xe); if ((r_str(ppb) & 0x08) == 0x08) retv--; w_ctr(ppb, 0xc); if ((r_str(ppb) & 0x08) == 0x00) retv--; if (retv) { if (time_after(jiffies, dev->jstart + (1 * HZ))) { printk(KERN_ERR "ppa: Parallel port cable is unplugged.\n"); ppa_fail(dev, DID_BUS_BUSY); return 0; } else { ppa_disconnect(dev); return 1; /* Try again in a jiffy */ } } cmd->SCp.phase++; } case 2: /* Phase 2 - We are now talking to the scsi bus */ if (!ppa_select(dev, scmd_id(cmd))) { ppa_fail(dev, DID_NO_CONNECT); return 0; } cmd->SCp.phase++; case 3: /* Phase 3 - Ready to accept a command */ w_ctr(ppb, 0x0c); if (!(r_str(ppb) & 0x80)) return 1; if (!ppa_send_command(cmd)) return 0; cmd->SCp.phase++; case 4: /* Phase 4 - Setup scatter/gather buffers */ if (scsi_bufflen(cmd)) { cmd->SCp.buffer = scsi_sglist(cmd); cmd->SCp.this_residual = cmd->SCp.buffer->length; cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); } else { cmd->SCp.buffer = NULL; cmd->SCp.this_residual = 0; cmd->SCp.ptr = NULL; } cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1; cmd->SCp.phase++; case 5: /* Phase 5 - Data transfer stage */ w_ctr(ppb, 0x0c); if (!(r_str(ppb) & 0x80)) return 1; retv = ppa_completion(cmd); if (retv == -1) return 0; if (retv == 0) return 1; cmd->SCp.phase++; case 6: /* Phase 6 - Read status/message */ cmd->result = DID_OK << 16; /* Check for data overrun */ if (ppa_wait(dev) != (unsigned char) 0xf0) { ppa_fail(dev, DID_ERROR); return 0; } if (ppa_in(dev, &l, 1)) { /* read status byte */ /* Check for optional message byte */ if (ppa_wait(dev) == (unsigned char) 0xf0) ppa_in(dev, &h, 1); cmd->result = (DID_OK << 16) + (h << 8) + (l & STATUS_MASK); } return 0; /* Finished */ break; default: printk(KERN_ERR "ppa: Invalid scsi phase\n"); } return 0; } static int ppa_queuecommand_lck(struct scsi_cmnd *cmd, void (*done) (struct scsi_cmnd *)) { ppa_struct *dev = ppa_dev(cmd->device->host); if (dev->cur_cmd) { printk(KERN_ERR "PPA: bug in ppa_queuecommand\n"); return 0; } dev->failed = 0; dev->jstart = jiffies; dev->cur_cmd = cmd; cmd->scsi_done = done; cmd->result = DID_ERROR << 16; /* default return code */ cmd->SCp.phase = 0; /* bus free */ schedule_delayed_work(&dev->ppa_tq, 0); ppa_pb_claim(dev); return 0; } static DEF_SCSI_QCMD(ppa_queuecommand) /* * Apparently the disk->capacity attribute is off by 1 sector * for all disk drives. We add the one here, but it should really * be done in sd.c. Even if it gets fixed there, this will still * work. */ static int ppa_biosparam(struct scsi_device *sdev, struct block_device *dev, sector_t capacity, int ip[]) { ip[0] = 0x40; ip[1] = 0x20; ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]); if (ip[2] > 1024) { ip[0] = 0xff; ip[1] = 0x3f; ip[2] = ((unsigned long) capacity + 1) / (ip[0] * ip[1]); if (ip[2] > 1023) ip[2] = 1023; } return 0; } static int ppa_abort(struct scsi_cmnd *cmd) { ppa_struct *dev = ppa_dev(cmd->device->host); /* * There is no method for aborting commands since Iomega * have tied the SCSI_MESSAGE line high in the interface */ switch (cmd->SCp.phase) { case 0: /* Do not have access to parport */ case 1: /* Have not connected to interface */ dev->cur_cmd = NULL; /* Forget the problem */ return SUCCESS; break; default: /* SCSI command sent, can not abort */ return FAILED; break; } } static void ppa_reset_pulse(unsigned int base) { w_dtr(base, 0x40); w_ctr(base, 0x8); udelay(30); w_ctr(base, 0xc); } static int ppa_reset(struct scsi_cmnd *cmd) { ppa_struct *dev = ppa_dev(cmd->device->host); if (cmd->SCp.phase) ppa_disconnect(dev); dev->cur_cmd = NULL; /* Forget the problem */ ppa_connect(dev, CONNECT_NORMAL); ppa_reset_pulse(dev->base); mdelay(1); /* device settle delay */ ppa_disconnect(dev); mdelay(1); /* device settle delay */ return SUCCESS; } static int device_check(ppa_struct *dev) { /* This routine looks for a device and then attempts to use EPP to send a command. If all goes as planned then EPP is available. */ static u8 cmd[6] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; int loop, old_mode, status, k, ppb = dev->base; unsigned char l; old_mode = dev->mode; for (loop = 0; loop < 8; loop++) { /* Attempt to use EPP for Test Unit Ready */ if ((ppb & 0x0007) == 0x0000) dev->mode = PPA_EPP_32; second_pass: ppa_connect(dev, CONNECT_EPP_MAYBE); /* Select SCSI device */ if (!ppa_select(dev, loop)) { ppa_disconnect(dev); continue; } printk(KERN_INFO "ppa: Found device at ID %i, Attempting to use %s\n", loop, PPA_MODE_STRING[dev->mode]); /* Send SCSI command */ status = 1; w_ctr(ppb, 0x0c); for (l = 0; (l < 6) && (status); l++) status = ppa_out(dev, cmd, 1); if (!status) { ppa_disconnect(dev); ppa_connect(dev, CONNECT_EPP_MAYBE); w_dtr(ppb, 0x40); w_ctr(ppb, 0x08); udelay(30); w_ctr(ppb, 0x0c); udelay(1000); ppa_disconnect(dev); udelay(1000); if (dev->mode == PPA_EPP_32) { dev->mode = old_mode; goto second_pass; } return -EIO; } w_ctr(ppb, 0x0c); k = 1000000; /* 1 Second */ do { l = r_str(ppb); k--; udelay(1); } while (!(l & 0x80) && (k)); l &= 0xf0; if (l != 0xf0) { ppa_disconnect(dev); ppa_connect(dev, CONNECT_EPP_MAYBE); ppa_reset_pulse(ppb); udelay(1000); ppa_disconnect(dev); udelay(1000); if (dev->mode == PPA_EPP_32) { dev->mode = old_mode; goto second_pass; } return -EIO; } ppa_disconnect(dev); printk(KERN_INFO "ppa: Communication established with ID %i using %s\n", loop, PPA_MODE_STRING[dev->mode]); ppa_connect(dev, CONNECT_EPP_MAYBE); ppa_reset_pulse(ppb); udelay(1000); ppa_disconnect(dev); udelay(1000); return 0; } return -ENODEV; } static int ppa_adjust_queue(struct scsi_device *device) { blk_queue_bounce_limit(device->request_queue, BLK_BOUNCE_HIGH); return 0; } static struct scsi_host_template ppa_template = { .module = THIS_MODULE, .proc_name = "ppa", .show_info = ppa_show_info, .write_info = ppa_write_info, .name = "Iomega VPI0 (ppa) interface", .queuecommand = ppa_queuecommand, .eh_abort_handler = ppa_abort, .eh_bus_reset_handler = ppa_reset, .eh_host_reset_handler = ppa_reset, .bios_param = ppa_biosparam, .this_id = -1, .sg_tablesize = SG_ALL, .use_clustering = ENABLE_CLUSTERING, .can_queue = 1, .slave_alloc = ppa_adjust_queue, }; /*************************************************************************** * Parallel port probing routines * ***************************************************************************/ static LIST_HEAD(ppa_hosts); /* * Finds the first available device number that can be alloted to the * new ppa device and returns the address of the previous node so that * we can add to the tail and have a list in the ascending order. */ static inline ppa_struct *find_parent(void) { ppa_struct *dev, *par = NULL; unsigned int cnt = 0; if (list_empty(&ppa_hosts)) return NULL; list_for_each_entry(dev, &ppa_hosts, list) { if (dev->dev_no != cnt) return par; cnt++; par = dev; } return par; } static int __ppa_attach(struct parport *pb) { struct Scsi_Host *host; DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waiting); DEFINE_WAIT(wait); ppa_struct *dev, *temp; int ports; int modes, ppb, ppb_hi; int err = -ENOMEM; struct pardev_cb ppa_cb; dev = kzalloc(sizeof(ppa_struct), GFP_KERNEL); if (!dev) return -ENOMEM; dev->base = -1; dev->mode = PPA_AUTODETECT; dev->recon_tmo = PPA_RECON_TMO; init_waitqueue_head(&waiting); temp = find_parent(); if (temp) dev->dev_no = temp->dev_no + 1; memset(&ppa_cb, 0, sizeof(ppa_cb)); ppa_cb.private = dev; ppa_cb.wakeup = ppa_wakeup; dev->dev = parport_register_dev_model(pb, "ppa", &ppa_cb, dev->dev_no); if (!dev->dev) goto out; /* Claim the bus so it remembers what we do to the control * registers. [ CTR and ECP ] */ err = -EBUSY; dev->waiting = &waiting; prepare_to_wait(&waiting, &wait, TASK_UNINTERRUPTIBLE); if (ppa_pb_claim(dev)) schedule_timeout(3 * HZ); if (dev->wanted) { printk(KERN_ERR "ppa%d: failed to claim parport because " "a pardevice is owning the port for too long " "time!\n", pb->number); ppa_pb_dismiss(dev); dev->waiting = NULL; finish_wait(&waiting, &wait); goto out1; } dev->waiting = NULL; finish_wait(&waiting, &wait); ppb = dev->base = dev->dev->port->base; ppb_hi = dev->dev->port->base_hi; w_ctr(ppb, 0x0c); modes = dev->dev->port->modes; /* Mode detection works up the chain of speed * This avoids a nasty if-then-else-if-... tree */ dev->mode = PPA_NIBBLE; if (modes & PARPORT_MODE_TRISTATE) dev->mode = PPA_PS2; if (modes & PARPORT_MODE_ECP) { w_ecr(ppb_hi, 0x20); dev->mode = PPA_PS2; } if ((modes & PARPORT_MODE_EPP) && (modes & PARPORT_MODE_ECP)) w_ecr(ppb_hi, 0x80); /* Done configuration */ err = ppa_init(dev); ppa_pb_release(dev); if (err) goto out1; /* now the glue ... */ if (dev->mode == PPA_NIBBLE || dev->mode == PPA_PS2) ports = 3; else ports = 8; INIT_DELAYED_WORK(&dev->ppa_tq, ppa_interrupt); err = -ENOMEM; host = scsi_host_alloc(&ppa_template, sizeof(ppa_struct *)); if (!host) goto out1; host->io_port = pb->base; host->n_io_port = ports; host->dma_channel = -1; host->unique_id = pb->number; *(ppa_struct **)&host->hostdata = dev; dev->host = host; list_add_tail(&dev->list, &ppa_hosts); err = scsi_add_host(host, NULL); if (err) goto out2; scsi_scan_host(host); return 0; out2: list_del_init(&dev->list); scsi_host_put(host); out1: parport_unregister_device(dev->dev); out: kfree(dev); return err; } static void ppa_attach(struct parport *pb) { __ppa_attach(pb); } static void ppa_detach(struct parport *pb) { ppa_struct *dev; list_for_each_entry(dev, &ppa_hosts, list) { if (dev->dev->port == pb) { list_del_init(&dev->list); scsi_remove_host(dev->host); scsi_host_put(dev->host); parport_unregister_device(dev->dev); kfree(dev); break; } } } static struct parport_driver ppa_driver = { .name = "ppa", .match_port = ppa_attach, .detach = ppa_detach, .devmodel = true, }; static int __init ppa_driver_init(void) { printk(KERN_INFO "ppa: Version %s\n", PPA_VERSION); return parport_register_driver(&ppa_driver); } static void __exit ppa_driver_exit(void) { parport_unregister_driver(&ppa_driver); } module_init(ppa_driver_init); module_exit(ppa_driver_exit); MODULE_LICENSE("GPL");