/* * * Linux MegaRAID device driver * * Copyright (c) 2002 LSI Logic Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Copyright (c) 2002 Red Hat, Inc. All rights reserved. * - fixes * - speed-ups (list handling fixes, issued_list, optimizations.) * - lots of cleanups. * * Copyright (c) 2003 Christoph Hellwig <hch@lst.de> * - new-style, hotplug-aware pci probing and scsi registration * * Version : v2.00.4 Mon Nov 14 14:02:43 EST 2005 - Seokmann Ju * <Seokmann.Ju@lsil.com> * * Description: Linux device driver for LSI Logic MegaRAID controller * * Supported controllers: MegaRAID 418, 428, 438, 466, 762, 467, 471, 490, 493 * 518, 520, 531, 532 * * This driver is supported by LSI Logic, with assistance from Red Hat, Dell, * and others. Please send updates to the mailing list * linux-scsi@vger.kernel.org . * */ #include <linux/mm.h> #include <linux/fs.h> #include <linux/blkdev.h> #include <asm/uaccess.h> #include <asm/io.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/proc_fs.h> #include <linux/reboot.h> #include <linux/module.h> #include <linux/list.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/dma-mapping.h> #include <linux/mutex.h> #include <linux/slab.h> #include <scsi/scsicam.h> #include "scsi.h" #include <scsi/scsi_host.h> #include "megaraid.h" #define MEGARAID_MODULE_VERSION "2.00.4" MODULE_AUTHOR ("sju@lsil.com"); MODULE_DESCRIPTION ("LSI Logic MegaRAID legacy driver"); MODULE_LICENSE ("GPL"); MODULE_VERSION(MEGARAID_MODULE_VERSION); static DEFINE_MUTEX(megadev_mutex); static unsigned int max_cmd_per_lun = DEF_CMD_PER_LUN; module_param(max_cmd_per_lun, uint, 0); MODULE_PARM_DESC(max_cmd_per_lun, "Maximum number of commands which can be issued to a single LUN (default=DEF_CMD_PER_LUN=63)"); static unsigned short int max_sectors_per_io = MAX_SECTORS_PER_IO; module_param(max_sectors_per_io, ushort, 0); MODULE_PARM_DESC(max_sectors_per_io, "Maximum number of sectors per I/O request (default=MAX_SECTORS_PER_IO=128)"); static unsigned short int max_mbox_busy_wait = MBOX_BUSY_WAIT; module_param(max_mbox_busy_wait, ushort, 0); MODULE_PARM_DESC(max_mbox_busy_wait, "Maximum wait for mailbox in microseconds if busy (default=MBOX_BUSY_WAIT=10)"); #define RDINDOOR(adapter) readl((adapter)->mmio_base + 0x20) #define RDOUTDOOR(adapter) readl((adapter)->mmio_base + 0x2C) #define WRINDOOR(adapter,value) writel(value, (adapter)->mmio_base + 0x20) #define WROUTDOOR(adapter,value) writel(value, (adapter)->mmio_base + 0x2C) /* * Global variables */ static int hba_count; static adapter_t *hba_soft_state[MAX_CONTROLLERS]; static struct proc_dir_entry *mega_proc_dir_entry; /* For controller re-ordering */ static struct mega_hbas mega_hbas[MAX_CONTROLLERS]; static long megadev_unlocked_ioctl(struct file *filep, unsigned int cmd, unsigned long arg); /* * The File Operations structure for the serial/ioctl interface of the driver */ static const struct file_operations megadev_fops = { .owner = THIS_MODULE, .unlocked_ioctl = megadev_unlocked_ioctl, .open = megadev_open, .llseek = noop_llseek, }; /* * Array to structures for storing the information about the controllers. This * information is sent to the user level applications, when they do an ioctl * for this information. */ static struct mcontroller mcontroller[MAX_CONTROLLERS]; /* The current driver version */ static u32 driver_ver = 0x02000000; /* major number used by the device for character interface */ static int major; #define IS_RAID_CH(hba, ch) (((hba)->mega_ch_class >> (ch)) & 0x01) /* * Debug variable to print some diagnostic messages */ static int trace_level; /** * mega_setup_mailbox() * @adapter - pointer to our soft state * * Allocates a 8 byte aligned memory for the handshake mailbox. */ static int mega_setup_mailbox(adapter_t *adapter) { unsigned long align; adapter->una_mbox64 = pci_alloc_consistent(adapter->dev, sizeof(mbox64_t), &adapter->una_mbox64_dma); if( !adapter->una_mbox64 ) return -1; adapter->mbox = &adapter->una_mbox64->mbox; adapter->mbox = (mbox_t *)((((unsigned long) adapter->mbox) + 15) & (~0UL ^ 0xFUL)); adapter->mbox64 = (mbox64_t *)(((unsigned long)adapter->mbox) - 8); align = ((void *)adapter->mbox) - ((void *)&adapter->una_mbox64->mbox); adapter->mbox_dma = adapter->una_mbox64_dma + 8 + align; /* * Register the mailbox if the controller is an io-mapped controller */ if( adapter->flag & BOARD_IOMAP ) { outb(adapter->mbox_dma & 0xFF, adapter->host->io_port + MBOX_PORT0); outb((adapter->mbox_dma >> 8) & 0xFF, adapter->host->io_port + MBOX_PORT1); outb((adapter->mbox_dma >> 16) & 0xFF, adapter->host->io_port + MBOX_PORT2); outb((adapter->mbox_dma >> 24) & 0xFF, adapter->host->io_port + MBOX_PORT3); outb(ENABLE_MBOX_BYTE, adapter->host->io_port + ENABLE_MBOX_REGION); irq_ack(adapter); irq_enable(adapter); } return 0; } /* * mega_query_adapter() * @adapter - pointer to our soft state * * Issue the adapter inquiry commands to the controller and find out * information and parameter about the devices attached */ static int mega_query_adapter(adapter_t *adapter) { dma_addr_t prod_info_dma_handle; mega_inquiry3 *inquiry3; u8 raw_mbox[sizeof(struct mbox_out)]; mbox_t *mbox; int retval; /* Initialize adapter inquiry mailbox */ mbox = (mbox_t *)raw_mbox; memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE); memset(&mbox->m_out, 0, sizeof(raw_mbox)); /* * Try to issue Inquiry3 command * if not succeeded, then issue MEGA_MBOXCMD_ADAPTERINQ command and * update enquiry3 structure */ mbox->m_out.xferaddr = (u32)adapter->buf_dma_handle; inquiry3 = (mega_inquiry3 *)adapter->mega_buffer; raw_mbox[0] = FC_NEW_CONFIG; /* i.e. mbox->cmd=0xA1 */ raw_mbox[2] = NC_SUBOP_ENQUIRY3; /* i.e. 0x0F */ raw_mbox[3] = ENQ3_GET_SOLICITED_FULL; /* i.e. 0x02 */ /* Issue a blocking command to the card */ if ((retval = issue_scb_block(adapter, raw_mbox))) { /* the adapter does not support 40ld */ mraid_ext_inquiry *ext_inq; mraid_inquiry *inq; dma_addr_t dma_handle; ext_inq = pci_alloc_consistent(adapter->dev, sizeof(mraid_ext_inquiry), &dma_handle); if( ext_inq == NULL ) return -1; inq = &ext_inq->raid_inq; mbox->m_out.xferaddr = (u32)dma_handle; /*issue old 0x04 command to adapter */ mbox->m_out.cmd = MEGA_MBOXCMD_ADPEXTINQ; issue_scb_block(adapter, raw_mbox); /* * update Enquiry3 and ProductInfo structures with * mraid_inquiry structure */ mega_8_to_40ld(inq, inquiry3, (mega_product_info *)&adapter->product_info); pci_free_consistent(adapter->dev, sizeof(mraid_ext_inquiry), ext_inq, dma_handle); } else { /*adapter supports 40ld */ adapter->flag |= BOARD_40LD; /* * get product_info, which is static information and will be * unchanged */ prod_info_dma_handle = pci_map_single(adapter->dev, (void *) &adapter->product_info, sizeof(mega_product_info), PCI_DMA_FROMDEVICE); mbox->m_out.xferaddr = prod_info_dma_handle; raw_mbox[0] = FC_NEW_CONFIG; /* i.e. mbox->cmd=0xA1 */ raw_mbox[2] = NC_SUBOP_PRODUCT_INFO; /* i.e. 0x0E */ if ((retval = issue_scb_block(adapter, raw_mbox))) printk(KERN_WARNING "megaraid: Product_info cmd failed with error: %d\n", retval); pci_unmap_single(adapter->dev, prod_info_dma_handle, sizeof(mega_product_info), PCI_DMA_FROMDEVICE); } /* * kernel scans the channels from 0 to <= max_channel */ adapter->host->max_channel = adapter->product_info.nchannels + NVIRT_CHAN -1; adapter->host->max_id = 16; /* max targets per channel */ adapter->host->max_lun = 7; /* Up to 7 luns for non disk devices */ adapter->host->cmd_per_lun = max_cmd_per_lun; adapter->numldrv = inquiry3->num_ldrv; adapter->max_cmds = adapter->product_info.max_commands; if(adapter->max_cmds > MAX_COMMANDS) adapter->max_cmds = MAX_COMMANDS; adapter->host->can_queue = adapter->max_cmds - 1; /* * Get the maximum number of scatter-gather elements supported by this * firmware */ mega_get_max_sgl(adapter); adapter->host->sg_tablesize = adapter->sglen; /* use HP firmware and bios version encoding */ if (adapter->product_info.subsysvid == HP_SUBSYS_VID) { sprintf (adapter->fw_version, "%c%d%d.%d%d", adapter->product_info.fw_version[2], adapter->product_info.fw_version[1] >> 8, adapter->product_info.fw_version[1] & 0x0f, adapter->product_info.fw_version[0] >> 8, adapter->product_info.fw_version[0] & 0x0f); sprintf (adapter->bios_version, "%c%d%d.%d%d", adapter->product_info.bios_version[2], adapter->product_info.bios_version[1] >> 8, adapter->product_info.bios_version[1] & 0x0f, adapter->product_info.bios_version[0] >> 8, adapter->product_info.bios_version[0] & 0x0f); } else { memcpy(adapter->fw_version, (char *)adapter->product_info.fw_version, 4); adapter->fw_version[4] = 0; memcpy(adapter->bios_version, (char *)adapter->product_info.bios_version, 4); adapter->bios_version[4] = 0; } printk(KERN_NOTICE "megaraid: [%s:%s] detected %d logical drives.\n", adapter->fw_version, adapter->bios_version, adapter->numldrv); /* * Do we support extended (>10 bytes) cdbs */ adapter->support_ext_cdb = mega_support_ext_cdb(adapter); if (adapter->support_ext_cdb) printk(KERN_NOTICE "megaraid: supports extended CDBs.\n"); return 0; } /** * mega_runpendq() * @adapter - pointer to our soft state * * Runs through the list of pending requests. */ static inline void mega_runpendq(adapter_t *adapter) { if(!list_empty(&adapter->pending_list)) __mega_runpendq(adapter); } /* * megaraid_queue() * @scmd - Issue this scsi command * @done - the callback hook into the scsi mid-layer * * The command queuing entry point for the mid-layer. */ static int megaraid_queue_lck(Scsi_Cmnd *scmd, void (*done)(Scsi_Cmnd *)) { adapter_t *adapter; scb_t *scb; int busy=0; unsigned long flags; adapter = (adapter_t *)scmd->device->host->hostdata; scmd->scsi_done = done; /* * Allocate and build a SCB request * busy flag will be set if mega_build_cmd() command could not * allocate scb. We will return non-zero status in that case. * NOTE: scb can be null even though certain commands completed * successfully, e.g., MODE_SENSE and TEST_UNIT_READY, we would * return 0 in that case. */ spin_lock_irqsave(&adapter->lock, flags); scb = mega_build_cmd(adapter, scmd, &busy); if (!scb) goto out; scb->state |= SCB_PENDQ; list_add_tail(&scb->list, &adapter->pending_list); /* * Check if the HBA is in quiescent state, e.g., during a * delete logical drive opertion. If it is, don't run * the pending_list. */ if (atomic_read(&adapter->quiescent) == 0) mega_runpendq(adapter); busy = 0; out: spin_unlock_irqrestore(&adapter->lock, flags); return busy; } static DEF_SCSI_QCMD(megaraid_queue) /** * mega_allocate_scb() * @adapter - pointer to our soft state * @cmd - scsi command from the mid-layer * * Allocate a SCB structure. This is the central structure for controller * commands. */ static inline scb_t * mega_allocate_scb(adapter_t *adapter, Scsi_Cmnd *cmd) { struct list_head *head = &adapter->free_list; scb_t *scb; /* Unlink command from Free List */ if( !list_empty(head) ) { scb = list_entry(head->next, scb_t, list); list_del_init(head->next); scb->state = SCB_ACTIVE; scb->cmd = cmd; scb->dma_type = MEGA_DMA_TYPE_NONE; return scb; } return NULL; } /** * mega_get_ldrv_num() * @adapter - pointer to our soft state * @cmd - scsi mid layer command * @channel - channel on the controller * * Calculate the logical drive number based on the information in scsi command * and the channel number. */ static inline int mega_get_ldrv_num(adapter_t *adapter, Scsi_Cmnd *cmd, int channel) { int tgt; int ldrv_num; tgt = cmd->device->id; if ( tgt > adapter->this_id ) tgt--; /* we do not get inquires for initiator id */ ldrv_num = (channel * 15) + tgt; /* * If we have a logical drive with boot enabled, project it first */ if( adapter->boot_ldrv_enabled ) { if( ldrv_num == 0 ) { ldrv_num = adapter->boot_ldrv; } else { if( ldrv_num <= adapter->boot_ldrv ) { ldrv_num--; } } } /* * If "delete logical drive" feature is enabled on this controller. * Do only if at least one delete logical drive operation was done. * * Also, after logical drive deletion, instead of logical drive number, * the value returned should be 0x80+logical drive id. * * These is valid only for IO commands. */ if (adapter->support_random_del && adapter->read_ldidmap ) switch (cmd->cmnd[0]) { case READ_6: /* fall through */ case WRITE_6: /* fall through */ case READ_10: /* fall through */ case WRITE_10: ldrv_num += 0x80; } return ldrv_num; } /** * mega_build_cmd() * @adapter - pointer to our soft state * @cmd - Prepare using this scsi command * @busy - busy flag if no resources * * Prepares a command and scatter gather list for the controller. This routine * also finds out if the commands is intended for a logical drive or a * physical device and prepares the controller command accordingly. * * We also re-order the logical drives and physical devices based on their * boot settings. */ static scb_t * mega_build_cmd(adapter_t *adapter, Scsi_Cmnd *cmd, int *busy) { mega_ext_passthru *epthru; mega_passthru *pthru; scb_t *scb; mbox_t *mbox; long seg; char islogical; int max_ldrv_num; int channel = 0; int target = 0; int ldrv_num = 0; /* logical drive number */ /* * filter the internal and ioctl commands */ if((cmd->cmnd[0] == MEGA_INTERNAL_CMD)) return (scb_t *)cmd->host_scribble; /* * We know what channels our logical drives are on - mega_find_card() */ islogical = adapter->logdrv_chan[cmd->device->channel]; /* * The theory: If physical drive is chosen for boot, all the physical * devices are exported before the logical drives, otherwise physical * devices are pushed after logical drives, in which case - Kernel sees * the physical devices on virtual channel which is obviously converted * to actual channel on the HBA. */ if( adapter->boot_pdrv_enabled ) { if( islogical ) { /* logical channel */ channel = cmd->device->channel - adapter->product_info.nchannels; } else { /* this is physical channel */ channel = cmd->device->channel; target = cmd->device->id; /* * boot from a physical disk, that disk needs to be * exposed first IF both the channels are SCSI, then * booting from the second channel is not allowed. */ if( target == 0 ) { target = adapter->boot_pdrv_tgt; } else if( target == adapter->boot_pdrv_tgt ) { target = 0; } } } else { if( islogical ) { /* this is the logical channel */ channel = cmd->device->channel; } else { /* physical channel */ channel = cmd->device->channel - NVIRT_CHAN; target = cmd->device->id; } } if(islogical) { /* have just LUN 0 for each target on virtual channels */ if (cmd->device->lun) { cmd->result = (DID_BAD_TARGET << 16); cmd->scsi_done(cmd); return NULL; } ldrv_num = mega_get_ldrv_num(adapter, cmd, channel); max_ldrv_num = (adapter->flag & BOARD_40LD) ? MAX_LOGICAL_DRIVES_40LD : MAX_LOGICAL_DRIVES_8LD; /* * max_ldrv_num increases by 0x80 if some logical drive was * deleted. */ if(adapter->read_ldidmap) max_ldrv_num += 0x80; if(ldrv_num > max_ldrv_num ) { cmd->result = (DID_BAD_TARGET << 16); cmd->scsi_done(cmd); return NULL; } } else { if( cmd->device->lun > 7) { /* * Do not support lun >7 for physically accessed * devices */ cmd->result = (DID_BAD_TARGET << 16); cmd->scsi_done(cmd); return NULL; } } /* * * Logical drive commands * */ if(islogical) { switch (cmd->cmnd[0]) { case TEST_UNIT_READY: #if MEGA_HAVE_CLUSTERING /* * Do we support clustering and is the support enabled * If no, return success always */ if( !adapter->has_cluster ) { cmd->result = (DID_OK << 16); cmd->scsi_done(cmd); return NULL; } if(!(scb = mega_allocate_scb(adapter, cmd))) { *busy = 1; return NULL; } scb->raw_mbox[0] = MEGA_CLUSTER_CMD; scb->raw_mbox[2] = MEGA_RESERVATION_STATUS; scb->raw_mbox[3] = ldrv_num; scb->dma_direction = PCI_DMA_NONE; return scb; #else cmd->result = (DID_OK << 16); cmd->scsi_done(cmd); return NULL; #endif case MODE_SENSE: { char *buf; struct scatterlist *sg; sg = scsi_sglist(cmd); buf = kmap_atomic(sg_page(sg), KM_IRQ0) + sg->offset; memset(buf, 0, cmd->cmnd[4]); kunmap_atomic(buf - sg->offset, KM_IRQ0); cmd->result = (DID_OK << 16); cmd->scsi_done(cmd); return NULL; } case READ_CAPACITY: case INQUIRY: if(!(adapter->flag & (1L << cmd->device->channel))) { printk(KERN_NOTICE "scsi%d: scanning scsi channel %d ", adapter->host->host_no, cmd->device->channel); printk("for logical drives.\n"); adapter->flag |= (1L << cmd->device->channel); } /* Allocate a SCB and initialize passthru */ if(!(scb = mega_allocate_scb(adapter, cmd))) { *busy = 1; return NULL; } pthru = scb->pthru; mbox = (mbox_t *)scb->raw_mbox; memset(mbox, 0, sizeof(scb->raw_mbox)); memset(pthru, 0, sizeof(mega_passthru)); pthru->timeout = 0; pthru->ars = 1; pthru->reqsenselen = 14; pthru->islogical = 1; pthru->logdrv = ldrv_num; pthru->cdblen = cmd->cmd_len; memcpy(pthru->cdb, cmd->cmnd, cmd->cmd_len); if( adapter->has_64bit_addr ) { mbox->m_out.cmd = MEGA_MBOXCMD_PASSTHRU64; } else { mbox->m_out.cmd = MEGA_MBOXCMD_PASSTHRU; } scb->dma_direction = PCI_DMA_FROMDEVICE; pthru->numsgelements = mega_build_sglist(adapter, scb, &pthru->dataxferaddr, &pthru->dataxferlen); mbox->m_out.xferaddr = scb->pthru_dma_addr; return scb; case READ_6: case WRITE_6: case READ_10: case WRITE_10: case READ_12: case WRITE_12: /* Allocate a SCB and initialize mailbox */ if(!(scb = mega_allocate_scb(adapter, cmd))) { *busy = 1; return NULL; } mbox = (mbox_t *)scb->raw_mbox; memset(mbox, 0, sizeof(scb->raw_mbox)); mbox->m_out.logdrv = ldrv_num; /* * A little hack: 2nd bit is zero for all scsi read * commands and is set for all scsi write commands */ if( adapter->has_64bit_addr ) { mbox->m_out.cmd = (*cmd->cmnd & 0x02) ? MEGA_MBOXCMD_LWRITE64: MEGA_MBOXCMD_LREAD64 ; } else { mbox->m_out.cmd = (*cmd->cmnd & 0x02) ? MEGA_MBOXCMD_LWRITE: MEGA_MBOXCMD_LREAD ; } /* * 6-byte READ(0x08) or WRITE(0x0A) cdb */ if( cmd->cmd_len == 6 ) { mbox->m_out.numsectors = (u32) cmd->cmnd[4]; mbox->m_out.lba = ((u32)cmd->cmnd[1] << 16) | ((u32)cmd->cmnd[2] << 8) | (u32)cmd->cmnd[3]; mbox->m_out.lba &= 0x1FFFFF; #if MEGA_HAVE_STATS /* * Take modulo 0x80, since the logical drive * number increases by 0x80 when a logical * drive was deleted */ if (*cmd->cmnd == READ_6) { adapter->nreads[ldrv_num%0x80]++; adapter->nreadblocks[ldrv_num%0x80] += mbox->m_out.numsectors; } else { adapter->nwrites[ldrv_num%0x80]++; adapter->nwriteblocks[ldrv_num%0x80] += mbox->m_out.numsectors; } #endif } /* * 10-byte READ(0x28) or WRITE(0x2A) cdb */ if( cmd->cmd_len == 10 ) { mbox->m_out.numsectors = (u32)cmd->cmnd[8] | ((u32)cmd->cmnd[7] << 8); mbox->m_out.lba = ((u32)cmd->cmnd[2] << 24) | ((u32)cmd->cmnd[3] << 16) | ((u32)cmd->cmnd[4] << 8) | (u32)cmd->cmnd[5]; #if MEGA_HAVE_STATS if (*cmd->cmnd == READ_10) { adapter->nreads[ldrv_num%0x80]++; adapter->nreadblocks[ldrv_num%0x80] += mbox->m_out.numsectors; } else { adapter->nwrites[ldrv_num%0x80]++; adapter->nwriteblocks[ldrv_num%0x80] += mbox->m_out.numsectors; } #endif } /* * 12-byte READ(0xA8) or WRITE(0xAA) cdb */ if( cmd->cmd_len == 12 ) { mbox->m_out.lba = ((u32)cmd->cmnd[2] << 24) | ((u32)cmd->cmnd[3] << 16) | ((u32)cmd->cmnd[4] << 8) | (u32)cmd->cmnd[5]; mbox->m_out.numsectors = ((u32)cmd->cmnd[6] << 24) | ((u32)cmd->cmnd[7] << 16) | ((u32)cmd->cmnd[8] << 8) | (u32)cmd->cmnd[9]; #if MEGA_HAVE_STATS if (*cmd->cmnd == READ_12) { adapter->nreads[ldrv_num%0x80]++; adapter->nreadblocks[ldrv_num%0x80] += mbox->m_out.numsectors; } else { adapter->nwrites[ldrv_num%0x80]++; adapter->nwriteblocks[ldrv_num%0x80] += mbox->m_out.numsectors; } #endif } /* * If it is a read command */ if( (*cmd->cmnd & 0x0F) == 0x08 ) { scb->dma_direction = PCI_DMA_FROMDEVICE; } else { scb->dma_direction = PCI_DMA_TODEVICE; } /* Calculate Scatter-Gather info */ mbox->m_out.numsgelements = mega_build_sglist(adapter, scb, (u32 *)&mbox->m_out.xferaddr, (u32 *)&seg); return scb; #if MEGA_HAVE_CLUSTERING case RESERVE: /* Fall through */ case RELEASE: /* * Do we support clustering and is the support enabled */ if( ! adapter->has_cluster ) { cmd->result = (DID_BAD_TARGET << 16); cmd->scsi_done(cmd); return NULL; } /* Allocate a SCB and initialize mailbox */ if(!(scb = mega_allocate_scb(adapter, cmd))) { *busy = 1; return NULL; } scb->raw_mbox[0] = MEGA_CLUSTER_CMD; scb->raw_mbox[2] = ( *cmd->cmnd == RESERVE ) ? MEGA_RESERVE_LD : MEGA_RELEASE_LD; scb->raw_mbox[3] = ldrv_num; scb->dma_direction = PCI_DMA_NONE; return scb; #endif default: cmd->result = (DID_BAD_TARGET << 16); cmd->scsi_done(cmd); return NULL; } } /* * Passthru drive commands */ else { /* Allocate a SCB and initialize passthru */ if(!(scb = mega_allocate_scb(adapter, cmd))) { *busy = 1; return NULL; } mbox = (mbox_t *)scb->raw_mbox; memset(mbox, 0, sizeof(scb->raw_mbox)); if( adapter->support_ext_cdb ) { epthru = mega_prepare_extpassthru(adapter, scb, cmd, channel, target); mbox->m_out.cmd = MEGA_MBOXCMD_EXTPTHRU; mbox->m_out.xferaddr = scb->epthru_dma_addr; } else { pthru = mega_prepare_passthru(adapter, scb, cmd, channel, target); /* Initialize mailbox */ if( adapter->has_64bit_addr ) { mbox->m_out.cmd = MEGA_MBOXCMD_PASSTHRU64; } else { mbox->m_out.cmd = MEGA_MBOXCMD_PASSTHRU; } mbox->m_out.xferaddr = scb->pthru_dma_addr; } return scb; } return NULL; } /** * mega_prepare_passthru() * @adapter - pointer to our soft state * @scb - our scsi control block * @cmd - scsi command from the mid-layer * @channel - actual channel on the controller * @target - actual id on the controller. * * prepare a command for the scsi physical devices. */ static mega_passthru * mega_prepare_passthru(adapter_t *adapter, scb_t *scb, Scsi_Cmnd *cmd, int channel, int target) { mega_passthru *pthru; pthru = scb->pthru; memset(pthru, 0, sizeof (mega_passthru)); /* 0=6sec/1=60sec/2=10min/3=3hrs */ pthru->timeout = 2; pthru->ars = 1; pthru->reqsenselen = 14; pthru->islogical = 0; pthru->channel = (adapter->flag & BOARD_40LD) ? 0 : channel; pthru->target = (adapter->flag & BOARD_40LD) ? (channel << 4) | target : target; pthru->cdblen = cmd->cmd_len; pthru->logdrv = cmd->device->lun; memcpy(pthru->cdb, cmd->cmnd, cmd->cmd_len); /* Not sure about the direction */ scb->dma_direction = PCI_DMA_BIDIRECTIONAL; /* Special Code for Handling READ_CAPA/ INQ using bounce buffers */ switch (cmd->cmnd[0]) { case INQUIRY: case READ_CAPACITY: if(!(adapter->flag & (1L << cmd->device->channel))) { printk(KERN_NOTICE "scsi%d: scanning scsi channel %d [P%d] ", adapter->host->host_no, cmd->device->channel, channel); printk("for physical devices.\n"); adapter->flag |= (1L << cmd->device->channel); } /* Fall through */ default: pthru->numsgelements = mega_build_sglist(adapter, scb, &pthru->dataxferaddr, &pthru->dataxferlen); break; } return pthru; } /** * mega_prepare_extpassthru() * @adapter - pointer to our soft state * @scb - our scsi control block * @cmd - scsi command from the mid-layer * @channel - actual channel on the controller * @target - actual id on the controller. * * prepare a command for the scsi physical devices. This rountine prepares * commands for devices which can take extended CDBs (>10 bytes) */ static mega_ext_passthru * mega_prepare_extpassthru(adapter_t *adapter, scb_t *scb, Scsi_Cmnd *cmd, int channel, int target) { mega_ext_passthru *epthru; epthru = scb->epthru; memset(epthru, 0, sizeof(mega_ext_passthru)); /* 0=6sec/1=60sec/2=10min/3=3hrs */ epthru->timeout = 2; epthru->ars = 1; epthru->reqsenselen = 14; epthru->islogical = 0; epthru->channel = (adapter->flag & BOARD_40LD) ? 0 : channel; epthru->target = (adapter->flag & BOARD_40LD) ? (channel << 4) | target : target; epthru->cdblen = cmd->cmd_len; epthru->logdrv = cmd->device->lun; memcpy(epthru->cdb, cmd->cmnd, cmd->cmd_len); /* Not sure about the direction */ scb->dma_direction = PCI_DMA_BIDIRECTIONAL; switch(cmd->cmnd[0]) { case INQUIRY: case READ_CAPACITY: if(!(adapter->flag & (1L << cmd->device->channel))) { printk(KERN_NOTICE "scsi%d: scanning scsi channel %d [P%d] ", adapter->host->host_no, cmd->device->channel, channel); printk("for physical devices.\n"); adapter->flag |= (1L << cmd->device->channel); } /* Fall through */ default: epthru->numsgelements = mega_build_sglist(adapter, scb, &epthru->dataxferaddr, &epthru->dataxferlen); break; } return epthru; } static void __mega_runpendq(adapter_t *adapter) { scb_t *scb; struct list_head *pos, *next; /* Issue any pending commands to the card */ list_for_each_safe(pos, next, &adapter->pending_list) { scb = list_entry(pos, scb_t, list); if( !(scb->state & SCB_ISSUED) ) { if( issue_scb(adapter, scb) != 0 ) return; } } return; } /** * issue_scb() * @adapter - pointer to our soft state * @scb - scsi control block * * Post a command to the card if the mailbox is available, otherwise return * busy. We also take the scb from the pending list if the mailbox is * available. */ static int issue_scb(adapter_t *adapter, scb_t *scb) { volatile mbox64_t *mbox64 = adapter->mbox64; volatile mbox_t *mbox = adapter->mbox; unsigned int i = 0; if(unlikely(mbox->m_in.busy)) { do { udelay(1); i++; } while( mbox->m_in.busy && (i < max_mbox_busy_wait) ); if(mbox->m_in.busy) return -1; } /* Copy mailbox data into host structure */ memcpy((char *)&mbox->m_out, (char *)scb->raw_mbox, sizeof(struct mbox_out)); mbox->m_out.cmdid = scb->idx; /* Set cmdid */ mbox->m_in.busy = 1; /* Set busy */ /* * Increment the pending queue counter */ atomic_inc(&adapter->pend_cmds); switch (mbox->m_out.cmd) { case MEGA_MBOXCMD_LREAD64: case MEGA_MBOXCMD_LWRITE64: case MEGA_MBOXCMD_PASSTHRU64: case MEGA_MBOXCMD_EXTPTHRU: mbox64->xfer_segment_lo = mbox->m_out.xferaddr; mbox64->xfer_segment_hi = 0; mbox->m_out.xferaddr = 0xFFFFFFFF; break; default: mbox64->xfer_segment_lo = 0; mbox64->xfer_segment_hi = 0; } /* * post the command */ scb->state |= SCB_ISSUED; if( likely(adapter->flag & BOARD_MEMMAP) ) { mbox->m_in.poll = 0; mbox->m_in.ack = 0; WRINDOOR(adapter, adapter->mbox_dma | 0x1); } else { irq_enable(adapter); issue_command(adapter); } return 0; } /* * Wait until the controller's mailbox is available */ static inline int mega_busywait_mbox (adapter_t *adapter) { if (adapter->mbox->m_in.busy) return __mega_busywait_mbox(adapter); return 0; } /** * issue_scb_block() * @adapter - pointer to our soft state * @raw_mbox - the mailbox * * Issue a scb in synchronous and non-interrupt mode */ static int issue_scb_block(adapter_t *adapter, u_char *raw_mbox) { volatile mbox64_t *mbox64 = adapter->mbox64; volatile mbox_t *mbox = adapter->mbox; u8 byte; /* Wait until mailbox is free */ if(mega_busywait_mbox (adapter)) goto bug_blocked_mailbox; /* Copy mailbox data into host structure */ memcpy((char *) mbox, raw_mbox, sizeof(struct mbox_out)); mbox->m_out.cmdid = 0xFE; mbox->m_in.busy = 1; switch (raw_mbox[0]) { case MEGA_MBOXCMD_LREAD64: case MEGA_MBOXCMD_LWRITE64: case MEGA_MBOXCMD_PASSTHRU64: case MEGA_MBOXCMD_EXTPTHRU: mbox64->xfer_segment_lo = mbox->m_out.xferaddr; mbox64->xfer_segment_hi = 0; mbox->m_out.xferaddr = 0xFFFFFFFF; break; default: mbox64->xfer_segment_lo = 0; mbox64->xfer_segment_hi = 0; } if( likely(adapter->flag & BOARD_MEMMAP) ) { mbox->m_in.poll = 0; mbox->m_in.ack = 0; mbox->m_in.numstatus = 0xFF; mbox->m_in.status = 0xFF; WRINDOOR(adapter, adapter->mbox_dma | 0x1); while((volatile u8)mbox->m_in.numstatus == 0xFF) cpu_relax(); mbox->m_in.numstatus = 0xFF; while( (volatile u8)mbox->m_in.poll != 0x77 ) cpu_relax(); mbox->m_in.poll = 0; mbox->m_in.ack = 0x77; WRINDOOR(adapter, adapter->mbox_dma | 0x2); while(RDINDOOR(adapter) & 0x2) cpu_relax(); } else { irq_disable(adapter); issue_command(adapter); while (!((byte = irq_state(adapter)) & INTR_VALID)) cpu_relax(); set_irq_state(adapter, byte); irq_enable(adapter); irq_ack(adapter); } return mbox->m_in.status; bug_blocked_mailbox: printk(KERN_WARNING "megaraid: Blocked mailbox......!!\n"); udelay (1000); return -1; } /** * megaraid_isr_iomapped() * @irq - irq * @devp - pointer to our soft state * * Interrupt service routine for io-mapped controllers. * Find out if our device is interrupting. If yes, acknowledge the interrupt * and service the completed commands. */ static irqreturn_t megaraid_isr_iomapped(int irq, void *devp) { adapter_t *adapter = devp; unsigned long flags; u8 status; u8 nstatus; u8 completed[MAX_FIRMWARE_STATUS]; u8 byte; int handled = 0; /* * loop till F/W has more commands for us to complete. */ spin_lock_irqsave(&adapter->lock, flags); do { /* Check if a valid interrupt is pending */ byte = irq_state(adapter); if( (byte & VALID_INTR_BYTE) == 0 ) { /* * No more pending commands */ goto out_unlock; } set_irq_state(adapter, byte); while((nstatus = (volatile u8)adapter->mbox->m_in.numstatus) == 0xFF) cpu_relax(); adapter->mbox->m_in.numstatus = 0xFF; status = adapter->mbox->m_in.status; /* * decrement the pending queue counter */ atomic_sub(nstatus, &adapter->pend_cmds); memcpy(completed, (void *)adapter->mbox->m_in.completed, nstatus); /* Acknowledge interrupt */ irq_ack(adapter); mega_cmd_done(adapter, completed, nstatus, status); mega_rundoneq(adapter); handled = 1; /* Loop through any pending requests */ if(atomic_read(&adapter->quiescent) == 0) { mega_runpendq(adapter); } } while(1); out_unlock: spin_unlock_irqrestore(&adapter->lock, flags); return IRQ_RETVAL(handled); } /** * megaraid_isr_memmapped() * @irq - irq * @devp - pointer to our soft state * * Interrupt service routine for memory-mapped controllers. * Find out if our device is interrupting. If yes, acknowledge the interrupt * and service the completed commands. */ static irqreturn_t megaraid_isr_memmapped(int irq, void *devp) { adapter_t *adapter = devp; unsigned long flags; u8 status; u32 dword = 0; u8 nstatus; u8 completed[MAX_FIRMWARE_STATUS]; int handled = 0; /* * loop till F/W has more commands for us to complete. */ spin_lock_irqsave(&adapter->lock, flags); do { /* Check if a valid interrupt is pending */ dword = RDOUTDOOR(adapter); if(dword != 0x10001234) { /* * No more pending commands */ goto out_unlock; } WROUTDOOR(adapter, 0x10001234); while((nstatus = (volatile u8)adapter->mbox->m_in.numstatus) == 0xFF) { cpu_relax(); } adapter->mbox->m_in.numstatus = 0xFF; status = adapter->mbox->m_in.status; /* * decrement the pending queue counter */ atomic_sub(nstatus, &adapter->pend_cmds); memcpy(completed, (void *)adapter->mbox->m_in.completed, nstatus); /* Acknowledge interrupt */ WRINDOOR(adapter, 0x2); handled = 1; while( RDINDOOR(adapter) & 0x02 ) cpu_relax(); mega_cmd_done(adapter, completed, nstatus, status); mega_rundoneq(adapter); /* Loop through any pending requests */ if(atomic_read(&adapter->quiescent) == 0) { mega_runpendq(adapter); } } while(1); out_unlock: spin_unlock_irqrestore(&adapter->lock, flags); return IRQ_RETVAL(handled); } /** * mega_cmd_done() * @adapter - pointer to our soft state * @completed - array of ids of completed commands * @nstatus - number of completed commands * @status - status of the last command completed * * Complete the commands and call the scsi mid-layer callback hooks. */ static void mega_cmd_done(adapter_t *adapter, u8 completed[], int nstatus, int status) { mega_ext_passthru *epthru = NULL; struct scatterlist *sgl; Scsi_Cmnd *cmd = NULL; mega_passthru *pthru = NULL; mbox_t *mbox = NULL; u8 c; scb_t *scb; int islogical; int cmdid; int i; /* * for all the commands completed, call the mid-layer callback routine * and free the scb. */ for( i = 0; i < nstatus; i++ ) { cmdid = completed[i]; if( cmdid == CMDID_INT_CMDS ) { /* internal command */ scb = &adapter->int_scb; cmd = scb->cmd; mbox = (mbox_t *)scb->raw_mbox; /* * Internal command interface do not fire the extended * passthru or 64-bit passthru */ pthru = scb->pthru; } else { scb = &adapter->scb_list[cmdid]; /* * Make sure f/w has completed a valid command */ if( !(scb->state & SCB_ISSUED) || scb->cmd == NULL ) { printk(KERN_CRIT "megaraid: invalid command "); printk("Id %d, scb->state:%x, scsi cmd:%p\n", cmdid, scb->state, scb->cmd); continue; } /* * Was a abort issued for this command */ if( scb->state & SCB_ABORT ) { printk(KERN_WARNING "megaraid: aborted cmd [%x] complete.\n", scb->idx); scb->cmd->result = (DID_ABORT << 16); list_add_tail(SCSI_LIST(scb->cmd), &adapter->completed_list); mega_free_scb(adapter, scb); continue; } /* * Was a reset issued for this command */ if( scb->state & SCB_RESET ) { printk(KERN_WARNING "megaraid: reset cmd [%x] complete.\n", scb->idx); scb->cmd->result = (DID_RESET << 16); list_add_tail(SCSI_LIST(scb->cmd), &adapter->completed_list); mega_free_scb (adapter, scb); continue; } cmd = scb->cmd; pthru = scb->pthru; epthru = scb->epthru; mbox = (mbox_t *)scb->raw_mbox; #if MEGA_HAVE_STATS { int logdrv = mbox->m_out.logdrv; islogical = adapter->logdrv_chan[cmd->channel]; /* * Maintain an error counter for the logical drive. * Some application like SNMP agent need such * statistics */ if( status && islogical && (cmd->cmnd[0] == READ_6 || cmd->cmnd[0] == READ_10 || cmd->cmnd[0] == READ_12)) { /* * Logical drive number increases by 0x80 when * a logical drive is deleted */ adapter->rd_errors[logdrv%0x80]++; } if( status && islogical && (cmd->cmnd[0] == WRITE_6 || cmd->cmnd[0] == WRITE_10 || cmd->cmnd[0] == WRITE_12)) { /* * Logical drive number increases by 0x80 when * a logical drive is deleted */ adapter->wr_errors[logdrv%0x80]++; } } #endif } /* * Do not return the presence of hard disk on the channel so, * inquiry sent, and returned data==hard disk or removable * hard disk and not logical, request should return failure! - * PJ */ islogical = adapter->logdrv_chan[cmd->device->channel]; if( cmd->cmnd[0] == INQUIRY && !islogical ) { sgl = scsi_sglist(cmd); if( sg_page(sgl) ) { c = *(unsigned char *) sg_virt(&sgl[0]); } else { printk(KERN_WARNING "megaraid: invalid sg.\n"); c = 0; } if(IS_RAID_CH(adapter, cmd->device->channel) && ((c & 0x1F ) == TYPE_DISK)) { status = 0xF0; } } /* clear result; otherwise, success returns corrupt value */ cmd->result = 0; /* Convert MegaRAID status to Linux error code */ switch (status) { case 0x00: /* SUCCESS , i.e. SCSI_STATUS_GOOD */ cmd->result |= (DID_OK << 16); break; case 0x02: /* ERROR_ABORTED, i.e. SCSI_STATUS_CHECK_CONDITION */ /* set sense_buffer and result fields */ if( mbox->m_out.cmd == MEGA_MBOXCMD_PASSTHRU || mbox->m_out.cmd == MEGA_MBOXCMD_PASSTHRU64 ) { memcpy(cmd->sense_buffer, pthru->reqsensearea, 14); cmd->result = (DRIVER_SENSE << 24) | (DID_OK << 16) | (CHECK_CONDITION << 1); } else { if (mbox->m_out.cmd == MEGA_MBOXCMD_EXTPTHRU) { memcpy(cmd->sense_buffer, epthru->reqsensearea, 14); cmd->result = (DRIVER_SENSE << 24) | (DID_OK << 16) | (CHECK_CONDITION << 1); } else { cmd->sense_buffer[0] = 0x70; cmd->sense_buffer[2] = ABORTED_COMMAND; cmd->result |= (CHECK_CONDITION << 1); } } break; case 0x08: /* ERR_DEST_DRIVE_FAILED, i.e. SCSI_STATUS_BUSY */ cmd->result |= (DID_BUS_BUSY << 16) | status; break; default: #if MEGA_HAVE_CLUSTERING /* * If TEST_UNIT_READY fails, we know * MEGA_RESERVATION_STATUS failed */ if( cmd->cmnd[0] == TEST_UNIT_READY ) { cmd->result |= (DID_ERROR << 16) | (RESERVATION_CONFLICT << 1); } else /* * Error code returned is 1 if Reserve or Release * failed or the input parameter is invalid */ if( status == 1 && (cmd->cmnd[0] == RESERVE || cmd->cmnd[0] == RELEASE) ) { cmd->result |= (DID_ERROR << 16) | (RESERVATION_CONFLICT << 1); } else #endif cmd->result |= (DID_BAD_TARGET << 16)|status; } /* * Only free SCBs for the commands coming down from the * mid-layer, not for which were issued internally * * For internal command, restore the status returned by the * firmware so that user can interpret it. */ if( cmdid == CMDID_INT_CMDS ) { /* internal command */ cmd->result = status; /* * Remove the internal command from the pending list */ list_del_init(&scb->list); scb->state = SCB_FREE; } else { mega_free_scb(adapter, scb); } /* Add Scsi_Command to end of completed queue */ list_add_tail(SCSI_LIST(cmd), &adapter->completed_list); } } /* * mega_runpendq() * * Run through the list of completed requests and finish it */ static void mega_rundoneq (adapter_t *adapter) { Scsi_Cmnd *cmd; struct list_head *pos; list_for_each(pos, &adapter->completed_list) { struct scsi_pointer* spos = (struct scsi_pointer *)pos; cmd = list_entry(spos, Scsi_Cmnd, SCp); cmd->scsi_done(cmd); } INIT_LIST_HEAD(&adapter->completed_list); } /* * Free a SCB structure * Note: We assume the scsi commands associated with this scb is not free yet. */ static void mega_free_scb(adapter_t *adapter, scb_t *scb) { switch( scb->dma_type ) { case MEGA_DMA_TYPE_NONE: break; case MEGA_SGLIST: scsi_dma_unmap(scb->cmd); break; default: break; } /* * Remove from the pending list */ list_del_init(&scb->list); /* Link the scb back into free list */ scb->state = SCB_FREE; scb->cmd = NULL; list_add(&scb->list, &adapter->free_list); } static int __mega_busywait_mbox (adapter_t *adapter) { volatile mbox_t *mbox = adapter->mbox; long counter; for (counter = 0; counter < 10000; counter++) { if (!mbox->m_in.busy) return 0; udelay(100); cond_resched(); } return -1; /* give up after 1 second */ } /* * Copies data to SGLIST * Note: For 64 bit cards, we need a minimum of one SG element for read/write */ static int mega_build_sglist(adapter_t *adapter, scb_t *scb, u32 *buf, u32 *len) { struct scatterlist *sg; Scsi_Cmnd *cmd; int sgcnt; int idx; cmd = scb->cmd; /* * Copy Scatter-Gather list info into controller structure. * * The number of sg elements returned must not exceed our limit */ sgcnt = scsi_dma_map(cmd); scb->dma_type = MEGA_SGLIST; BUG_ON(sgcnt > adapter->sglen || sgcnt < 0); *len = 0; if (scsi_sg_count(cmd) == 1 && !adapter->has_64bit_addr) { sg = scsi_sglist(cmd); scb->dma_h_bulkdata = sg_dma_address(sg); *buf = (u32)scb->dma_h_bulkdata; *len = sg_dma_len(sg); return 0; } scsi_for_each_sg(cmd, sg, sgcnt, idx) { if (adapter->has_64bit_addr) { scb->sgl64[idx].address = sg_dma_address(sg); *len += scb->sgl64[idx].length = sg_dma_len(sg); } else { scb->sgl[idx].address = sg_dma_address(sg); *len += scb->sgl[idx].length = sg_dma_len(sg); } } /* Reset pointer and length fields */ *buf = scb->sgl_dma_addr; /* Return count of SG requests */ return sgcnt; } /* * mega_8_to_40ld() * * takes all info in AdapterInquiry structure and puts it into ProductInfo and * Enquiry3 structures for later use */ static void mega_8_to_40ld(mraid_inquiry *inquiry, mega_inquiry3 *enquiry3, mega_product_info *product_info) { int i; product_info->max_commands = inquiry->adapter_info.max_commands; enquiry3->rebuild_rate = inquiry->adapter_info.rebuild_rate; product_info->nchannels = inquiry->adapter_info.nchannels; for (i = 0; i < 4; i++) { product_info->fw_version[i] = inquiry->adapter_info.fw_version[i]; product_info->bios_version[i] = inquiry->adapter_info.bios_version[i]; } enquiry3->cache_flush_interval = inquiry->adapter_info.cache_flush_interval; product_info->dram_size = inquiry->adapter_info.dram_size; enquiry3->num_ldrv = inquiry->logdrv_info.num_ldrv; for (i = 0; i < MAX_LOGICAL_DRIVES_8LD; i++) { enquiry3->ldrv_size[i] = inquiry->logdrv_info.ldrv_size[i]; enquiry3->ldrv_prop[i] = inquiry->logdrv_info.ldrv_prop[i]; enquiry3->ldrv_state[i] = inquiry->logdrv_info.ldrv_state[i]; } for (i = 0; i < (MAX_PHYSICAL_DRIVES); i++) enquiry3->pdrv_state[i] = inquiry->pdrv_info.pdrv_state[i]; } static inline void mega_free_sgl(adapter_t *adapter) { scb_t *scb; int i; for(i = 0; i < adapter->max_cmds; i++) { scb = &adapter->scb_list[i]; if( scb->sgl64 ) { pci_free_consistent(adapter->dev, sizeof(mega_sgl64) * adapter->sglen, scb->sgl64, scb->sgl_dma_addr); scb->sgl64 = NULL; } if( scb->pthru ) { pci_free_consistent(adapter->dev, sizeof(mega_passthru), scb->pthru, scb->pthru_dma_addr); scb->pthru = NULL; } if( scb->epthru ) { pci_free_consistent(adapter->dev, sizeof(mega_ext_passthru), scb->epthru, scb->epthru_dma_addr); scb->epthru = NULL; } } } /* * Get information about the card/driver */ const char * megaraid_info(struct Scsi_Host *host) { static char buffer[512]; adapter_t *adapter; adapter = (adapter_t *)host->hostdata; sprintf (buffer, "LSI Logic MegaRAID %s %d commands %d targs %d chans %d luns", adapter->fw_version, adapter->product_info.max_commands, adapter->host->max_id, adapter->host->max_channel, adapter->host->max_lun); return buffer; } /* * Abort a previous SCSI request. Only commands on the pending list can be * aborted. All the commands issued to the F/W must complete. */ static int megaraid_abort(Scsi_Cmnd *cmd) { adapter_t *adapter; int rval; adapter = (adapter_t *)cmd->device->host->hostdata; rval = megaraid_abort_and_reset(adapter, cmd, SCB_ABORT); /* * This is required here to complete any completed requests * to be communicated over to the mid layer. */ mega_rundoneq(adapter); return rval; } static int megaraid_reset(struct scsi_cmnd *cmd) { adapter_t *adapter; megacmd_t mc; int rval; adapter = (adapter_t *)cmd->device->host->hostdata; #if MEGA_HAVE_CLUSTERING mc.cmd = MEGA_CLUSTER_CMD; mc.opcode = MEGA_RESET_RESERVATIONS; if( mega_internal_command(adapter, &mc, NULL) != 0 ) { printk(KERN_WARNING "megaraid: reservation reset failed.\n"); } else { printk(KERN_INFO "megaraid: reservation reset.\n"); } #endif spin_lock_irq(&adapter->lock); rval = megaraid_abort_and_reset(adapter, cmd, SCB_RESET); /* * This is required here to complete any completed requests * to be communicated over to the mid layer. */ mega_rundoneq(adapter); spin_unlock_irq(&adapter->lock); return rval; } /** * megaraid_abort_and_reset() * @adapter - megaraid soft state * @cmd - scsi command to be aborted or reset * @aor - abort or reset flag * * Try to locate the scsi command in the pending queue. If found and is not * issued to the controller, abort/reset it. Otherwise return failure */ static int megaraid_abort_and_reset(adapter_t *adapter, Scsi_Cmnd *cmd, int aor) { struct list_head *pos, *next; scb_t *scb; printk(KERN_WARNING "megaraid: %s cmd=%x <c=%d t=%d l=%d>\n", (aor == SCB_ABORT)? "ABORTING":"RESET", cmd->cmnd[0], cmd->device->channel, cmd->device->id, cmd->device->lun); if(list_empty(&adapter->pending_list)) return FALSE; list_for_each_safe(pos, next, &adapter->pending_list) { scb = list_entry(pos, scb_t, list); if (scb->cmd == cmd) { /* Found command */ scb->state |= aor; /* * Check if this command has firmware ownership. If * yes, we cannot reset this command. Whenever f/w * completes this command, we will return appropriate * status from ISR. */ if( scb->state & SCB_ISSUED ) { printk(KERN_WARNING "megaraid: %s[%x], fw owner.\n", (aor==SCB_ABORT) ? "ABORTING":"RESET", scb->idx); return FALSE; } else { /* * Not yet issued! Remove from the pending * list */ printk(KERN_WARNING "megaraid: %s-[%x], driver owner.\n", (aor==SCB_ABORT) ? "ABORTING":"RESET", scb->idx); mega_free_scb(adapter, scb); if( aor == SCB_ABORT ) { cmd->result = (DID_ABORT << 16); } else { cmd->result = (DID_RESET << 16); } list_add_tail(SCSI_LIST(cmd), &adapter->completed_list); return TRUE; } } } return FALSE; } static inline int make_local_pdev(adapter_t *adapter, struct pci_dev **pdev) { *pdev = alloc_pci_dev(); if( *pdev == NULL ) return -1; memcpy(*pdev, adapter->dev, sizeof(struct pci_dev)); if( pci_set_dma_mask(*pdev, DMA_BIT_MASK(32)) != 0 ) { kfree(*pdev); return -1; } return 0; } static inline void free_local_pdev(struct pci_dev *pdev) { kfree(pdev); } /** * mega_allocate_inquiry() * @dma_handle - handle returned for dma address * @pdev - handle to pci device * * allocates memory for inquiry structure */ static inline void * mega_allocate_inquiry(dma_addr_t *dma_handle, struct pci_dev *pdev) { return pci_alloc_consistent(pdev, sizeof(mega_inquiry3), dma_handle); } static inline void mega_free_inquiry(void *inquiry, dma_addr_t dma_handle, struct pci_dev *pdev) { pci_free_consistent(pdev, sizeof(mega_inquiry3), inquiry, dma_handle); } #ifdef CONFIG_PROC_FS /* Following code handles /proc fs */ #define CREATE_READ_PROC(string, func) create_proc_read_entry(string, \ S_IRUSR | S_IFREG, \ controller_proc_dir_entry, \ func, adapter) /** * mega_create_proc_entry() * @index - index in soft state array * @parent - parent node for this /proc entry * * Creates /proc entries for our controllers. */ static void mega_create_proc_entry(int index, struct proc_dir_entry *parent) { struct proc_dir_entry *controller_proc_dir_entry = NULL; u8 string[64] = { 0 }; adapter_t *adapter = hba_soft_state[index]; sprintf(string, "hba%d", adapter->host->host_no); controller_proc_dir_entry = adapter->controller_proc_dir_entry = proc_mkdir(string, parent); if(!controller_proc_dir_entry) { printk(KERN_WARNING "\nmegaraid: proc_mkdir failed\n"); return; } adapter->proc_read = CREATE_READ_PROC("config", proc_read_config); adapter->proc_stat = CREATE_READ_PROC("stat", proc_read_stat); adapter->proc_mbox = CREATE_READ_PROC("mailbox", proc_read_mbox); #if MEGA_HAVE_ENH_PROC adapter->proc_rr = CREATE_READ_PROC("rebuild-rate", proc_rebuild_rate); adapter->proc_battery = CREATE_READ_PROC("battery-status", proc_battery); /* * Display each physical drive on its channel */ adapter->proc_pdrvstat[0] = CREATE_READ_PROC("diskdrives-ch0", proc_pdrv_ch0); adapter->proc_pdrvstat[1] = CREATE_READ_PROC("diskdrives-ch1", proc_pdrv_ch1); adapter->proc_pdrvstat[2] = CREATE_READ_PROC("diskdrives-ch2", proc_pdrv_ch2); adapter->proc_pdrvstat[3] = CREATE_READ_PROC("diskdrives-ch3", proc_pdrv_ch3); /* * Display a set of up to 10 logical drive through each of following * /proc entries */ adapter->proc_rdrvstat[0] = CREATE_READ_PROC("raiddrives-0-9", proc_rdrv_10); adapter->proc_rdrvstat[1] = CREATE_READ_PROC("raiddrives-10-19", proc_rdrv_20); adapter->proc_rdrvstat[2] = CREATE_READ_PROC("raiddrives-20-29", proc_rdrv_30); adapter->proc_rdrvstat[3] = CREATE_READ_PROC("raiddrives-30-39", proc_rdrv_40); #endif } /** * proc_read_config() * @page - buffer to write the data in * @start - where the actual data has been written in page * @offset - same meaning as the read system call * @count - same meaning as the read system call * @eof - set if no more data needs to be returned * @data - pointer to our soft state * * Display configuration information about the controller. */ static int proc_read_config(char *page, char **start, off_t offset, int count, int *eof, void *data) { adapter_t *adapter = (adapter_t *)data; int len = 0; len += sprintf(page+len, "%s", MEGARAID_VERSION); if(adapter->product_info.product_name[0]) len += sprintf(page+len, "%s\n", adapter->product_info.product_name); len += sprintf(page+len, "Controller Type: "); if( adapter->flag & BOARD_MEMMAP ) { len += sprintf(page+len, "438/466/467/471/493/518/520/531/532\n"); } else { len += sprintf(page+len, "418/428/434\n"); } if(adapter->flag & BOARD_40LD) { len += sprintf(page+len, "Controller Supports 40 Logical Drives\n"); } if(adapter->flag & BOARD_64BIT) { len += sprintf(page+len, "Controller capable of 64-bit memory addressing\n"); } if( adapter->has_64bit_addr ) { len += sprintf(page+len, "Controller using 64-bit memory addressing\n"); } else { len += sprintf(page+len, "Controller is not using 64-bit memory addressing\n"); } len += sprintf(page+len, "Base = %08lx, Irq = %d, ", adapter->base, adapter->host->irq); len += sprintf(page+len, "Logical Drives = %d, Channels = %d\n", adapter->numldrv, adapter->product_info.nchannels); len += sprintf(page+len, "Version =%s:%s, DRAM = %dMb\n", adapter->fw_version, adapter->bios_version, adapter->product_info.dram_size); len += sprintf(page+len, "Controller Queue Depth = %d, Driver Queue Depth = %d\n", adapter->product_info.max_commands, adapter->max_cmds); len += sprintf(page+len, "support_ext_cdb = %d\n", adapter->support_ext_cdb); len += sprintf(page+len, "support_random_del = %d\n", adapter->support_random_del); len += sprintf(page+len, "boot_ldrv_enabled = %d\n", adapter->boot_ldrv_enabled); len += sprintf(page+len, "boot_ldrv = %d\n", adapter->boot_ldrv); len += sprintf(page+len, "boot_pdrv_enabled = %d\n", adapter->boot_pdrv_enabled); len += sprintf(page+len, "boot_pdrv_ch = %d\n", adapter->boot_pdrv_ch); len += sprintf(page+len, "boot_pdrv_tgt = %d\n", adapter->boot_pdrv_tgt); len += sprintf(page+len, "quiescent = %d\n", atomic_read(&adapter->quiescent)); len += sprintf(page+len, "has_cluster = %d\n", adapter->has_cluster); len += sprintf(page+len, "\nModule Parameters:\n"); len += sprintf(page+len, "max_cmd_per_lun = %d\n", max_cmd_per_lun); len += sprintf(page+len, "max_sectors_per_io = %d\n", max_sectors_per_io); *eof = 1; return len; } /** * proc_read_stat() * @page - buffer to write the data in * @start - where the actual data has been written in page * @offset - same meaning as the read system call * @count - same meaning as the read system call * @eof - set if no more data needs to be returned * @data - pointer to our soft state * * Diaplay statistical information about the I/O activity. */ static int proc_read_stat(char *page, char **start, off_t offset, int count, int *eof, void *data) { adapter_t *adapter; int len; int i; i = 0; /* avoid compilation warnings */ len = 0; adapter = (adapter_t *)data; len = sprintf(page, "Statistical Information for this controller\n"); len += sprintf(page+len, "pend_cmds = %d\n", atomic_read(&adapter->pend_cmds)); #if MEGA_HAVE_STATS for(i = 0; i < adapter->numldrv; i++) { len += sprintf(page+len, "Logical Drive %d:\n", i); len += sprintf(page+len, "\tReads Issued = %lu, Writes Issued = %lu\n", adapter->nreads[i], adapter->nwrites[i]); len += sprintf(page+len, "\tSectors Read = %lu, Sectors Written = %lu\n", adapter->nreadblocks[i], adapter->nwriteblocks[i]); len += sprintf(page+len, "\tRead errors = %lu, Write errors = %lu\n\n", adapter->rd_errors[i], adapter->wr_errors[i]); } #else len += sprintf(page+len, "IO and error counters not compiled in driver.\n"); #endif *eof = 1; return len; } /** * proc_read_mbox() * @page - buffer to write the data in * @start - where the actual data has been written in page * @offset - same meaning as the read system call * @count - same meaning as the read system call * @eof - set if no more data needs to be returned * @data - pointer to our soft state * * Display mailbox information for the last command issued. This information * is good for debugging. */ static int proc_read_mbox(char *page, char **start, off_t offset, int count, int *eof, void *data) { adapter_t *adapter = (adapter_t *)data; volatile mbox_t *mbox = adapter->mbox; int len = 0; len = sprintf(page, "Contents of Mail Box Structure\n"); len += sprintf(page+len, " Fw Command = 0x%02x\n", mbox->m_out.cmd); len += sprintf(page+len, " Cmd Sequence = 0x%02x\n", mbox->m_out.cmdid); len += sprintf(page+len, " No of Sectors= %04d\n", mbox->m_out.numsectors); len += sprintf(page+len, " LBA = 0x%02x\n", mbox->m_out.lba); len += sprintf(page+len, " DTA = 0x%08x\n", mbox->m_out.xferaddr); len += sprintf(page+len, " Logical Drive= 0x%02x\n", mbox->m_out.logdrv); len += sprintf(page+len, " No of SG Elmt= 0x%02x\n", mbox->m_out.numsgelements); len += sprintf(page+len, " Busy = %01x\n", mbox->m_in.busy); len += sprintf(page+len, " Status = 0x%02x\n", mbox->m_in.status); *eof = 1; return len; } /** * proc_rebuild_rate() * @page - buffer to write the data in * @start - where the actual data has been written in page * @offset - same meaning as the read system call * @count - same meaning as the read system call * @eof - set if no more data needs to be returned * @data - pointer to our soft state * * Display current rebuild rate */ static int proc_rebuild_rate(char *page, char **start, off_t offset, int count, int *eof, void *data) { adapter_t *adapter = (adapter_t *)data; dma_addr_t dma_handle; caddr_t inquiry; struct pci_dev *pdev; int len = 0; if( make_local_pdev(adapter, &pdev) != 0 ) { *eof = 1; return len; } if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) { free_local_pdev(pdev); *eof = 1; return len; } if( mega_adapinq(adapter, dma_handle) != 0 ) { len = sprintf(page, "Adapter inquiry failed.\n"); printk(KERN_WARNING "megaraid: inquiry failed.\n"); mega_free_inquiry(inquiry, dma_handle, pdev); free_local_pdev(pdev); *eof = 1; return len; } if( adapter->flag & BOARD_40LD ) { len = sprintf(page, "Rebuild Rate: [%d%%]\n", ((mega_inquiry3 *)inquiry)->rebuild_rate); } else { len = sprintf(page, "Rebuild Rate: [%d%%]\n", ((mraid_ext_inquiry *) inquiry)->raid_inq.adapter_info.rebuild_rate); } mega_free_inquiry(inquiry, dma_handle, pdev); free_local_pdev(pdev); *eof = 1; return len; } /** * proc_battery() * @page - buffer to write the data in * @start - where the actual data has been written in page * @offset - same meaning as the read system call * @count - same meaning as the read system call * @eof - set if no more data needs to be returned * @data - pointer to our soft state * * Display information about the battery module on the controller. */ static int proc_battery(char *page, char **start, off_t offset, int count, int *eof, void *data) { adapter_t *adapter = (adapter_t *)data; dma_addr_t dma_handle; caddr_t inquiry; struct pci_dev *pdev; u8 battery_status = 0; char str[256]; int len = 0; if( make_local_pdev(adapter, &pdev) != 0 ) { *eof = 1; return len; } if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) { free_local_pdev(pdev); *eof = 1; return len; } if( mega_adapinq(adapter, dma_handle) != 0 ) { len = sprintf(page, "Adapter inquiry failed.\n"); printk(KERN_WARNING "megaraid: inquiry failed.\n"); mega_free_inquiry(inquiry, dma_handle, pdev); free_local_pdev(pdev); *eof = 1; return len; } if( adapter->flag & BOARD_40LD ) { battery_status = ((mega_inquiry3 *)inquiry)->battery_status; } else { battery_status = ((mraid_ext_inquiry *)inquiry)-> raid_inq.adapter_info.battery_status; } /* * Decode the battery status */ sprintf(str, "Battery Status:[%d]", battery_status); if(battery_status == MEGA_BATT_CHARGE_DONE) strcat(str, " Charge Done"); if(battery_status & MEGA_BATT_MODULE_MISSING) strcat(str, " Module Missing"); if(battery_status & MEGA_BATT_LOW_VOLTAGE) strcat(str, " Low Voltage"); if(battery_status & MEGA_BATT_TEMP_HIGH) strcat(str, " Temperature High"); if(battery_status & MEGA_BATT_PACK_MISSING) strcat(str, " Pack Missing"); if(battery_status & MEGA_BATT_CHARGE_INPROG) strcat(str, " Charge In-progress"); if(battery_status & MEGA_BATT_CHARGE_FAIL) strcat(str, " Charge Fail"); if(battery_status & MEGA_BATT_CYCLES_EXCEEDED) strcat(str, " Cycles Exceeded"); len = sprintf(page, "%s\n", str); mega_free_inquiry(inquiry, dma_handle, pdev); free_local_pdev(pdev); *eof = 1; return len; } /** * proc_pdrv_ch0() * @page - buffer to write the data in * @start - where the actual data has been written in page * @offset - same meaning as the read system call * @count - same meaning as the read system call * @eof - set if no more data needs to be returned * @data - pointer to our soft state * * Display information about the physical drives on physical channel 0. */ static int proc_pdrv_ch0(char *page, char **start, off_t offset, int count, int *eof, void *data) { adapter_t *adapter = (adapter_t *)data; *eof = 1; return (proc_pdrv(adapter, page, 0)); } /** * proc_pdrv_ch1() * @page - buffer to write the data in * @start - where the actual data has been written in page * @offset - same meaning as the read system call * @count - same meaning as the read system call * @eof - set if no more data needs to be returned * @data - pointer to our soft state * * Display information about the physical drives on physical channel 1. */ static int proc_pdrv_ch1(char *page, char **start, off_t offset, int count, int *eof, void *data) { adapter_t *adapter = (adapter_t *)data; *eof = 1; return (proc_pdrv(adapter, page, 1)); } /** * proc_pdrv_ch2() * @page - buffer to write the data in * @start - where the actual data has been written in page * @offset - same meaning as the read system call * @count - same meaning as the read system call * @eof - set if no more data needs to be returned * @data - pointer to our soft state * * Display information about the physical drives on physical channel 2. */ static int proc_pdrv_ch2(char *page, char **start, off_t offset, int count, int *eof, void *data) { adapter_t *adapter = (adapter_t *)data; *eof = 1; return (proc_pdrv(adapter, page, 2)); } /** * proc_pdrv_ch3() * @page - buffer to write the data in * @start - where the actual data has been written in page * @offset - same meaning as the read system call * @count - same meaning as the read system call * @eof - set if no more data needs to be returned * @data - pointer to our soft state * * Display information about the physical drives on physical channel 3. */ static int proc_pdrv_ch3(char *page, char **start, off_t offset, int count, int *eof, void *data) { adapter_t *adapter = (adapter_t *)data; *eof = 1; return (proc_pdrv(adapter, page, 3)); } /** * proc_pdrv() * @page - buffer to write the data in * @adapter - pointer to our soft state * * Display information about the physical drives. */ static int proc_pdrv(adapter_t *adapter, char *page, int channel) { dma_addr_t dma_handle; char *scsi_inq; dma_addr_t scsi_inq_dma_handle; caddr_t inquiry; struct pci_dev *pdev; u8 *pdrv_state; u8 state; int tgt; int max_channels; int len = 0; char str[80]; int i; if( make_local_pdev(adapter, &pdev) != 0 ) { return len; } if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) { goto free_pdev; } if( mega_adapinq(adapter, dma_handle) != 0 ) { len = sprintf(page, "Adapter inquiry failed.\n"); printk(KERN_WARNING "megaraid: inquiry failed.\n"); goto free_inquiry; } scsi_inq = pci_alloc_consistent(pdev, 256, &scsi_inq_dma_handle); if( scsi_inq == NULL ) { len = sprintf(page, "memory not available for scsi inq.\n"); goto free_inquiry; } if( adapter->flag & BOARD_40LD ) { pdrv_state = ((mega_inquiry3 *)inquiry)->pdrv_state; } else { pdrv_state = ((mraid_ext_inquiry *)inquiry)-> raid_inq.pdrv_info.pdrv_state; } max_channels = adapter->product_info.nchannels; if( channel >= max_channels ) { goto free_pci; } for( tgt = 0; tgt <= MAX_TARGET; tgt++ ) { i = channel*16 + tgt; state = *(pdrv_state + i); switch( state & 0x0F ) { case PDRV_ONLINE: sprintf(str, "Channel:%2d Id:%2d State: Online", channel, tgt); break; case PDRV_FAILED: sprintf(str, "Channel:%2d Id:%2d State: Failed", channel, tgt); break; case PDRV_RBLD: sprintf(str, "Channel:%2d Id:%2d State: Rebuild", channel, tgt); break; case PDRV_HOTSPARE: sprintf(str, "Channel:%2d Id:%2d State: Hot spare", channel, tgt); break; default: sprintf(str, "Channel:%2d Id:%2d State: Un-configured", channel, tgt); break; } /* * This interface displays inquiries for disk drives * only. Inquries for logical drives and non-disk * devices are available through /proc/scsi/scsi */ memset(scsi_inq, 0, 256); if( mega_internal_dev_inquiry(adapter, channel, tgt, scsi_inq_dma_handle) || (scsi_inq[0] & 0x1F) != TYPE_DISK ) { continue; } /* * Check for overflow. We print less than 240 * characters for inquiry */ if( (len + 240) >= PAGE_SIZE ) break; len += sprintf(page+len, "%s.\n", str); len += mega_print_inquiry(page+len, scsi_inq); } free_pci: pci_free_consistent(pdev, 256, scsi_inq, scsi_inq_dma_handle); free_inquiry: mega_free_inquiry(inquiry, dma_handle, pdev); free_pdev: free_local_pdev(pdev); return len; } /* * Display scsi inquiry */ static int mega_print_inquiry(char *page, char *scsi_inq) { int len = 0; int i; len = sprintf(page, " Vendor: "); for( i = 8; i < 16; i++ ) { len += sprintf(page+len, "%c", scsi_inq[i]); } len += sprintf(page+len, " Model: "); for( i = 16; i < 32; i++ ) { len += sprintf(page+len, "%c", scsi_inq[i]); } len += sprintf(page+len, " Rev: "); for( i = 32; i < 36; i++ ) { len += sprintf(page+len, "%c", scsi_inq[i]); } len += sprintf(page+len, "\n"); i = scsi_inq[0] & 0x1f; len += sprintf(page+len, " Type: %s ", scsi_device_type(i)); len += sprintf(page+len, " ANSI SCSI revision: %02x", scsi_inq[2] & 0x07); if( (scsi_inq[2] & 0x07) == 1 && (scsi_inq[3] & 0x0f) == 1 ) len += sprintf(page+len, " CCS\n"); else len += sprintf(page+len, "\n"); return len; } /** * proc_rdrv_10() * @page - buffer to write the data in * @start - where the actual data has been written in page * @offset - same meaning as the read system call * @count - same meaning as the read system call * @eof - set if no more data needs to be returned * @data - pointer to our soft state * * Display real time information about the logical drives 0 through 9. */ static int proc_rdrv_10(char *page, char **start, off_t offset, int count, int *eof, void *data) { adapter_t *adapter = (adapter_t *)data; *eof = 1; return (proc_rdrv(adapter, page, 0, 9)); } /** * proc_rdrv_20() * @page - buffer to write the data in * @start - where the actual data has been written in page * @offset - same meaning as the read system call * @count - same meaning as the read system call * @eof - set if no more data needs to be returned * @data - pointer to our soft state * * Display real time information about the logical drives 0 through 9. */ static int proc_rdrv_20(char *page, char **start, off_t offset, int count, int *eof, void *data) { adapter_t *adapter = (adapter_t *)data; *eof = 1; return (proc_rdrv(adapter, page, 10, 19)); } /** * proc_rdrv_30() * @page - buffer to write the data in * @start - where the actual data has been written in page * @offset - same meaning as the read system call * @count - same meaning as the read system call * @eof - set if no more data needs to be returned * @data - pointer to our soft state * * Display real time information about the logical drives 0 through 9. */ static int proc_rdrv_30(char *page, char **start, off_t offset, int count, int *eof, void *data) { adapter_t *adapter = (adapter_t *)data; *eof = 1; return (proc_rdrv(adapter, page, 20, 29)); } /** * proc_rdrv_40() * @page - buffer to write the data in * @start - where the actual data has been written in page * @offset - same meaning as the read system call * @count - same meaning as the read system call * @eof - set if no more data needs to be returned * @data - pointer to our soft state * * Display real time information about the logical drives 0 through 9. */ static int proc_rdrv_40(char *page, char **start, off_t offset, int count, int *eof, void *data) { adapter_t *adapter = (adapter_t *)data; *eof = 1; return (proc_rdrv(adapter, page, 30, 39)); } /** * proc_rdrv() * @page - buffer to write the data in * @adapter - pointer to our soft state * @start - starting logical drive to display * @end - ending logical drive to display * * We do not print the inquiry information since its already available through * /proc/scsi/scsi interface */ static int proc_rdrv(adapter_t *adapter, char *page, int start, int end ) { dma_addr_t dma_handle; logdrv_param *lparam; megacmd_t mc; char *disk_array; dma_addr_t disk_array_dma_handle; caddr_t inquiry; struct pci_dev *pdev; u8 *rdrv_state; int num_ldrv; u32 array_sz; int len = 0; int i; if( make_local_pdev(adapter, &pdev) != 0 ) { return len; } if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) { free_local_pdev(pdev); return len; } if( mega_adapinq(adapter, dma_handle) != 0 ) { len = sprintf(page, "Adapter inquiry failed.\n"); printk(KERN_WARNING "megaraid: inquiry failed.\n"); mega_free_inquiry(inquiry, dma_handle, pdev); free_local_pdev(pdev); return len; } memset(&mc, 0, sizeof(megacmd_t)); if( adapter->flag & BOARD_40LD ) { array_sz = sizeof(disk_array_40ld); rdrv_state = ((mega_inquiry3 *)inquiry)->ldrv_state; num_ldrv = ((mega_inquiry3 *)inquiry)->num_ldrv; } else { array_sz = sizeof(disk_array_8ld); rdrv_state = ((mraid_ext_inquiry *)inquiry)-> raid_inq.logdrv_info.ldrv_state; num_ldrv = ((mraid_ext_inquiry *)inquiry)-> raid_inq.logdrv_info.num_ldrv; } disk_array = pci_alloc_consistent(pdev, array_sz, &disk_array_dma_handle); if( disk_array == NULL ) { len = sprintf(page, "memory not available.\n"); mega_free_inquiry(inquiry, dma_handle, pdev); free_local_pdev(pdev); return len; } mc.xferaddr = (u32)disk_array_dma_handle; if( adapter->flag & BOARD_40LD ) { mc.cmd = FC_NEW_CONFIG; mc.opcode = OP_DCMD_READ_CONFIG; if( mega_internal_command(adapter, &mc, NULL) ) { len = sprintf(page, "40LD read config failed.\n"); mega_free_inquiry(inquiry, dma_handle, pdev); pci_free_consistent(pdev, array_sz, disk_array, disk_array_dma_handle); free_local_pdev(pdev); return len; } } else { mc.cmd = NEW_READ_CONFIG_8LD; if( mega_internal_command(adapter, &mc, NULL) ) { mc.cmd = READ_CONFIG_8LD; if( mega_internal_command(adapter, &mc, NULL) ){ len = sprintf(page, "8LD read config failed.\n"); mega_free_inquiry(inquiry, dma_handle, pdev); pci_free_consistent(pdev, array_sz, disk_array, disk_array_dma_handle); free_local_pdev(pdev); return len; } } } for( i = start; i < ( (end+1 < num_ldrv) ? end+1 : num_ldrv ); i++ ) { if( adapter->flag & BOARD_40LD ) { lparam = &((disk_array_40ld *)disk_array)->ldrv[i].lparam; } else { lparam = &((disk_array_8ld *)disk_array)->ldrv[i].lparam; } /* * Check for overflow. We print less than 240 characters for * information about each logical drive. */ if( (len + 240) >= PAGE_SIZE ) break; len += sprintf(page+len, "Logical drive:%2d:, ", i); switch( rdrv_state[i] & 0x0F ) { case RDRV_OFFLINE: len += sprintf(page+len, "state: offline"); break; case RDRV_DEGRADED: len += sprintf(page+len, "state: degraded"); break; case RDRV_OPTIMAL: len += sprintf(page+len, "state: optimal"); break; case RDRV_DELETED: len += sprintf(page+len, "state: deleted"); break; default: len += sprintf(page+len, "state: unknown"); break; } /* * Check if check consistency or initialization is going on * for this logical drive. */ if( (rdrv_state[i] & 0xF0) == 0x20 ) { len += sprintf(page+len, ", check-consistency in progress"); } else if( (rdrv_state[i] & 0xF0) == 0x10 ) { len += sprintf(page+len, ", initialization in progress"); } len += sprintf(page+len, "\n"); len += sprintf(page+len, "Span depth:%3d, ", lparam->span_depth); len += sprintf(page+len, "RAID level:%3d, ", lparam->level); len += sprintf(page+len, "Stripe size:%3d, ", lparam->stripe_sz ? lparam->stripe_sz/2: 128); len += sprintf(page+len, "Row size:%3d\n", lparam->row_size); len += sprintf(page+len, "Read Policy: "); switch(lparam->read_ahead) { case NO_READ_AHEAD: len += sprintf(page+len, "No read ahead, "); break; case READ_AHEAD: len += sprintf(page+len, "Read ahead, "); break; case ADAP_READ_AHEAD: len += sprintf(page+len, "Adaptive, "); break; } len += sprintf(page+len, "Write Policy: "); switch(lparam->write_mode) { case WRMODE_WRITE_THRU: len += sprintf(page+len, "Write thru, "); break; case WRMODE_WRITE_BACK: len += sprintf(page+len, "Write back, "); break; } len += sprintf(page+len, "Cache Policy: "); switch(lparam->direct_io) { case CACHED_IO: len += sprintf(page+len, "Cached IO\n\n"); break; case DIRECT_IO: len += sprintf(page+len, "Direct IO\n\n"); break; } } mega_free_inquiry(inquiry, dma_handle, pdev); pci_free_consistent(pdev, array_sz, disk_array, disk_array_dma_handle); free_local_pdev(pdev); return len; } #else static inline void mega_create_proc_entry(int index, struct proc_dir_entry *parent) { } #endif /** * megaraid_biosparam() * * Return the disk geometry for a particular disk */ static int megaraid_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]) { adapter_t *adapter; unsigned char *bh; int heads; int sectors; int cylinders; int rval; /* Get pointer to host config structure */ adapter = (adapter_t *)sdev->host->hostdata; if (IS_RAID_CH(adapter, sdev->channel)) { /* Default heads (64) & sectors (32) */ heads = 64; sectors = 32; cylinders = (ulong)capacity / (heads * sectors); /* * Handle extended translation size for logical drives * > 1Gb */ if ((ulong)capacity >= 0x200000) { heads = 255; sectors = 63; cylinders = (ulong)capacity / (heads * sectors); } /* return result */ geom[0] = heads; geom[1] = sectors; geom[2] = cylinders; } else { bh = scsi_bios_ptable(bdev); if( bh ) { rval = scsi_partsize(bh, capacity, &geom[2], &geom[0], &geom[1]); kfree(bh); if( rval != -1 ) return rval; } printk(KERN_INFO "megaraid: invalid partition on this disk on channel %d\n", sdev->channel); /* Default heads (64) & sectors (32) */ heads = 64; sectors = 32; cylinders = (ulong)capacity / (heads * sectors); /* Handle extended translation size for logical drives > 1Gb */ if ((ulong)capacity >= 0x200000) { heads = 255; sectors = 63; cylinders = (ulong)capacity / (heads * sectors); } /* return result */ geom[0] = heads; geom[1] = sectors; geom[2] = cylinders; } return 0; } /** * mega_init_scb() * @adapter - pointer to our soft state * * Allocate memory for the various pointers in the scb structures: * scatter-gather list pointer, passthru and extended passthru structure * pointers. */ static int mega_init_scb(adapter_t *adapter) { scb_t *scb; int i; for( i = 0; i < adapter->max_cmds; i++ ) { scb = &adapter->scb_list[i]; scb->sgl64 = NULL; scb->sgl = NULL; scb->pthru = NULL; scb->epthru = NULL; } for( i = 0; i < adapter->max_cmds; i++ ) { scb = &adapter->scb_list[i]; scb->idx = i; scb->sgl64 = pci_alloc_consistent(adapter->dev, sizeof(mega_sgl64) * adapter->sglen, &scb->sgl_dma_addr); scb->sgl = (mega_sglist *)scb->sgl64; if( !scb->sgl ) { printk(KERN_WARNING "RAID: Can't allocate sglist.\n"); mega_free_sgl(adapter); return -1; } scb->pthru = pci_alloc_consistent(adapter->dev, sizeof(mega_passthru), &scb->pthru_dma_addr); if( !scb->pthru ) { printk(KERN_WARNING "RAID: Can't allocate passthru.\n"); mega_free_sgl(adapter); return -1; } scb->epthru = pci_alloc_consistent(adapter->dev, sizeof(mega_ext_passthru), &scb->epthru_dma_addr); if( !scb->epthru ) { printk(KERN_WARNING "Can't allocate extended passthru.\n"); mega_free_sgl(adapter); return -1; } scb->dma_type = MEGA_DMA_TYPE_NONE; /* * Link to free list * lock not required since we are loading the driver, so no * commands possible right now. */ scb->state = SCB_FREE; scb->cmd = NULL; list_add(&scb->list, &adapter->free_list); } return 0; } /** * megadev_open() * @inode - unused * @filep - unused * * Routines for the character/ioctl interface to the driver. Find out if this * is a valid open. */ static int megadev_open (struct inode *inode, struct file *filep) { /* * Only allow superuser to access private ioctl interface */ if( !capable(CAP_SYS_ADMIN) ) return -EACCES; return 0; } /** * megadev_ioctl() * @inode - Our device inode * @filep - unused * @cmd - ioctl command * @arg - user buffer * * ioctl entry point for our private ioctl interface. We move the data in from * the user space, prepare the command (if necessary, convert the old MIMD * ioctl to new ioctl command), and issue a synchronous command to the * controller. */ static int megadev_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) { adapter_t *adapter; nitioctl_t uioc; int adapno; int rval; mega_passthru __user *upthru; /* user address for passthru */ mega_passthru *pthru; /* copy user passthru here */ dma_addr_t pthru_dma_hndl; void *data = NULL; /* data to be transferred */ dma_addr_t data_dma_hndl; /* dma handle for data xfer area */ megacmd_t mc; megastat_t __user *ustats; int num_ldrv; u32 uxferaddr = 0; struct pci_dev *pdev; ustats = NULL; /* avoid compilation warnings */ num_ldrv = 0; /* * Make sure only USCSICMD are issued through this interface. * MIMD application would still fire different command. */ if( (_IOC_TYPE(cmd) != MEGAIOC_MAGIC) && (cmd != USCSICMD) ) { return -EINVAL; } /* * Check and convert a possible MIMD command to NIT command. * mega_m_to_n() copies the data from the user space, so we do not * have to do it here. * NOTE: We will need some user address to copyout the data, therefore * the inteface layer will also provide us with the required user * addresses. */ memset(&uioc, 0, sizeof(nitioctl_t)); if( (rval = mega_m_to_n( (void __user *)arg, &uioc)) != 0 ) return rval; switch( uioc.opcode ) { case GET_DRIVER_VER: if( put_user(driver_ver, (u32 __user *)uioc.uioc_uaddr) ) return (-EFAULT); break; case GET_N_ADAP: if( put_user(hba_count, (u32 __user *)uioc.uioc_uaddr) ) return (-EFAULT); /* * Shucks. MIMD interface returns a positive value for number * of adapters. TODO: Change it to return 0 when there is no * applicatio using mimd interface. */ return hba_count; case GET_ADAP_INFO: /* * Which adapter */ if( (adapno = GETADAP(uioc.adapno)) >= hba_count ) return (-ENODEV); if( copy_to_user(uioc.uioc_uaddr, mcontroller+adapno, sizeof(struct mcontroller)) ) return (-EFAULT); break; #if MEGA_HAVE_STATS case GET_STATS: /* * Which adapter */ if( (adapno = GETADAP(uioc.adapno)) >= hba_count ) return (-ENODEV); adapter = hba_soft_state[adapno]; ustats = uioc.uioc_uaddr; if( copy_from_user(&num_ldrv, &ustats->num_ldrv, sizeof(int)) ) return (-EFAULT); /* * Check for the validity of the logical drive number */ if( num_ldrv >= MAX_LOGICAL_DRIVES_40LD ) return -EINVAL; if( copy_to_user(ustats->nreads, adapter->nreads, num_ldrv*sizeof(u32)) ) return -EFAULT; if( copy_to_user(ustats->nreadblocks, adapter->nreadblocks, num_ldrv*sizeof(u32)) ) return -EFAULT; if( copy_to_user(ustats->nwrites, adapter->nwrites, num_ldrv*sizeof(u32)) ) return -EFAULT; if( copy_to_user(ustats->nwriteblocks, adapter->nwriteblocks, num_ldrv*sizeof(u32)) ) return -EFAULT; if( copy_to_user(ustats->rd_errors, adapter->rd_errors, num_ldrv*sizeof(u32)) ) return -EFAULT; if( copy_to_user(ustats->wr_errors, adapter->wr_errors, num_ldrv*sizeof(u32)) ) return -EFAULT; return 0; #endif case MBOX_CMD: /* * Which adapter */ if( (adapno = GETADAP(uioc.adapno)) >= hba_count ) return (-ENODEV); adapter = hba_soft_state[adapno]; /* * Deletion of logical drive is a special case. The adapter * should be quiescent before this command is issued. */ if( uioc.uioc_rmbox[0] == FC_DEL_LOGDRV && uioc.uioc_rmbox[2] == OP_DEL_LOGDRV ) { /* * Do we support this feature */ if( !adapter->support_random_del ) { printk(KERN_WARNING "megaraid: logdrv "); printk("delete on non-supporting F/W.\n"); return (-EINVAL); } rval = mega_del_logdrv( adapter, uioc.uioc_rmbox[3] ); if( rval == 0 ) { memset(&mc, 0, sizeof(megacmd_t)); mc.status = rval; rval = mega_n_to_m((void __user *)arg, &mc); } return rval; } /* * This interface only support the regular passthru commands. * Reject extended passthru and 64-bit passthru */ if( uioc.uioc_rmbox[0] == MEGA_MBOXCMD_PASSTHRU64 || uioc.uioc_rmbox[0] == MEGA_MBOXCMD_EXTPTHRU ) { printk(KERN_WARNING "megaraid: rejected passthru.\n"); return (-EINVAL); } /* * For all internal commands, the buffer must be allocated in * <4GB address range */ if( make_local_pdev(adapter, &pdev) != 0 ) return -EIO; /* Is it a passthru command or a DCMD */ if( uioc.uioc_rmbox[0] == MEGA_MBOXCMD_PASSTHRU ) { /* Passthru commands */ pthru = pci_alloc_consistent(pdev, sizeof(mega_passthru), &pthru_dma_hndl); if( pthru == NULL ) { free_local_pdev(pdev); return (-ENOMEM); } /* * The user passthru structure */ upthru = (mega_passthru __user *)(unsigned long)MBOX(uioc)->xferaddr; /* * Copy in the user passthru here. */ if( copy_from_user(pthru, upthru, sizeof(mega_passthru)) ) { pci_free_consistent(pdev, sizeof(mega_passthru), pthru, pthru_dma_hndl); free_local_pdev(pdev); return (-EFAULT); } /* * Is there a data transfer */ if( pthru->dataxferlen ) { data = pci_alloc_consistent(pdev, pthru->dataxferlen, &data_dma_hndl); if( data == NULL ) { pci_free_consistent(pdev, sizeof(mega_passthru), pthru, pthru_dma_hndl); free_local_pdev(pdev); return (-ENOMEM); } /* * Save the user address and point the kernel * address at just allocated memory */ uxferaddr = pthru->dataxferaddr; pthru->dataxferaddr = data_dma_hndl; } /* * Is data coming down-stream */ if( pthru->dataxferlen && (uioc.flags & UIOC_WR) ) { /* * Get the user data */ if( copy_from_user(data, (char __user *)(unsigned long) uxferaddr, pthru->dataxferlen) ) { rval = (-EFAULT); goto freemem_and_return; } } memset(&mc, 0, sizeof(megacmd_t)); mc.cmd = MEGA_MBOXCMD_PASSTHRU; mc.xferaddr = (u32)pthru_dma_hndl; /* * Issue the command */ mega_internal_command(adapter, &mc, pthru); rval = mega_n_to_m((void __user *)arg, &mc); if( rval ) goto freemem_and_return; /* * Is data going up-stream */ if( pthru->dataxferlen && (uioc.flags & UIOC_RD) ) { if( copy_to_user((char __user *)(unsigned long) uxferaddr, data, pthru->dataxferlen) ) { rval = (-EFAULT); } } /* * Send the request sense data also, irrespective of * whether the user has asked for it or not. */ if (copy_to_user(upthru->reqsensearea, pthru->reqsensearea, 14)) rval = -EFAULT; freemem_and_return: if( pthru->dataxferlen ) { pci_free_consistent(pdev, pthru->dataxferlen, data, data_dma_hndl); } pci_free_consistent(pdev, sizeof(mega_passthru), pthru, pthru_dma_hndl); free_local_pdev(pdev); return rval; } else { /* DCMD commands */ /* * Is there a data transfer */ if( uioc.xferlen ) { data = pci_alloc_consistent(pdev, uioc.xferlen, &data_dma_hndl); if( data == NULL ) { free_local_pdev(pdev); return (-ENOMEM); } uxferaddr = MBOX(uioc)->xferaddr; } /* * Is data coming down-stream */ if( uioc.xferlen && (uioc.flags & UIOC_WR) ) { /* * Get the user data */ if( copy_from_user(data, (char __user *)(unsigned long) uxferaddr, uioc.xferlen) ) { pci_free_consistent(pdev, uioc.xferlen, data, data_dma_hndl); free_local_pdev(pdev); return (-EFAULT); } } memcpy(&mc, MBOX(uioc), sizeof(megacmd_t)); mc.xferaddr = (u32)data_dma_hndl; /* * Issue the command */ mega_internal_command(adapter, &mc, NULL); rval = mega_n_to_m((void __user *)arg, &mc); if( rval ) { if( uioc.xferlen ) { pci_free_consistent(pdev, uioc.xferlen, data, data_dma_hndl); } free_local_pdev(pdev); return rval; } /* * Is data going up-stream */ if( uioc.xferlen && (uioc.flags & UIOC_RD) ) { if( copy_to_user((char __user *)(unsigned long) uxferaddr, data, uioc.xferlen) ) { rval = (-EFAULT); } } if( uioc.xferlen ) { pci_free_consistent(pdev, uioc.xferlen, data, data_dma_hndl); } free_local_pdev(pdev); return rval; } default: return (-EINVAL); } return 0; } static long megadev_unlocked_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) { int ret; mutex_lock(&megadev_mutex); ret = megadev_ioctl(filep, cmd, arg); mutex_unlock(&megadev_mutex); return ret; } /** * mega_m_to_n() * @arg - user address * @uioc - new ioctl structure * * A thin layer to convert older mimd interface ioctl structure to NIT ioctl * structure * * Converts the older mimd ioctl structure to newer NIT structure */ static int mega_m_to_n(void __user *arg, nitioctl_t *uioc) { struct uioctl_t uioc_mimd; char signature[8] = {0}; u8 opcode; u8 subopcode; /* * check is the application conforms to NIT. We do not have to do much * in that case. * We exploit the fact that the signature is stored in the very * beginning of the structure. */ if( copy_from_user(signature, arg, 7) ) return (-EFAULT); if( memcmp(signature, "MEGANIT", 7) == 0 ) { /* * NOTE NOTE: The nit ioctl is still under flux because of * change of mailbox definition, in HPE. No applications yet * use this interface and let's not have applications use this * interface till the new specifitions are in place. */ return -EINVAL; #if 0 if( copy_from_user(uioc, arg, sizeof(nitioctl_t)) ) return (-EFAULT); return 0; #endif } /* * Else assume we have mimd uioctl_t as arg. Convert to nitioctl_t * * Get the user ioctl structure */ if( copy_from_user(&uioc_mimd, arg, sizeof(struct uioctl_t)) ) return (-EFAULT); /* * Get the opcode and subopcode for the commands */ opcode = uioc_mimd.ui.fcs.opcode; subopcode = uioc_mimd.ui.fcs.subopcode; switch (opcode) { case 0x82: switch (subopcode) { case MEGAIOC_QDRVRVER: /* Query driver version */ uioc->opcode = GET_DRIVER_VER; uioc->uioc_uaddr = uioc_mimd.data; break; case MEGAIOC_QNADAP: /* Get # of adapters */ uioc->opcode = GET_N_ADAP; uioc->uioc_uaddr = uioc_mimd.data; break; case MEGAIOC_QADAPINFO: /* Get adapter information */ uioc->opcode = GET_ADAP_INFO; uioc->adapno = uioc_mimd.ui.fcs.adapno; uioc->uioc_uaddr = uioc_mimd.data; break; default: return(-EINVAL); } break; case 0x81: uioc->opcode = MBOX_CMD; uioc->adapno = uioc_mimd.ui.fcs.adapno; memcpy(uioc->uioc_rmbox, uioc_mimd.mbox, 18); uioc->xferlen = uioc_mimd.ui.fcs.length; if( uioc_mimd.outlen ) uioc->flags = UIOC_RD; if( uioc_mimd.inlen ) uioc->flags |= UIOC_WR; break; case 0x80: uioc->opcode = MBOX_CMD; uioc->adapno = uioc_mimd.ui.fcs.adapno; memcpy(uioc->uioc_rmbox, uioc_mimd.mbox, 18); /* * Choose the xferlen bigger of input and output data */ uioc->xferlen = uioc_mimd.outlen > uioc_mimd.inlen ? uioc_mimd.outlen : uioc_mimd.inlen; if( uioc_mimd.outlen ) uioc->flags = UIOC_RD; if( uioc_mimd.inlen ) uioc->flags |= UIOC_WR; break; default: return (-EINVAL); } return 0; } /* * mega_n_to_m() * @arg - user address * @mc - mailbox command * * Updates the status information to the application, depending on application * conforms to older mimd ioctl interface or newer NIT ioctl interface */ static int mega_n_to_m(void __user *arg, megacmd_t *mc) { nitioctl_t __user *uiocp; megacmd_t __user *umc; mega_passthru __user *upthru; struct uioctl_t __user *uioc_mimd; char signature[8] = {0}; /* * check is the application conforms to NIT. */ if( copy_from_user(signature, arg, 7) ) return -EFAULT; if( memcmp(signature, "MEGANIT", 7) == 0 ) { uiocp = arg; if( put_user(mc->status, (u8 __user *)&MBOX_P(uiocp)->status) ) return (-EFAULT); if( mc->cmd == MEGA_MBOXCMD_PASSTHRU ) { umc = MBOX_P(uiocp); if (get_user(upthru, (mega_passthru __user * __user *)&umc->xferaddr)) return -EFAULT; if( put_user(mc->status, (u8 __user *)&upthru->scsistatus)) return (-EFAULT); } } else { uioc_mimd = arg; if( put_user(mc->status, (u8 __user *)&uioc_mimd->mbox[17]) ) return (-EFAULT); if( mc->cmd == MEGA_MBOXCMD_PASSTHRU ) { umc = (megacmd_t __user *)uioc_mimd->mbox; if (get_user(upthru, (mega_passthru __user * __user *)&umc->xferaddr)) return (-EFAULT); if( put_user(mc->status, (u8 __user *)&upthru->scsistatus) ) return (-EFAULT); } } return 0; } /* * MEGARAID 'FW' commands. */ /** * mega_is_bios_enabled() * @adapter - pointer to our soft state * * issue command to find out if the BIOS is enabled for this controller */ static int mega_is_bios_enabled(adapter_t *adapter) { unsigned char raw_mbox[sizeof(struct mbox_out)]; mbox_t *mbox; int ret; mbox = (mbox_t *)raw_mbox; memset(&mbox->m_out, 0, sizeof(raw_mbox)); memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE); mbox->m_out.xferaddr = (u32)adapter->buf_dma_handle; raw_mbox[0] = IS_BIOS_ENABLED; raw_mbox[2] = GET_BIOS; ret = issue_scb_block(adapter, raw_mbox); return *(char *)adapter->mega_buffer; } /** * mega_enum_raid_scsi() * @adapter - pointer to our soft state * * Find out what channels are RAID/SCSI. This information is used to * differentiate the virtual channels and physical channels and to support * ROMB feature and non-disk devices. */ static void mega_enum_raid_scsi(adapter_t *adapter) { unsigned char raw_mbox[sizeof(struct mbox_out)]; mbox_t *mbox; int i; mbox = (mbox_t *)raw_mbox; memset(&mbox->m_out, 0, sizeof(raw_mbox)); /* * issue command to find out what channels are raid/scsi */ raw_mbox[0] = CHNL_CLASS; raw_mbox[2] = GET_CHNL_CLASS; memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE); mbox->m_out.xferaddr = (u32)adapter->buf_dma_handle; /* * Non-ROMB firmware fail this command, so all channels * must be shown RAID */ adapter->mega_ch_class = 0xFF; if(!issue_scb_block(adapter, raw_mbox)) { adapter->mega_ch_class = *((char *)adapter->mega_buffer); } for( i = 0; i < adapter->product_info.nchannels; i++ ) { if( (adapter->mega_ch_class >> i) & 0x01 ) { printk(KERN_INFO "megaraid: channel[%d] is raid.\n", i); } else { printk(KERN_INFO "megaraid: channel[%d] is scsi.\n", i); } } return; } /** * mega_get_boot_drv() * @adapter - pointer to our soft state * * Find out which device is the boot device. Note, any logical drive or any * phyical device (e.g., a CDROM) can be designated as a boot device. */ static void mega_get_boot_drv(adapter_t *adapter) { struct private_bios_data *prv_bios_data; unsigned char raw_mbox[sizeof(struct mbox_out)]; mbox_t *mbox; u16 cksum = 0; u8 *cksum_p; u8 boot_pdrv; int i; mbox = (mbox_t *)raw_mbox; memset(&mbox->m_out, 0, sizeof(raw_mbox)); raw_mbox[0] = BIOS_PVT_DATA; raw_mbox[2] = GET_BIOS_PVT_DATA; memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE); mbox->m_out.xferaddr = (u32)adapter->buf_dma_handle; adapter->boot_ldrv_enabled = 0; adapter->boot_ldrv = 0; adapter->boot_pdrv_enabled = 0; adapter->boot_pdrv_ch = 0; adapter->boot_pdrv_tgt = 0; if(issue_scb_block(adapter, raw_mbox) == 0) { prv_bios_data = (struct private_bios_data *)adapter->mega_buffer; cksum = 0; cksum_p = (char *)prv_bios_data; for (i = 0; i < 14; i++ ) { cksum += (u16)(*cksum_p++); } if (prv_bios_data->cksum == (u16)(0-cksum) ) { /* * If MSB is set, a physical drive is set as boot * device */ if( prv_bios_data->boot_drv & 0x80 ) { adapter->boot_pdrv_enabled = 1; boot_pdrv = prv_bios_data->boot_drv & 0x7F; adapter->boot_pdrv_ch = boot_pdrv / 16; adapter->boot_pdrv_tgt = boot_pdrv % 16; } else { adapter->boot_ldrv_enabled = 1; adapter->boot_ldrv = prv_bios_data->boot_drv; } } } } /** * mega_support_random_del() * @adapter - pointer to our soft state * * Find out if this controller supports random deletion and addition of * logical drives */ static int mega_support_random_del(adapter_t *adapter) { unsigned char raw_mbox[sizeof(struct mbox_out)]; mbox_t *mbox; int rval; mbox = (mbox_t *)raw_mbox; memset(&mbox->m_out, 0, sizeof(raw_mbox)); /* * issue command */ raw_mbox[0] = FC_DEL_LOGDRV; raw_mbox[2] = OP_SUP_DEL_LOGDRV; rval = issue_scb_block(adapter, raw_mbox); return !rval; } /** * mega_support_ext_cdb() * @adapter - pointer to our soft state * * Find out if this firmware support cdblen > 10 */ static int mega_support_ext_cdb(adapter_t *adapter) { unsigned char raw_mbox[sizeof(struct mbox_out)]; mbox_t *mbox; int rval; mbox = (mbox_t *)raw_mbox; memset(&mbox->m_out, 0, sizeof(raw_mbox)); /* * issue command to find out if controller supports extended CDBs. */ raw_mbox[0] = 0xA4; raw_mbox[2] = 0x16; rval = issue_scb_block(adapter, raw_mbox); return !rval; } /** * mega_del_logdrv() * @adapter - pointer to our soft state * @logdrv - logical drive to be deleted * * Delete the specified logical drive. It is the responsibility of the user * app to let the OS know about this operation. */ static int mega_del_logdrv(adapter_t *adapter, int logdrv) { unsigned long flags; scb_t *scb; int rval; /* * Stop sending commands to the controller, queue them internally. * When deletion is complete, ISR will flush the queue. */ atomic_set(&adapter->quiescent, 1); /* * Wait till all the issued commands are complete and there are no * commands in the pending queue */ while (atomic_read(&adapter->pend_cmds) > 0 || !list_empty(&adapter->pending_list)) msleep(1000); /* sleep for 1s */ rval = mega_do_del_logdrv(adapter, logdrv); spin_lock_irqsave(&adapter->lock, flags); /* * If delete operation was successful, add 0x80 to the logical drive * ids for commands in the pending queue. */ if (adapter->read_ldidmap) { struct list_head *pos; list_for_each(pos, &adapter->pending_list) { scb = list_entry(pos, scb_t, list); if (scb->pthru->logdrv < 0x80 ) scb->pthru->logdrv += 0x80; } } atomic_set(&adapter->quiescent, 0); mega_runpendq(adapter); spin_unlock_irqrestore(&adapter->lock, flags); return rval; } static int mega_do_del_logdrv(adapter_t *adapter, int logdrv) { megacmd_t mc; int rval; memset( &mc, 0, sizeof(megacmd_t)); mc.cmd = FC_DEL_LOGDRV; mc.opcode = OP_DEL_LOGDRV; mc.subopcode = logdrv; rval = mega_internal_command(adapter, &mc, NULL); /* log this event */ if(rval) { printk(KERN_WARNING "megaraid: Delete LD-%d failed.", logdrv); return rval; } /* * After deleting first logical drive, the logical drives must be * addressed by adding 0x80 to the logical drive id. */ adapter->read_ldidmap = 1; return rval; } /** * mega_get_max_sgl() * @adapter - pointer to our soft state * * Find out the maximum number of scatter-gather elements supported by this * version of the firmware */ static void mega_get_max_sgl(adapter_t *adapter) { unsigned char raw_mbox[sizeof(struct mbox_out)]; mbox_t *mbox; mbox = (mbox_t *)raw_mbox; memset(mbox, 0, sizeof(raw_mbox)); memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE); mbox->m_out.xferaddr = (u32)adapter->buf_dma_handle; raw_mbox[0] = MAIN_MISC_OPCODE; raw_mbox[2] = GET_MAX_SG_SUPPORT; if( issue_scb_block(adapter, raw_mbox) ) { /* * f/w does not support this command. Choose the default value */ adapter->sglen = MIN_SGLIST; } else { adapter->sglen = *((char *)adapter->mega_buffer); /* * Make sure this is not more than the resources we are * planning to allocate */ if ( adapter->sglen > MAX_SGLIST ) adapter->sglen = MAX_SGLIST; } return; } /** * mega_support_cluster() * @adapter - pointer to our soft state * * Find out if this firmware support cluster calls. */ static int mega_support_cluster(adapter_t *adapter) { unsigned char raw_mbox[sizeof(struct mbox_out)]; mbox_t *mbox; mbox = (mbox_t *)raw_mbox; memset(mbox, 0, sizeof(raw_mbox)); memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE); mbox->m_out.xferaddr = (u32)adapter->buf_dma_handle; /* * Try to get the initiator id. This command will succeed iff the * clustering is available on this HBA. */ raw_mbox[0] = MEGA_GET_TARGET_ID; if( issue_scb_block(adapter, raw_mbox) == 0 ) { /* * Cluster support available. Get the initiator target id. * Tell our id to mid-layer too. */ adapter->this_id = *(u32 *)adapter->mega_buffer; adapter->host->this_id = adapter->this_id; return 1; } return 0; } #ifdef CONFIG_PROC_FS /** * mega_adapinq() * @adapter - pointer to our soft state * @dma_handle - DMA address of the buffer * * Issue internal commands while interrupts are available. * We only issue direct mailbox commands from within the driver. ioctl() * interface using these routines can issue passthru commands. */ static int mega_adapinq(adapter_t *adapter, dma_addr_t dma_handle) { megacmd_t mc; memset(&mc, 0, sizeof(megacmd_t)); if( adapter->flag & BOARD_40LD ) { mc.cmd = FC_NEW_CONFIG; mc.opcode = NC_SUBOP_ENQUIRY3; mc.subopcode = ENQ3_GET_SOLICITED_FULL; } else { mc.cmd = MEGA_MBOXCMD_ADPEXTINQ; } mc.xferaddr = (u32)dma_handle; if ( mega_internal_command(adapter, &mc, NULL) != 0 ) { return -1; } return 0; } /** mega_internal_dev_inquiry() * @adapter - pointer to our soft state * @ch - channel for this device * @tgt - ID of this device * @buf_dma_handle - DMA address of the buffer * * Issue the scsi inquiry for the specified device. */ static int mega_internal_dev_inquiry(adapter_t *adapter, u8 ch, u8 tgt, dma_addr_t buf_dma_handle) { mega_passthru *pthru; dma_addr_t pthru_dma_handle; megacmd_t mc; int rval; struct pci_dev *pdev; /* * For all internal commands, the buffer must be allocated in <4GB * address range */ if( make_local_pdev(adapter, &pdev) != 0 ) return -1; pthru = pci_alloc_consistent(pdev, sizeof(mega_passthru), &pthru_dma_handle); if( pthru == NULL ) { free_local_pdev(pdev); return -1; } pthru->timeout = 2; pthru->ars = 1; pthru->reqsenselen = 14; pthru->islogical = 0; pthru->channel = (adapter->flag & BOARD_40LD) ? 0 : ch; pthru->target = (adapter->flag & BOARD_40LD) ? (ch << 4)|tgt : tgt; pthru->cdblen = 6; pthru->cdb[0] = INQUIRY; pthru->cdb[1] = 0; pthru->cdb[2] = 0; pthru->cdb[3] = 0; pthru->cdb[4] = 255; pthru->cdb[5] = 0; pthru->dataxferaddr = (u32)buf_dma_handle; pthru->dataxferlen = 256; memset(&mc, 0, sizeof(megacmd_t)); mc.cmd = MEGA_MBOXCMD_PASSTHRU; mc.xferaddr = (u32)pthru_dma_handle; rval = mega_internal_command(adapter, &mc, pthru); pci_free_consistent(pdev, sizeof(mega_passthru), pthru, pthru_dma_handle); free_local_pdev(pdev); return rval; } #endif /** * mega_internal_command() * @adapter - pointer to our soft state * @mc - the mailbox command * @pthru - Passthru structure for DCDB commands * * Issue the internal commands in interrupt mode. * The last argument is the address of the passthru structure if the command * to be fired is a passthru command * * lockscope specifies whether the caller has already acquired the lock. Of * course, the caller must know which lock we are talking about. * * Note: parameter 'pthru' is null for non-passthru commands. */ static int mega_internal_command(adapter_t *adapter, megacmd_t *mc, mega_passthru *pthru) { Scsi_Cmnd *scmd; struct scsi_device *sdev; scb_t *scb; int rval; scmd = scsi_allocate_command(GFP_KERNEL); if (!scmd) return -ENOMEM; /* * The internal commands share one command id and hence are * serialized. This is so because we want to reserve maximum number of * available command ids for the I/O commands. */ mutex_lock(&adapter->int_mtx); scb = &adapter->int_scb; memset(scb, 0, sizeof(scb_t)); sdev = kzalloc(sizeof(struct scsi_device), GFP_KERNEL); scmd->device = sdev; memset(adapter->int_cdb, 0, sizeof(adapter->int_cdb)); scmd->cmnd = adapter->int_cdb; scmd->device->host = adapter->host; scmd->host_scribble = (void *)scb; scmd->cmnd[0] = MEGA_INTERNAL_CMD; scb->state |= SCB_ACTIVE; scb->cmd = scmd; memcpy(scb->raw_mbox, mc, sizeof(megacmd_t)); /* * Is it a passthru command */ if( mc->cmd == MEGA_MBOXCMD_PASSTHRU ) { scb->pthru = pthru; } scb->idx = CMDID_INT_CMDS; megaraid_queue_lck(scmd, mega_internal_done); wait_for_completion(&adapter->int_waitq); rval = scmd->result; mc->status = scmd->result; kfree(sdev); /* * Print a debug message for all failed commands. Applications can use * this information. */ if( scmd->result && trace_level ) { printk("megaraid: cmd [%x, %x, %x] status:[%x]\n", mc->cmd, mc->opcode, mc->subopcode, scmd->result); } mutex_unlock(&adapter->int_mtx); scsi_free_command(GFP_KERNEL, scmd); return rval; } /** * mega_internal_done() * @scmd - internal scsi command * * Callback routine for internal commands. */ static void mega_internal_done(Scsi_Cmnd *scmd) { adapter_t *adapter; adapter = (adapter_t *)scmd->device->host->hostdata; complete(&adapter->int_waitq); } static struct scsi_host_template megaraid_template = { .module = THIS_MODULE, .name = "MegaRAID", .proc_name = "megaraid_legacy", .info = megaraid_info, .queuecommand = megaraid_queue, .bios_param = megaraid_biosparam, .max_sectors = MAX_SECTORS_PER_IO, .can_queue = MAX_COMMANDS, .this_id = DEFAULT_INITIATOR_ID, .sg_tablesize = MAX_SGLIST, .cmd_per_lun = DEF_CMD_PER_LUN, .use_clustering = ENABLE_CLUSTERING, .eh_abort_handler = megaraid_abort, .eh_device_reset_handler = megaraid_reset, .eh_bus_reset_handler = megaraid_reset, .eh_host_reset_handler = megaraid_reset, }; static int __devinit megaraid_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) { struct Scsi_Host *host; adapter_t *adapter; unsigned long mega_baseport, tbase, flag = 0; u16 subsysid, subsysvid; u8 pci_bus, pci_dev_func; int irq, i, j; int error = -ENODEV; if (pci_enable_device(pdev)) goto out; pci_set_master(pdev); pci_bus = pdev->bus->number; pci_dev_func = pdev->devfn; /* * The megaraid3 stuff reports the ID of the Intel part which is not * remotely specific to the megaraid */ if (pdev->vendor == PCI_VENDOR_ID_INTEL) { u16 magic; /* * Don't fall over the Compaq management cards using the same * PCI identifier */ if (pdev->subsystem_vendor == PCI_VENDOR_ID_COMPAQ && pdev->subsystem_device == 0xC000) return -ENODEV; /* Now check the magic signature byte */ pci_read_config_word(pdev, PCI_CONF_AMISIG, &magic); if (magic != HBA_SIGNATURE_471 && magic != HBA_SIGNATURE) return -ENODEV; /* Ok it is probably a megaraid */ } /* * For these vendor and device ids, signature offsets are not * valid and 64 bit is implicit */ if (id->driver_data & BOARD_64BIT) flag |= BOARD_64BIT; else { u32 magic64; pci_read_config_dword(pdev, PCI_CONF_AMISIG64, &magic64); if (magic64 == HBA_SIGNATURE_64BIT) flag |= BOARD_64BIT; } subsysvid = pdev->subsystem_vendor; subsysid = pdev->subsystem_device; printk(KERN_NOTICE "megaraid: found 0x%4.04x:0x%4.04x:bus %d:", id->vendor, id->device, pci_bus); printk("slot %d:func %d\n", PCI_SLOT(pci_dev_func), PCI_FUNC(pci_dev_func)); /* Read the base port and IRQ from PCI */ mega_baseport = pci_resource_start(pdev, 0); irq = pdev->irq; tbase = mega_baseport; if (pci_resource_flags(pdev, 0) & IORESOURCE_MEM) { flag |= BOARD_MEMMAP; if (!request_mem_region(mega_baseport, 128, "megaraid")) { printk(KERN_WARNING "megaraid: mem region busy!\n"); goto out_disable_device; } mega_baseport = (unsigned long)ioremap(mega_baseport, 128); if (!mega_baseport) { printk(KERN_WARNING "megaraid: could not map hba memory\n"); goto out_release_region; } } else { flag |= BOARD_IOMAP; mega_baseport += 0x10; if (!request_region(mega_baseport, 16, "megaraid")) goto out_disable_device; } /* Initialize SCSI Host structure */ host = scsi_host_alloc(&megaraid_template, sizeof(adapter_t)); if (!host) goto out_iounmap; adapter = (adapter_t *)host->hostdata; memset(adapter, 0, sizeof(adapter_t)); printk(KERN_NOTICE "scsi%d:Found MegaRAID controller at 0x%lx, IRQ:%d\n", host->host_no, mega_baseport, irq); adapter->base = mega_baseport; if (flag & BOARD_MEMMAP) adapter->mmio_base = (void __iomem *) mega_baseport; INIT_LIST_HEAD(&adapter->free_list); INIT_LIST_HEAD(&adapter->pending_list); INIT_LIST_HEAD(&adapter->completed_list); adapter->flag = flag; spin_lock_init(&adapter->lock); host->cmd_per_lun = max_cmd_per_lun; host->max_sectors = max_sectors_per_io; adapter->dev = pdev; adapter->host = host; adapter->host->irq = irq; if (flag & BOARD_MEMMAP) adapter->host->base = tbase; else { adapter->host->io_port = tbase; adapter->host->n_io_port = 16; } adapter->host->unique_id = (pci_bus << 8) | pci_dev_func; /* * Allocate buffer to issue internal commands. */ adapter->mega_buffer = pci_alloc_consistent(adapter->dev, MEGA_BUFFER_SIZE, &adapter->buf_dma_handle); if (!adapter->mega_buffer) { printk(KERN_WARNING "megaraid: out of RAM.\n"); goto out_host_put; } adapter->scb_list = kmalloc(sizeof(scb_t) * MAX_COMMANDS, GFP_KERNEL); if (!adapter->scb_list) { printk(KERN_WARNING "megaraid: out of RAM.\n"); goto out_free_cmd_buffer; } if (request_irq(irq, (adapter->flag & BOARD_MEMMAP) ? megaraid_isr_memmapped : megaraid_isr_iomapped, IRQF_SHARED, "megaraid", adapter)) { printk(KERN_WARNING "megaraid: Couldn't register IRQ %d!\n", irq); goto out_free_scb_list; } if (mega_setup_mailbox(adapter)) goto out_free_irq; if (mega_query_adapter(adapter)) goto out_free_mbox; /* * Have checks for some buggy f/w */ if ((subsysid == 0x1111) && (subsysvid == 0x1111)) { /* * Which firmware */ if (!strcmp(adapter->fw_version, "3.00") || !strcmp(adapter->fw_version, "3.01")) { printk( KERN_WARNING "megaraid: Your card is a Dell PERC " "2/SC RAID controller with " "firmware\nmegaraid: 3.00 or 3.01. " "This driver is known to have " "corruption issues\nmegaraid: with " "those firmware versions on this " "specific card. In order\nmegaraid: " "to protect your data, please upgrade " "your firmware to version\nmegaraid: " "3.10 or later, available from the " "Dell Technical Support web\n" "megaraid: site at\nhttp://support." "dell.com/us/en/filelib/download/" "index.asp?fileid=2940\n" ); } } /* * If we have a HP 1M(0x60E7)/2M(0x60E8) controller with * firmware H.01.07, H.01.08, and H.01.09 disable 64 bit * support, since this firmware cannot handle 64 bit * addressing */ if ((subsysvid == HP_SUBSYS_VID) && ((subsysid == 0x60E7) || (subsysid == 0x60E8))) { /* * which firmware */ if (!strcmp(adapter->fw_version, "H01.07") || !strcmp(adapter->fw_version, "H01.08") || !strcmp(adapter->fw_version, "H01.09") ) { printk(KERN_WARNING "megaraid: Firmware H.01.07, " "H.01.08, and H.01.09 on 1M/2M " "controllers\n" "megaraid: do not support 64 bit " "addressing.\nmegaraid: DISABLING " "64 bit support.\n"); adapter->flag &= ~BOARD_64BIT; } } if (mega_is_bios_enabled(adapter)) mega_hbas[hba_count].is_bios_enabled = 1; mega_hbas[hba_count].hostdata_addr = adapter; /* * Find out which channel is raid and which is scsi. This is * for ROMB support. */ mega_enum_raid_scsi(adapter); /* * Find out if a logical drive is set as the boot drive. If * there is one, will make that as the first logical drive. * ROMB: Do we have to boot from a physical drive. Then all * the physical drives would appear before the logical disks. * Else, all the physical drives would be exported to the mid * layer after logical drives. */ mega_get_boot_drv(adapter); if (adapter->boot_pdrv_enabled) { j = adapter->product_info.nchannels; for( i = 0; i < j; i++ ) adapter->logdrv_chan[i] = 0; for( i = j; i < NVIRT_CHAN + j; i++ ) adapter->logdrv_chan[i] = 1; } else { for (i = 0; i < NVIRT_CHAN; i++) adapter->logdrv_chan[i] = 1; for (i = NVIRT_CHAN; i < MAX_CHANNELS+NVIRT_CHAN; i++) adapter->logdrv_chan[i] = 0; adapter->mega_ch_class <<= NVIRT_CHAN; } /* * Do we support random deletion and addition of logical * drives */ adapter->read_ldidmap = 0; /* set it after first logdrv delete cmd */ adapter->support_random_del = mega_support_random_del(adapter); /* Initialize SCBs */ if (mega_init_scb(adapter)) goto out_free_mbox; /* * Reset the pending commands counter */ atomic_set(&adapter->pend_cmds, 0); /* * Reset the adapter quiescent flag */ atomic_set(&adapter->quiescent, 0); hba_soft_state[hba_count] = adapter; /* * Fill in the structure which needs to be passed back to the * application when it does an ioctl() for controller related * information. */ i = hba_count; mcontroller[i].base = mega_baseport; mcontroller[i].irq = irq; mcontroller[i].numldrv = adapter->numldrv; mcontroller[i].pcibus = pci_bus; mcontroller[i].pcidev = id->device; mcontroller[i].pcifun = PCI_FUNC (pci_dev_func); mcontroller[i].pciid = -1; mcontroller[i].pcivendor = id->vendor; mcontroller[i].pcislot = PCI_SLOT(pci_dev_func); mcontroller[i].uid = (pci_bus << 8) | pci_dev_func; /* Set the Mode of addressing to 64 bit if we can */ if ((adapter->flag & BOARD_64BIT) && (sizeof(dma_addr_t) == 8)) { pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); adapter->has_64bit_addr = 1; } else { pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); adapter->has_64bit_addr = 0; } mutex_init(&adapter->int_mtx); init_completion(&adapter->int_waitq); adapter->this_id = DEFAULT_INITIATOR_ID; adapter->host->this_id = DEFAULT_INITIATOR_ID; #if MEGA_HAVE_CLUSTERING /* * Is cluster support enabled on this controller * Note: In a cluster the HBAs ( the initiators ) will have * different target IDs and we cannot assume it to be 7. Call * to mega_support_cluster() will get the target ids also if * the cluster support is available */ adapter->has_cluster = mega_support_cluster(adapter); if (adapter->has_cluster) { printk(KERN_NOTICE "megaraid: Cluster driver, initiator id:%d\n", adapter->this_id); } #endif pci_set_drvdata(pdev, host); mega_create_proc_entry(hba_count, mega_proc_dir_entry); error = scsi_add_host(host, &pdev->dev); if (error) goto out_free_mbox; scsi_scan_host(host); hba_count++; return 0; out_free_mbox: pci_free_consistent(adapter->dev, sizeof(mbox64_t), adapter->una_mbox64, adapter->una_mbox64_dma); out_free_irq: free_irq(adapter->host->irq, adapter); out_free_scb_list: kfree(adapter->scb_list); out_free_cmd_buffer: pci_free_consistent(adapter->dev, MEGA_BUFFER_SIZE, adapter->mega_buffer, adapter->buf_dma_handle); out_host_put: scsi_host_put(host); out_iounmap: if (flag & BOARD_MEMMAP) iounmap((void *)mega_baseport); out_release_region: if (flag & BOARD_MEMMAP) release_mem_region(tbase, 128); else release_region(mega_baseport, 16); out_disable_device: pci_disable_device(pdev); out: return error; } static void __megaraid_shutdown(adapter_t *adapter) { u_char raw_mbox[sizeof(struct mbox_out)]; mbox_t *mbox = (mbox_t *)raw_mbox; int i; /* Flush adapter cache */ memset(&mbox->m_out, 0, sizeof(raw_mbox)); raw_mbox[0] = FLUSH_ADAPTER; free_irq(adapter->host->irq, adapter); /* Issue a blocking (interrupts disabled) command to the card */ issue_scb_block(adapter, raw_mbox); /* Flush disks cache */ memset(&mbox->m_out, 0, sizeof(raw_mbox)); raw_mbox[0] = FLUSH_SYSTEM; /* Issue a blocking (interrupts disabled) command to the card */ issue_scb_block(adapter, raw_mbox); if (atomic_read(&adapter->pend_cmds) > 0) printk(KERN_WARNING "megaraid: pending commands!!\n"); /* * Have a delibrate delay to make sure all the caches are * actually flushed. */ for (i = 0; i <= 10; i++) mdelay(1000); } static void __devexit megaraid_remove_one(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); adapter_t *adapter = (adapter_t *)host->hostdata; scsi_remove_host(host); __megaraid_shutdown(adapter); /* Free our resources */ if (adapter->flag & BOARD_MEMMAP) { iounmap((void *)adapter->base); release_mem_region(adapter->host->base, 128); } else release_region(adapter->base, 16); mega_free_sgl(adapter); #ifdef CONFIG_PROC_FS if (adapter->controller_proc_dir_entry) { remove_proc_entry("stat", adapter->controller_proc_dir_entry); remove_proc_entry("config", adapter->controller_proc_dir_entry); remove_proc_entry("mailbox", adapter->controller_proc_dir_entry); #if MEGA_HAVE_ENH_PROC remove_proc_entry("rebuild-rate", adapter->controller_proc_dir_entry); remove_proc_entry("battery-status", adapter->controller_proc_dir_entry); remove_proc_entry("diskdrives-ch0", adapter->controller_proc_dir_entry); remove_proc_entry("diskdrives-ch1", adapter->controller_proc_dir_entry); remove_proc_entry("diskdrives-ch2", adapter->controller_proc_dir_entry); remove_proc_entry("diskdrives-ch3", adapter->controller_proc_dir_entry); remove_proc_entry("raiddrives-0-9", adapter->controller_proc_dir_entry); remove_proc_entry("raiddrives-10-19", adapter->controller_proc_dir_entry); remove_proc_entry("raiddrives-20-29", adapter->controller_proc_dir_entry); remove_proc_entry("raiddrives-30-39", adapter->controller_proc_dir_entry); #endif { char buf[12] = { 0 }; sprintf(buf, "hba%d", adapter->host->host_no); remove_proc_entry(buf, mega_proc_dir_entry); } } #endif pci_free_consistent(adapter->dev, MEGA_BUFFER_SIZE, adapter->mega_buffer, adapter->buf_dma_handle); kfree(adapter->scb_list); pci_free_consistent(adapter->dev, sizeof(mbox64_t), adapter->una_mbox64, adapter->una_mbox64_dma); scsi_host_put(host); pci_disable_device(pdev); hba_count--; } static void megaraid_shutdown(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); adapter_t *adapter = (adapter_t *)host->hostdata; __megaraid_shutdown(adapter); } static struct pci_device_id megaraid_pci_tbl[] = { {PCI_VENDOR_ID_AMI, PCI_DEVICE_ID_AMI_MEGARAID, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {PCI_VENDOR_ID_AMI, PCI_DEVICE_ID_AMI_MEGARAID2, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_AMI_MEGARAID3, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {0,} }; MODULE_DEVICE_TABLE(pci, megaraid_pci_tbl); static struct pci_driver megaraid_pci_driver = { .name = "megaraid_legacy", .id_table = megaraid_pci_tbl, .probe = megaraid_probe_one, .remove = __devexit_p(megaraid_remove_one), .shutdown = megaraid_shutdown, }; static int __init megaraid_init(void) { int error; if ((max_cmd_per_lun <= 0) || (max_cmd_per_lun > MAX_CMD_PER_LUN)) max_cmd_per_lun = MAX_CMD_PER_LUN; if (max_mbox_busy_wait > MBOX_BUSY_WAIT) max_mbox_busy_wait = MBOX_BUSY_WAIT; #ifdef CONFIG_PROC_FS mega_proc_dir_entry = proc_mkdir("megaraid", NULL); if (!mega_proc_dir_entry) { printk(KERN_WARNING "megaraid: failed to create megaraid root\n"); } #endif error = pci_register_driver(&megaraid_pci_driver); if (error) { #ifdef CONFIG_PROC_FS remove_proc_entry("megaraid", NULL); #endif return error; } /* * Register the driver as a character device, for applications * to access it for ioctls. * First argument (major) to register_chrdev implies a dynamic * major number allocation. */ major = register_chrdev(0, "megadev_legacy", &megadev_fops); if (!major) { printk(KERN_WARNING "megaraid: failed to register char device\n"); } return 0; } static void __exit megaraid_exit(void) { /* * Unregister the character device interface to the driver. */ unregister_chrdev(major, "megadev_legacy"); pci_unregister_driver(&megaraid_pci_driver); #ifdef CONFIG_PROC_FS remove_proc_entry("megaraid", NULL); #endif } module_init(megaraid_init); module_exit(megaraid_exit); /* vi: set ts=8 sw=8 tw=78: */