/* * libata-scsi.c - helper library for ATA * * Maintained by: Jeff Garzik * Please ALWAYS copy linux-ide@vger.kernel.org * on emails. * * Copyright 2003-2004 Red Hat, Inc. All rights reserved. * Copyright 2003-2004 Jeff Garzik * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/DocBook/libata.* * * Hardware documentation available from * - http://www.t10.org/ * - http://www.t13.org/ * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libata.h" #define SECTOR_SIZE 512 typedef unsigned int (*ata_xlat_func_t)(struct ata_queued_cmd *qc, const u8 *scsicmd); static struct ata_device * ata_scsi_find_dev(struct ata_port *ap, const struct scsi_device *scsidev); #define RW_RECOVERY_MPAGE 0x1 #define RW_RECOVERY_MPAGE_LEN 12 #define CACHE_MPAGE 0x8 #define CACHE_MPAGE_LEN 20 #define CONTROL_MPAGE 0xa #define CONTROL_MPAGE_LEN 12 #define ALL_MPAGES 0x3f #define ALL_SUB_MPAGES 0xff static const u8 def_rw_recovery_mpage[] = { RW_RECOVERY_MPAGE, RW_RECOVERY_MPAGE_LEN - 2, (1 << 7) | /* AWRE, sat-r06 say it shall be 0 */ (1 << 6), /* ARRE (auto read reallocation) */ 0, /* read retry count */ 0, 0, 0, 0, 0, /* write retry count */ 0, 0, 0 }; static const u8 def_cache_mpage[CACHE_MPAGE_LEN] = { CACHE_MPAGE, CACHE_MPAGE_LEN - 2, 0, /* contains WCE, needs to be 0 for logic */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* contains DRA, needs to be 0 for logic */ 0, 0, 0, 0, 0, 0, 0 }; static const u8 def_control_mpage[CONTROL_MPAGE_LEN] = { CONTROL_MPAGE, CONTROL_MPAGE_LEN - 2, 2, /* DSENSE=0, GLTSD=1 */ 0, /* [QAM+QERR may be 1, see 05-359r1] */ 0, 0, 0, 0, 0xff, 0xff, 0, 30 /* extended self test time, see 05-359r1 */ }; /* * libata transport template. libata doesn't do real transport stuff. * It just needs the eh_timed_out hook. */ struct scsi_transport_template ata_scsi_transport_template = { .eh_strategy_handler = ata_scsi_error, .eh_timed_out = ata_scsi_timed_out, }; static void ata_scsi_invalid_field(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) { ata_scsi_set_sense(cmd, ILLEGAL_REQUEST, 0x24, 0x0); /* "Invalid field in cbd" */ done(cmd); } /** * ata_std_bios_param - generic bios head/sector/cylinder calculator used by sd. * @sdev: SCSI device for which BIOS geometry is to be determined * @bdev: block device associated with @sdev * @capacity: capacity of SCSI device * @geom: location to which geometry will be output * * Generic bios head/sector/cylinder calculator * used by sd. Most BIOSes nowadays expect a XXX/255/16 (CHS) * mapping. Some situations may arise where the disk is not * bootable if this is not used. * * LOCKING: * Defined by the SCSI layer. We don't really care. * * RETURNS: * Zero. */ int ata_std_bios_param(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]) { geom[0] = 255; geom[1] = 63; sector_div(capacity, 255*63); geom[2] = capacity; return 0; } /** * ata_cmd_ioctl - Handler for HDIO_DRIVE_CMD ioctl * @scsidev: Device to which we are issuing command * @arg: User provided data for issuing command * * LOCKING: * Defined by the SCSI layer. We don't really care. * * RETURNS: * Zero on success, negative errno on error. */ int ata_cmd_ioctl(struct scsi_device *scsidev, void __user *arg) { int rc = 0; u8 scsi_cmd[MAX_COMMAND_SIZE]; u8 args[4], *argbuf = NULL; int argsize = 0; struct scsi_sense_hdr sshdr; enum dma_data_direction data_dir; if (arg == NULL) return -EINVAL; if (copy_from_user(args, arg, sizeof(args))) return -EFAULT; memset(scsi_cmd, 0, sizeof(scsi_cmd)); if (args[3]) { argsize = SECTOR_SIZE * args[3]; argbuf = kmalloc(argsize, GFP_KERNEL); if (argbuf == NULL) { rc = -ENOMEM; goto error; } scsi_cmd[1] = (4 << 1); /* PIO Data-in */ scsi_cmd[2] = 0x0e; /* no off.line or cc, read from dev, block count in sector count field */ data_dir = DMA_FROM_DEVICE; } else { scsi_cmd[1] = (3 << 1); /* Non-data */ /* scsi_cmd[2] is already 0 -- no off.line, cc, or data xfer */ data_dir = DMA_NONE; } scsi_cmd[0] = ATA_16; scsi_cmd[4] = args[2]; if (args[0] == WIN_SMART) { /* hack -- ide driver does this too... */ scsi_cmd[6] = args[3]; scsi_cmd[8] = args[1]; scsi_cmd[10] = 0x4f; scsi_cmd[12] = 0xc2; } else { scsi_cmd[6] = args[1]; } scsi_cmd[14] = args[0]; /* Good values for timeout and retries? Values below from scsi_ioctl_send_command() for default case... */ if (scsi_execute_req(scsidev, scsi_cmd, data_dir, argbuf, argsize, &sshdr, (10*HZ), 5)) { rc = -EIO; goto error; } /* Need code to retrieve data from check condition? */ if ((argbuf) && copy_to_user(arg + sizeof(args), argbuf, argsize)) rc = -EFAULT; error: if (argbuf) kfree(argbuf); return rc; } /** * ata_task_ioctl - Handler for HDIO_DRIVE_TASK ioctl * @scsidev: Device to which we are issuing command * @arg: User provided data for issuing command * * LOCKING: * Defined by the SCSI layer. We don't really care. * * RETURNS: * Zero on success, negative errno on error. */ int ata_task_ioctl(struct scsi_device *scsidev, void __user *arg) { int rc = 0; u8 scsi_cmd[MAX_COMMAND_SIZE]; u8 args[7]; struct scsi_sense_hdr sshdr; if (arg == NULL) return -EINVAL; if (copy_from_user(args, arg, sizeof(args))) return -EFAULT; memset(scsi_cmd, 0, sizeof(scsi_cmd)); scsi_cmd[0] = ATA_16; scsi_cmd[1] = (3 << 1); /* Non-data */ /* scsi_cmd[2] is already 0 -- no off.line, cc, or data xfer */ scsi_cmd[4] = args[1]; scsi_cmd[6] = args[2]; scsi_cmd[8] = args[3]; scsi_cmd[10] = args[4]; scsi_cmd[12] = args[5]; scsi_cmd[14] = args[0]; /* Good values for timeout and retries? Values below from scsi_ioctl_send_command() for default case... */ if (scsi_execute_req(scsidev, scsi_cmd, DMA_NONE, NULL, 0, &sshdr, (10*HZ), 5)) rc = -EIO; /* Need code to retrieve data from check condition? */ return rc; } int ata_scsi_ioctl(struct scsi_device *scsidev, int cmd, void __user *arg) { int val = -EINVAL, rc = -EINVAL; switch (cmd) { case ATA_IOC_GET_IO32: val = 0; if (copy_to_user(arg, &val, 1)) return -EFAULT; return 0; case ATA_IOC_SET_IO32: val = (unsigned long) arg; if (val != 0) return -EINVAL; return 0; case HDIO_DRIVE_CMD: if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) return -EACCES; return ata_cmd_ioctl(scsidev, arg); case HDIO_DRIVE_TASK: if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) return -EACCES; return ata_task_ioctl(scsidev, arg); default: rc = -ENOTTY; break; } return rc; } /** * ata_scsi_qc_new - acquire new ata_queued_cmd reference * @dev: ATA device to which the new command is attached * @cmd: SCSI command that originated this ATA command * @done: SCSI command completion function * * Obtain a reference to an unused ata_queued_cmd structure, * which is the basic libata structure representing a single * ATA command sent to the hardware. * * If a command was available, fill in the SCSI-specific * portions of the structure with information on the * current command. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Command allocated, or %NULL if none available. */ struct ata_queued_cmd *ata_scsi_qc_new(struct ata_device *dev, struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) { struct ata_queued_cmd *qc; qc = ata_qc_new_init(dev); if (qc) { qc->scsicmd = cmd; qc->scsidone = done; if (cmd->use_sg) { qc->__sg = (struct scatterlist *) cmd->request_buffer; qc->n_elem = cmd->use_sg; } else { qc->__sg = &qc->sgent; qc->n_elem = 1; } } else { cmd->result = (DID_OK << 16) | (QUEUE_FULL << 1); done(cmd); } return qc; } /** * ata_dump_status - user friendly display of error info * @id: id of the port in question * @tf: ptr to filled out taskfile * * Decode and dump the ATA error/status registers for the user so * that they have some idea what really happened at the non * make-believe layer. * * LOCKING: * inherited from caller */ void ata_dump_status(unsigned id, struct ata_taskfile *tf) { u8 stat = tf->command, err = tf->feature; printk(KERN_WARNING "ata%u: status=0x%02x { ", id, stat); if (stat & ATA_BUSY) { printk("Busy }\n"); /* Data is not valid in this case */ } else { if (stat & 0x40) printk("DriveReady "); if (stat & 0x20) printk("DeviceFault "); if (stat & 0x10) printk("SeekComplete "); if (stat & 0x08) printk("DataRequest "); if (stat & 0x04) printk("CorrectedError "); if (stat & 0x02) printk("Index "); if (stat & 0x01) printk("Error "); printk("}\n"); if (err) { printk(KERN_WARNING "ata%u: error=0x%02x { ", id, err); if (err & 0x04) printk("DriveStatusError "); if (err & 0x80) { if (err & 0x04) printk("BadCRC "); else printk("Sector "); } if (err & 0x40) printk("UncorrectableError "); if (err & 0x10) printk("SectorIdNotFound "); if (err & 0x02) printk("TrackZeroNotFound "); if (err & 0x01) printk("AddrMarkNotFound "); printk("}\n"); } } } int ata_scsi_device_resume(struct scsi_device *sdev) { struct ata_port *ap = ata_shost_to_port(sdev->host); struct ata_device *dev = &ap->device[sdev->id]; return ata_device_resume(dev); } int ata_scsi_device_suspend(struct scsi_device *sdev, pm_message_t state) { struct ata_port *ap = ata_shost_to_port(sdev->host); struct ata_device *dev = &ap->device[sdev->id]; return ata_device_suspend(dev, state); } /** * ata_to_sense_error - convert ATA error to SCSI error * @id: ATA device number * @drv_stat: value contained in ATA status register * @drv_err: value contained in ATA error register * @sk: the sense key we'll fill out * @asc: the additional sense code we'll fill out * @ascq: the additional sense code qualifier we'll fill out * @verbose: be verbose * * Converts an ATA error into a SCSI error. Fill out pointers to * SK, ASC, and ASCQ bytes for later use in fixed or descriptor * format sense blocks. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_to_sense_error(unsigned id, u8 drv_stat, u8 drv_err, u8 *sk, u8 *asc, u8 *ascq, int verbose) { int i; /* Based on the 3ware driver translation table */ static const unsigned char sense_table[][4] = { /* BBD|ECC|ID|MAR */ {0xd1, ABORTED_COMMAND, 0x00, 0x00}, // Device busy Aborted command /* BBD|ECC|ID */ {0xd0, ABORTED_COMMAND, 0x00, 0x00}, // Device busy Aborted command /* ECC|MC|MARK */ {0x61, HARDWARE_ERROR, 0x00, 0x00}, // Device fault Hardware error /* ICRC|ABRT */ /* NB: ICRC & !ABRT is BBD */ {0x84, ABORTED_COMMAND, 0x47, 0x00}, // Data CRC error SCSI parity error /* MC|ID|ABRT|TRK0|MARK */ {0x37, NOT_READY, 0x04, 0x00}, // Unit offline Not ready /* MCR|MARK */ {0x09, NOT_READY, 0x04, 0x00}, // Unrecovered disk error Not ready /* Bad address mark */ {0x01, MEDIUM_ERROR, 0x13, 0x00}, // Address mark not found Address mark not found for data field /* TRK0 */ {0x02, HARDWARE_ERROR, 0x00, 0x00}, // Track 0 not found Hardware error /* Abort & !ICRC */ {0x04, ABORTED_COMMAND, 0x00, 0x00}, // Aborted command Aborted command /* Media change request */ {0x08, NOT_READY, 0x04, 0x00}, // Media change request FIXME: faking offline /* SRV */ {0x10, ABORTED_COMMAND, 0x14, 0x00}, // ID not found Recorded entity not found /* Media change */ {0x08, NOT_READY, 0x04, 0x00}, // Media change FIXME: faking offline /* ECC */ {0x40, MEDIUM_ERROR, 0x11, 0x04}, // Uncorrectable ECC error Unrecovered read error /* BBD - block marked bad */ {0x80, MEDIUM_ERROR, 0x11, 0x04}, // Block marked bad Medium error, unrecovered read error {0xFF, 0xFF, 0xFF, 0xFF}, // END mark }; static const unsigned char stat_table[][4] = { /* Must be first because BUSY means no other bits valid */ {0x80, ABORTED_COMMAND, 0x47, 0x00}, // Busy, fake parity for now {0x20, HARDWARE_ERROR, 0x00, 0x00}, // Device fault {0x08, ABORTED_COMMAND, 0x47, 0x00}, // Timed out in xfer, fake parity for now {0x04, RECOVERED_ERROR, 0x11, 0x00}, // Recovered ECC error Medium error, recovered {0xFF, 0xFF, 0xFF, 0xFF}, // END mark }; /* * Is this an error we can process/parse */ if (drv_stat & ATA_BUSY) { drv_err = 0; /* Ignore the err bits, they're invalid */ } if (drv_err) { /* Look for drv_err */ for (i = 0; sense_table[i][0] != 0xFF; i++) { /* Look for best matches first */ if ((sense_table[i][0] & drv_err) == sense_table[i][0]) { *sk = sense_table[i][1]; *asc = sense_table[i][2]; *ascq = sense_table[i][3]; goto translate_done; } } /* No immediate match */ if (verbose) printk(KERN_WARNING "ata%u: no sense translation for " "error 0x%02x\n", id, drv_err); } /* Fall back to interpreting status bits */ for (i = 0; stat_table[i][0] != 0xFF; i++) { if (stat_table[i][0] & drv_stat) { *sk = stat_table[i][1]; *asc = stat_table[i][2]; *ascq = stat_table[i][3]; goto translate_done; } } /* No error? Undecoded? */ if (verbose) printk(KERN_WARNING "ata%u: no sense translation for " "status: 0x%02x\n", id, drv_stat); /* We need a sensible error return here, which is tricky, and one that won't cause people to do things like return a disk wrongly */ *sk = ABORTED_COMMAND; *asc = 0x00; *ascq = 0x00; translate_done: if (verbose) printk(KERN_ERR "ata%u: translated ATA stat/err 0x%02x/%02x " "to SCSI SK/ASC/ASCQ 0x%x/%02x/%02x\n", id, drv_stat, drv_err, *sk, *asc, *ascq); return; } /* * ata_gen_ata_desc_sense - Generate check condition sense block. * @qc: Command that completed. * * This function is specific to the ATA descriptor format sense * block specified for the ATA pass through commands. Regardless * of whether the command errored or not, return a sense * block. Copy all controller registers into the sense * block. Clear sense key, ASC & ASCQ if there is no error. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_gen_ata_desc_sense(struct ata_queued_cmd *qc) { struct scsi_cmnd *cmd = qc->scsicmd; struct ata_taskfile *tf = &qc->result_tf; unsigned char *sb = cmd->sense_buffer; unsigned char *desc = sb + 8; int verbose = qc->ap->ops->error_handler == NULL; memset(sb, 0, SCSI_SENSE_BUFFERSIZE); cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION; /* * Use ata_to_sense_error() to map status register bits * onto sense key, asc & ascq. */ if (qc->err_mask || tf->command & (ATA_BUSY | ATA_DF | ATA_ERR | ATA_DRQ)) { ata_to_sense_error(qc->ap->id, tf->command, tf->feature, &sb[1], &sb[2], &sb[3], verbose); sb[1] &= 0x0f; } /* * Sense data is current and format is descriptor. */ sb[0] = 0x72; desc[0] = 0x09; /* * Set length of additional sense data. * Since we only populate descriptor 0, the total * length is the same (fixed) length as descriptor 0. */ desc[1] = sb[7] = 14; /* * Copy registers into sense buffer. */ desc[2] = 0x00; desc[3] = tf->feature; /* == error reg */ desc[5] = tf->nsect; desc[7] = tf->lbal; desc[9] = tf->lbam; desc[11] = tf->lbah; desc[12] = tf->device; desc[13] = tf->command; /* == status reg */ /* * Fill in Extend bit, and the high order bytes * if applicable. */ if (tf->flags & ATA_TFLAG_LBA48) { desc[2] |= 0x01; desc[4] = tf->hob_nsect; desc[6] = tf->hob_lbal; desc[8] = tf->hob_lbam; desc[10] = tf->hob_lbah; } } /** * ata_gen_fixed_sense - generate a SCSI fixed sense block * @qc: Command that we are erroring out * * Leverage ata_to_sense_error() to give us the codes. Fit our * LBA in here if there's room. * * LOCKING: * inherited from caller */ void ata_gen_fixed_sense(struct ata_queued_cmd *qc) { struct scsi_cmnd *cmd = qc->scsicmd; struct ata_taskfile *tf = &qc->result_tf; unsigned char *sb = cmd->sense_buffer; int verbose = qc->ap->ops->error_handler == NULL; memset(sb, 0, SCSI_SENSE_BUFFERSIZE); cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION; /* * Use ata_to_sense_error() to map status register bits * onto sense key, asc & ascq. */ if (qc->err_mask || tf->command & (ATA_BUSY | ATA_DF | ATA_ERR | ATA_DRQ)) { ata_to_sense_error(qc->ap->id, tf->command, tf->feature, &sb[2], &sb[12], &sb[13], verbose); sb[2] &= 0x0f; } sb[0] = 0x70; sb[7] = 0x0a; if (tf->flags & ATA_TFLAG_LBA48) { /* TODO: find solution for LBA48 descriptors */ } else if (tf->flags & ATA_TFLAG_LBA) { /* A small (28b) LBA will fit in the 32b info field */ sb[0] |= 0x80; /* set valid bit */ sb[3] = tf->device & 0x0f; sb[4] = tf->lbah; sb[5] = tf->lbam; sb[6] = tf->lbal; } else { /* TODO: C/H/S */ } } static void ata_scsi_sdev_config(struct scsi_device *sdev) { sdev->use_10_for_rw = 1; sdev->use_10_for_ms = 1; } static void ata_scsi_dev_config(struct scsi_device *sdev, struct ata_device *dev) { unsigned int max_sectors; /* TODO: 2048 is an arbitrary number, not the * hardware maximum. This should be increased to * 65534 when Jens Axboe's patch for dynamically * determining max_sectors is merged. */ max_sectors = ATA_MAX_SECTORS; if (dev->flags & ATA_DFLAG_LBA48) max_sectors = ATA_MAX_SECTORS_LBA48; if (dev->max_sectors) max_sectors = dev->max_sectors; blk_queue_max_sectors(sdev->request_queue, max_sectors); /* * SATA DMA transfers must be multiples of 4 byte, so * we need to pad ATAPI transfers using an extra sg. * Decrement max hw segments accordingly. */ if (dev->class == ATA_DEV_ATAPI) { request_queue_t *q = sdev->request_queue; blk_queue_max_hw_segments(q, q->max_hw_segments - 1); } if (dev->flags & ATA_DFLAG_NCQ) { int depth; depth = min(sdev->host->can_queue, ata_id_queue_depth(dev->id)); depth = min(ATA_MAX_QUEUE - 1, depth); scsi_adjust_queue_depth(sdev, MSG_SIMPLE_TAG, depth); } } /** * ata_scsi_slave_config - Set SCSI device attributes * @sdev: SCSI device to examine * * This is called before we actually start reading * and writing to the device, to configure certain * SCSI mid-layer behaviors. * * LOCKING: * Defined by SCSI layer. We don't really care. */ int ata_scsi_slave_config(struct scsi_device *sdev) { ata_scsi_sdev_config(sdev); blk_queue_max_phys_segments(sdev->request_queue, LIBATA_MAX_PRD); if (sdev->id < ATA_MAX_DEVICES) { struct ata_port *ap; struct ata_device *dev; ap = ata_shost_to_port(sdev->host); dev = &ap->device[sdev->id]; ata_scsi_dev_config(sdev, dev); } return 0; /* scsi layer doesn't check return value, sigh */ } /** * ata_scsi_change_queue_depth - SCSI callback for queue depth config * @sdev: SCSI device to configure queue depth for * @queue_depth: new queue depth * * This is libata standard hostt->change_queue_depth callback. * SCSI will call into this callback when user tries to set queue * depth via sysfs. * * LOCKING: * SCSI layer (we don't care) * * RETURNS: * Newly configured queue depth. */ int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth) { struct ata_port *ap = ata_shost_to_port(sdev->host); struct ata_device *dev; int max_depth; if (queue_depth < 1) return sdev->queue_depth; dev = ata_scsi_find_dev(ap, sdev); if (!dev || !ata_dev_enabled(dev)) return sdev->queue_depth; max_depth = min(sdev->host->can_queue, ata_id_queue_depth(dev->id)); max_depth = min(ATA_MAX_QUEUE - 1, max_depth); if (queue_depth > max_depth) queue_depth = max_depth; scsi_adjust_queue_depth(sdev, MSG_SIMPLE_TAG, queue_depth); return queue_depth; } /** * ata_scsi_start_stop_xlat - Translate SCSI START STOP UNIT command * @qc: Storage for translated ATA taskfile * @scsicmd: SCSI command to translate * * Sets up an ATA taskfile to issue STANDBY (to stop) or READ VERIFY * (to start). Perhaps these commands should be preceded by * CHECK POWER MODE to see what power mode the device is already in. * [See SAT revision 5 at www.t10.org] * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Zero on success, non-zero on error. */ static unsigned int ata_scsi_start_stop_xlat(struct ata_queued_cmd *qc, const u8 *scsicmd) { struct ata_taskfile *tf = &qc->tf; tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; tf->protocol = ATA_PROT_NODATA; if (scsicmd[1] & 0x1) { ; /* ignore IMMED bit, violates sat-r05 */ } if (scsicmd[4] & 0x2) goto invalid_fld; /* LOEJ bit set not supported */ if (((scsicmd[4] >> 4) & 0xf) != 0) goto invalid_fld; /* power conditions not supported */ if (scsicmd[4] & 0x1) { tf->nsect = 1; /* 1 sector, lba=0 */ if (qc->dev->flags & ATA_DFLAG_LBA) { tf->flags |= ATA_TFLAG_LBA; tf->lbah = 0x0; tf->lbam = 0x0; tf->lbal = 0x0; tf->device |= ATA_LBA; } else { /* CHS */ tf->lbal = 0x1; /* sect */ tf->lbam = 0x0; /* cyl low */ tf->lbah = 0x0; /* cyl high */ } tf->command = ATA_CMD_VERIFY; /* READ VERIFY */ } else { tf->nsect = 0; /* time period value (0 implies now) */ tf->command = ATA_CMD_STANDBY; /* Consider: ATA STANDBY IMMEDIATE command */ } /* * Standby and Idle condition timers could be implemented but that * would require libata to implement the Power condition mode page * and allow the user to change it. Changing mode pages requires * MODE SELECT to be implemented. */ return 0; invalid_fld: ata_scsi_set_sense(qc->scsicmd, ILLEGAL_REQUEST, 0x24, 0x0); /* "Invalid field in cbd" */ return 1; } /** * ata_scsi_flush_xlat - Translate SCSI SYNCHRONIZE CACHE command * @qc: Storage for translated ATA taskfile * @scsicmd: SCSI command to translate (ignored) * * Sets up an ATA taskfile to issue FLUSH CACHE or * FLUSH CACHE EXT. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Zero on success, non-zero on error. */ static unsigned int ata_scsi_flush_xlat(struct ata_queued_cmd *qc, const u8 *scsicmd) { struct ata_taskfile *tf = &qc->tf; tf->flags |= ATA_TFLAG_DEVICE; tf->protocol = ATA_PROT_NODATA; if ((qc->dev->flags & ATA_DFLAG_LBA48) && (ata_id_has_flush_ext(qc->dev->id))) tf->command = ATA_CMD_FLUSH_EXT; else tf->command = ATA_CMD_FLUSH; return 0; } /** * scsi_6_lba_len - Get LBA and transfer length * @scsicmd: SCSI command to translate * * Calculate LBA and transfer length for 6-byte commands. * * RETURNS: * @plba: the LBA * @plen: the transfer length */ static void scsi_6_lba_len(const u8 *scsicmd, u64 *plba, u32 *plen) { u64 lba = 0; u32 len = 0; VPRINTK("six-byte command\n"); lba |= ((u64)scsicmd[2]) << 8; lba |= ((u64)scsicmd[3]); len |= ((u32)scsicmd[4]); *plba = lba; *plen = len; } /** * scsi_10_lba_len - Get LBA and transfer length * @scsicmd: SCSI command to translate * * Calculate LBA and transfer length for 10-byte commands. * * RETURNS: * @plba: the LBA * @plen: the transfer length */ static void scsi_10_lba_len(const u8 *scsicmd, u64 *plba, u32 *plen) { u64 lba = 0; u32 len = 0; VPRINTK("ten-byte command\n"); lba |= ((u64)scsicmd[2]) << 24; lba |= ((u64)scsicmd[3]) << 16; lba |= ((u64)scsicmd[4]) << 8; lba |= ((u64)scsicmd[5]); len |= ((u32)scsicmd[7]) << 8; len |= ((u32)scsicmd[8]); *plba = lba; *plen = len; } /** * scsi_16_lba_len - Get LBA and transfer length * @scsicmd: SCSI command to translate * * Calculate LBA and transfer length for 16-byte commands. * * RETURNS: * @plba: the LBA * @plen: the transfer length */ static void scsi_16_lba_len(const u8 *scsicmd, u64 *plba, u32 *plen) { u64 lba = 0; u32 len = 0; VPRINTK("sixteen-byte command\n"); lba |= ((u64)scsicmd[2]) << 56; lba |= ((u64)scsicmd[3]) << 48; lba |= ((u64)scsicmd[4]) << 40; lba |= ((u64)scsicmd[5]) << 32; lba |= ((u64)scsicmd[6]) << 24; lba |= ((u64)scsicmd[7]) << 16; lba |= ((u64)scsicmd[8]) << 8; lba |= ((u64)scsicmd[9]); len |= ((u32)scsicmd[10]) << 24; len |= ((u32)scsicmd[11]) << 16; len |= ((u32)scsicmd[12]) << 8; len |= ((u32)scsicmd[13]); *plba = lba; *plen = len; } /** * ata_scsi_verify_xlat - Translate SCSI VERIFY command into an ATA one * @qc: Storage for translated ATA taskfile * @scsicmd: SCSI command to translate * * Converts SCSI VERIFY command to an ATA READ VERIFY command. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Zero on success, non-zero on error. */ static unsigned int ata_scsi_verify_xlat(struct ata_queued_cmd *qc, const u8 *scsicmd) { struct ata_taskfile *tf = &qc->tf; struct ata_device *dev = qc->dev; u64 dev_sectors = qc->dev->n_sectors; u64 block; u32 n_block; tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; tf->protocol = ATA_PROT_NODATA; if (scsicmd[0] == VERIFY) scsi_10_lba_len(scsicmd, &block, &n_block); else if (scsicmd[0] == VERIFY_16) scsi_16_lba_len(scsicmd, &block, &n_block); else goto invalid_fld; if (!n_block) goto nothing_to_do; if (block >= dev_sectors) goto out_of_range; if ((block + n_block) > dev_sectors) goto out_of_range; if (dev->flags & ATA_DFLAG_LBA) { tf->flags |= ATA_TFLAG_LBA; if (lba_28_ok(block, n_block)) { /* use LBA28 */ tf->command = ATA_CMD_VERIFY; tf->device |= (block >> 24) & 0xf; } else if (lba_48_ok(block, n_block)) { if (!(dev->flags & ATA_DFLAG_LBA48)) goto out_of_range; /* use LBA48 */ tf->flags |= ATA_TFLAG_LBA48; tf->command = ATA_CMD_VERIFY_EXT; tf->hob_nsect = (n_block >> 8) & 0xff; tf->hob_lbah = (block >> 40) & 0xff; tf->hob_lbam = (block >> 32) & 0xff; tf->hob_lbal = (block >> 24) & 0xff; } else /* request too large even for LBA48 */ goto out_of_range; tf->nsect = n_block & 0xff; tf->lbah = (block >> 16) & 0xff; tf->lbam = (block >> 8) & 0xff; tf->lbal = block & 0xff; tf->device |= ATA_LBA; } else { /* CHS */ u32 sect, head, cyl, track; if (!lba_28_ok(block, n_block)) goto out_of_range; /* Convert LBA to CHS */ track = (u32)block / dev->sectors; cyl = track / dev->heads; head = track % dev->heads; sect = (u32)block % dev->sectors + 1; DPRINTK("block %u track %u cyl %u head %u sect %u\n", (u32)block, track, cyl, head, sect); /* Check whether the converted CHS can fit. Cylinder: 0-65535 Head: 0-15 Sector: 1-255*/ if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) goto out_of_range; tf->command = ATA_CMD_VERIFY; tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ tf->lbal = sect; tf->lbam = cyl; tf->lbah = cyl >> 8; tf->device |= head; } return 0; invalid_fld: ata_scsi_set_sense(qc->scsicmd, ILLEGAL_REQUEST, 0x24, 0x0); /* "Invalid field in cbd" */ return 1; out_of_range: ata_scsi_set_sense(qc->scsicmd, ILLEGAL_REQUEST, 0x21, 0x0); /* "Logical Block Address out of range" */ return 1; nothing_to_do: qc->scsicmd->result = SAM_STAT_GOOD; return 1; } /** * ata_scsi_rw_xlat - Translate SCSI r/w command into an ATA one * @qc: Storage for translated ATA taskfile * @scsicmd: SCSI command to translate * * Converts any of six SCSI read/write commands into the * ATA counterpart, including starting sector (LBA), * sector count, and taking into account the device's LBA48 * support. * * Commands %READ_6, %READ_10, %READ_16, %WRITE_6, %WRITE_10, and * %WRITE_16 are currently supported. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Zero on success, non-zero on error. */ static unsigned int ata_scsi_rw_xlat(struct ata_queued_cmd *qc, const u8 *scsicmd) { struct ata_taskfile *tf = &qc->tf; struct ata_device *dev = qc->dev; u64 block; u32 n_block; qc->flags |= ATA_QCFLAG_IO; tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; if (scsicmd[0] == WRITE_10 || scsicmd[0] == WRITE_6 || scsicmd[0] == WRITE_16) tf->flags |= ATA_TFLAG_WRITE; /* Calculate the SCSI LBA, transfer length and FUA. */ switch (scsicmd[0]) { case READ_10: case WRITE_10: scsi_10_lba_len(scsicmd, &block, &n_block); if (unlikely(scsicmd[1] & (1 << 3))) tf->flags |= ATA_TFLAG_FUA; break; case READ_6: case WRITE_6: scsi_6_lba_len(scsicmd, &block, &n_block); /* for 6-byte r/w commands, transfer length 0 * means 256 blocks of data, not 0 block. */ if (!n_block) n_block = 256; break; case READ_16: case WRITE_16: scsi_16_lba_len(scsicmd, &block, &n_block); if (unlikely(scsicmd[1] & (1 << 3))) tf->flags |= ATA_TFLAG_FUA; break; default: DPRINTK("no-byte command\n"); goto invalid_fld; } /* Check and compose ATA command */ if (!n_block) /* For 10-byte and 16-byte SCSI R/W commands, transfer * length 0 means transfer 0 block of data. * However, for ATA R/W commands, sector count 0 means * 256 or 65536 sectors, not 0 sectors as in SCSI. * * WARNING: one or two older ATA drives treat 0 as 0... */ goto nothing_to_do; if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ) { /* yay, NCQ */ if (!lba_48_ok(block, n_block)) goto out_of_range; tf->protocol = ATA_PROT_NCQ; tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; if (tf->flags & ATA_TFLAG_WRITE) tf->command = ATA_CMD_FPDMA_WRITE; else tf->command = ATA_CMD_FPDMA_READ; qc->nsect = n_block; tf->nsect = qc->tag << 3; tf->hob_feature = (n_block >> 8) & 0xff; tf->feature = n_block & 0xff; tf->hob_lbah = (block >> 40) & 0xff; tf->hob_lbam = (block >> 32) & 0xff; tf->hob_lbal = (block >> 24) & 0xff; tf->lbah = (block >> 16) & 0xff; tf->lbam = (block >> 8) & 0xff; tf->lbal = block & 0xff; tf->device = 1 << 6; if (tf->flags & ATA_TFLAG_FUA) tf->device |= 1 << 7; } else if (dev->flags & ATA_DFLAG_LBA) { tf->flags |= ATA_TFLAG_LBA; if (lba_28_ok(block, n_block)) { /* use LBA28 */ tf->device |= (block >> 24) & 0xf; } else if (lba_48_ok(block, n_block)) { if (!(dev->flags & ATA_DFLAG_LBA48)) goto out_of_range; /* use LBA48 */ tf->flags |= ATA_TFLAG_LBA48; tf->hob_nsect = (n_block >> 8) & 0xff; tf->hob_lbah = (block >> 40) & 0xff; tf->hob_lbam = (block >> 32) & 0xff; tf->hob_lbal = (block >> 24) & 0xff; } else /* request too large even for LBA48 */ goto out_of_range; if (unlikely(ata_rwcmd_protocol(qc) < 0)) goto invalid_fld; qc->nsect = n_block; tf->nsect = n_block & 0xff; tf->lbah = (block >> 16) & 0xff; tf->lbam = (block >> 8) & 0xff; tf->lbal = block & 0xff; tf->device |= ATA_LBA; } else { /* CHS */ u32 sect, head, cyl, track; /* The request -may- be too large for CHS addressing. */ if (!lba_28_ok(block, n_block)) goto out_of_range; if (unlikely(ata_rwcmd_protocol(qc) < 0)) goto invalid_fld; /* Convert LBA to CHS */ track = (u32)block / dev->sectors; cyl = track / dev->heads; head = track % dev->heads; sect = (u32)block % dev->sectors + 1; DPRINTK("block %u track %u cyl %u head %u sect %u\n", (u32)block, track, cyl, head, sect); /* Check whether the converted CHS can fit. Cylinder: 0-65535 Head: 0-15 Sector: 1-255*/ if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) goto out_of_range; qc->nsect = n_block; tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ tf->lbal = sect; tf->lbam = cyl; tf->lbah = cyl >> 8; tf->device |= head; } return 0; invalid_fld: ata_scsi_set_sense(qc->scsicmd, ILLEGAL_REQUEST, 0x24, 0x0); /* "Invalid field in cbd" */ return 1; out_of_range: ata_scsi_set_sense(qc->scsicmd, ILLEGAL_REQUEST, 0x21, 0x0); /* "Logical Block Address out of range" */ return 1; nothing_to_do: qc->scsicmd->result = SAM_STAT_GOOD; return 1; } static void ata_scsi_qc_complete(struct ata_queued_cmd *qc) { struct scsi_cmnd *cmd = qc->scsicmd; u8 *cdb = cmd->cmnd; int need_sense = (qc->err_mask != 0); /* For ATA pass thru (SAT) commands, generate a sense block if * user mandated it or if there's an error. Note that if we * generate because the user forced us to, a check condition * is generated and the ATA register values are returned * whether the command completed successfully or not. If there * was no error, SK, ASC and ASCQ will all be zero. */ if (((cdb[0] == ATA_16) || (cdb[0] == ATA_12)) && ((cdb[2] & 0x20) || need_sense)) { ata_gen_ata_desc_sense(qc); } else { if (!need_sense) { cmd->result = SAM_STAT_GOOD; } else { /* TODO: decide which descriptor format to use * for 48b LBA devices and call that here * instead of the fixed desc, which is only * good for smaller LBA (and maybe CHS?) * devices. */ ata_gen_fixed_sense(qc); } } if (need_sense && !qc->ap->ops->error_handler) ata_dump_status(qc->ap->id, &qc->result_tf); qc->scsidone(cmd); ata_qc_free(qc); } /** * ata_scmd_need_defer - Check whether we need to defer scmd * @dev: ATA device to which the command is addressed * @is_io: Is the command IO (and thus possibly NCQ)? * * NCQ and non-NCQ commands cannot run together. As upper layer * only knows the queue depth, we are responsible for maintaining * exclusion. This function checks whether a new command can be * issued to @dev. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * 1 if deferring is needed, 0 otherwise. */ static int ata_scmd_need_defer(struct ata_device *dev, int is_io) { struct ata_port *ap = dev->ap; if (!(dev->flags & ATA_DFLAG_NCQ)) return 0; if (is_io) { if (!ata_tag_valid(ap->active_tag)) return 0; } else { if (!ata_tag_valid(ap->active_tag) && !ap->sactive) return 0; } return 1; } /** * ata_scsi_translate - Translate then issue SCSI command to ATA device * @dev: ATA device to which the command is addressed * @cmd: SCSI command to execute * @done: SCSI command completion function * @xlat_func: Actor which translates @cmd to an ATA taskfile * * Our ->queuecommand() function has decided that the SCSI * command issued can be directly translated into an ATA * command, rather than handled internally. * * This function sets up an ata_queued_cmd structure for the * SCSI command, and sends that ata_queued_cmd to the hardware. * * The xlat_func argument (actor) returns 0 if ready to execute * ATA command, else 1 to finish translation. If 1 is returned * then cmd->result (and possibly cmd->sense_buffer) are assumed * to be set reflecting an error condition or clean (early) * termination. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * 0 on success, SCSI_ML_QUEUE_DEVICE_BUSY if the command * needs to be deferred. */ static int ata_scsi_translate(struct ata_device *dev, struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *), ata_xlat_func_t xlat_func) { struct ata_queued_cmd *qc; u8 *scsicmd = cmd->cmnd; int is_io = xlat_func == ata_scsi_rw_xlat; VPRINTK("ENTER\n"); if (unlikely(ata_scmd_need_defer(dev, is_io))) goto defer; qc = ata_scsi_qc_new(dev, cmd, done); if (!qc) goto err_mem; /* data is present; dma-map it */ if (cmd->sc_data_direction == DMA_FROM_DEVICE || cmd->sc_data_direction == DMA_TO_DEVICE) { if (unlikely(cmd->request_bufflen < 1)) { ata_dev_printk(dev, KERN_WARNING, "WARNING: zero len r/w req\n"); goto err_did; } if (cmd->use_sg) ata_sg_init(qc, cmd->request_buffer, cmd->use_sg); else ata_sg_init_one(qc, cmd->request_buffer, cmd->request_bufflen); qc->dma_dir = cmd->sc_data_direction; } qc->complete_fn = ata_scsi_qc_complete; if (xlat_func(qc, scsicmd)) goto early_finish; /* select device, send command to hardware */ ata_qc_issue(qc); VPRINTK("EXIT\n"); return 0; early_finish: ata_qc_free(qc); done(cmd); DPRINTK("EXIT - early finish (good or error)\n"); return 0; err_did: ata_qc_free(qc); err_mem: cmd->result = (DID_ERROR << 16); done(cmd); DPRINTK("EXIT - internal\n"); return 0; defer: DPRINTK("EXIT - defer\n"); return SCSI_MLQUEUE_DEVICE_BUSY; } /** * ata_scsi_rbuf_get - Map response buffer. * @cmd: SCSI command containing buffer to be mapped. * @buf_out: Pointer to mapped area. * * Maps buffer contained within SCSI command @cmd. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Length of response buffer. */ static unsigned int ata_scsi_rbuf_get(struct scsi_cmnd *cmd, u8 **buf_out) { u8 *buf; unsigned int buflen; if (cmd->use_sg) { struct scatterlist *sg; sg = (struct scatterlist *) cmd->request_buffer; buf = kmap_atomic(sg->page, KM_USER0) + sg->offset; buflen = sg->length; } else { buf = cmd->request_buffer; buflen = cmd->request_bufflen; } *buf_out = buf; return buflen; } /** * ata_scsi_rbuf_put - Unmap response buffer. * @cmd: SCSI command containing buffer to be unmapped. * @buf: buffer to unmap * * Unmaps response buffer contained within @cmd. * * LOCKING: * spin_lock_irqsave(host_set lock) */ static inline void ata_scsi_rbuf_put(struct scsi_cmnd *cmd, u8 *buf) { if (cmd->use_sg) { struct scatterlist *sg; sg = (struct scatterlist *) cmd->request_buffer; kunmap_atomic(buf - sg->offset, KM_USER0); } } /** * ata_scsi_rbuf_fill - wrapper for SCSI command simulators * @args: device IDENTIFY data / SCSI command of interest. * @actor: Callback hook for desired SCSI command simulator * * Takes care of the hard work of simulating a SCSI command... * Mapping the response buffer, calling the command's handler, * and handling the handler's return value. This return value * indicates whether the handler wishes the SCSI command to be * completed successfully (0), or not (in which case cmd->result * and sense buffer are assumed to be set). * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_scsi_rbuf_fill(struct ata_scsi_args *args, unsigned int (*actor) (struct ata_scsi_args *args, u8 *rbuf, unsigned int buflen)) { u8 *rbuf; unsigned int buflen, rc; struct scsi_cmnd *cmd = args->cmd; buflen = ata_scsi_rbuf_get(cmd, &rbuf); memset(rbuf, 0, buflen); rc = actor(args, rbuf, buflen); ata_scsi_rbuf_put(cmd, rbuf); if (rc == 0) cmd->result = SAM_STAT_GOOD; args->done(cmd); } /** * ata_scsiop_inq_std - Simulate INQUIRY command * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * @buflen: Response buffer length. * * Returns standard device identification data associated * with non-VPD INQUIRY command output. * * LOCKING: * spin_lock_irqsave(host_set lock) */ unsigned int ata_scsiop_inq_std(struct ata_scsi_args *args, u8 *rbuf, unsigned int buflen) { u8 hdr[] = { TYPE_DISK, 0, 0x5, /* claim SPC-3 version compatibility */ 2, 95 - 4 }; /* set scsi removeable (RMB) bit per ata bit */ if (ata_id_removeable(args->id)) hdr[1] |= (1 << 7); VPRINTK("ENTER\n"); memcpy(rbuf, hdr, sizeof(hdr)); if (buflen > 35) { memcpy(&rbuf[8], "ATA ", 8); ata_id_string(args->id, &rbuf[16], ATA_ID_PROD_OFS, 16); ata_id_string(args->id, &rbuf[32], ATA_ID_FW_REV_OFS, 4); if (rbuf[32] == 0 || rbuf[32] == ' ') memcpy(&rbuf[32], "n/a ", 4); } if (buflen > 63) { const u8 versions[] = { 0x60, /* SAM-3 (no version claimed) */ 0x03, 0x20, /* SBC-2 (no version claimed) */ 0x02, 0x60 /* SPC-3 (no version claimed) */ }; memcpy(rbuf + 59, versions, sizeof(versions)); } return 0; } /** * ata_scsiop_inq_00 - Simulate INQUIRY VPD page 0, list of pages * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * @buflen: Response buffer length. * * Returns list of inquiry VPD pages available. * * LOCKING: * spin_lock_irqsave(host_set lock) */ unsigned int ata_scsiop_inq_00(struct ata_scsi_args *args, u8 *rbuf, unsigned int buflen) { const u8 pages[] = { 0x00, /* page 0x00, this page */ 0x80, /* page 0x80, unit serial no page */ 0x83 /* page 0x83, device ident page */ }; rbuf[3] = sizeof(pages); /* number of supported VPD pages */ if (buflen > 6) memcpy(rbuf + 4, pages, sizeof(pages)); return 0; } /** * ata_scsiop_inq_80 - Simulate INQUIRY VPD page 80, device serial number * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * @buflen: Response buffer length. * * Returns ATA device serial number. * * LOCKING: * spin_lock_irqsave(host_set lock) */ unsigned int ata_scsiop_inq_80(struct ata_scsi_args *args, u8 *rbuf, unsigned int buflen) { const u8 hdr[] = { 0, 0x80, /* this page code */ 0, ATA_SERNO_LEN, /* page len */ }; memcpy(rbuf, hdr, sizeof(hdr)); if (buflen > (ATA_SERNO_LEN + 4 - 1)) ata_id_string(args->id, (unsigned char *) &rbuf[4], ATA_ID_SERNO_OFS, ATA_SERNO_LEN); return 0; } /** * ata_scsiop_inq_83 - Simulate INQUIRY VPD page 83, device identity * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * @buflen: Response buffer length. * * Yields two logical unit device identification designators: * - vendor specific ASCII containing the ATA serial number * - SAT defined "t10 vendor id based" containing ASCII vendor * name ("ATA "), model and serial numbers. * * LOCKING: * spin_lock_irqsave(host_set lock) */ unsigned int ata_scsiop_inq_83(struct ata_scsi_args *args, u8 *rbuf, unsigned int buflen) { int num; const int sat_model_serial_desc_len = 68; const int ata_model_byte_len = 40; rbuf[1] = 0x83; /* this page code */ num = 4; if (buflen > (ATA_SERNO_LEN + num + 3)) { /* piv=0, assoc=lu, code_set=ACSII, designator=vendor */ rbuf[num + 0] = 2; rbuf[num + 3] = ATA_SERNO_LEN; num += 4; ata_id_string(args->id, (unsigned char *) rbuf + num, ATA_ID_SERNO_OFS, ATA_SERNO_LEN); num += ATA_SERNO_LEN; } if (buflen > (sat_model_serial_desc_len + num + 3)) { /* SAT defined lu model and serial numbers descriptor */ /* piv=0, assoc=lu, code_set=ACSII, designator=t10 vendor id */ rbuf[num + 0] = 2; rbuf[num + 1] = 1; rbuf[num + 3] = sat_model_serial_desc_len; num += 4; memcpy(rbuf + num, "ATA ", 8); num += 8; ata_id_string(args->id, (unsigned char *) rbuf + num, ATA_ID_PROD_OFS, ata_model_byte_len); num += ata_model_byte_len; ata_id_string(args->id, (unsigned char *) rbuf + num, ATA_ID_SERNO_OFS, ATA_SERNO_LEN); num += ATA_SERNO_LEN; } rbuf[3] = num - 4; /* page len (assume less than 256 bytes) */ return 0; } /** * ata_scsiop_noop - Command handler that simply returns success. * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * @buflen: Response buffer length. * * No operation. Simply returns success to caller, to indicate * that the caller should successfully complete this SCSI command. * * LOCKING: * spin_lock_irqsave(host_set lock) */ unsigned int ata_scsiop_noop(struct ata_scsi_args *args, u8 *rbuf, unsigned int buflen) { VPRINTK("ENTER\n"); return 0; } /** * ata_msense_push - Push data onto MODE SENSE data output buffer * @ptr_io: (input/output) Location to store more output data * @last: End of output data buffer * @buf: Pointer to BLOB being added to output buffer * @buflen: Length of BLOB * * Store MODE SENSE data on an output buffer. * * LOCKING: * None. */ static void ata_msense_push(u8 **ptr_io, const u8 *last, const u8 *buf, unsigned int buflen) { u8 *ptr = *ptr_io; if ((ptr + buflen - 1) > last) return; memcpy(ptr, buf, buflen); ptr += buflen; *ptr_io = ptr; } /** * ata_msense_caching - Simulate MODE SENSE caching info page * @id: device IDENTIFY data * @ptr_io: (input/output) Location to store more output data * @last: End of output data buffer * * Generate a caching info page, which conditionally indicates * write caching to the SCSI layer, depending on device * capabilities. * * LOCKING: * None. */ static unsigned int ata_msense_caching(u16 *id, u8 **ptr_io, const u8 *last) { u8 page[CACHE_MPAGE_LEN]; memcpy(page, def_cache_mpage, sizeof(page)); if (ata_id_wcache_enabled(id)) page[2] |= (1 << 2); /* write cache enable */ if (!ata_id_rahead_enabled(id)) page[12] |= (1 << 5); /* disable read ahead */ ata_msense_push(ptr_io, last, page, sizeof(page)); return sizeof(page); } /** * ata_msense_ctl_mode - Simulate MODE SENSE control mode page * @dev: Device associated with this MODE SENSE command * @ptr_io: (input/output) Location to store more output data * @last: End of output data buffer * * Generate a generic MODE SENSE control mode page. * * LOCKING: * None. */ static unsigned int ata_msense_ctl_mode(u8 **ptr_io, const u8 *last) { ata_msense_push(ptr_io, last, def_control_mpage, sizeof(def_control_mpage)); return sizeof(def_control_mpage); } /** * ata_msense_rw_recovery - Simulate MODE SENSE r/w error recovery page * @dev: Device associated with this MODE SENSE command * @ptr_io: (input/output) Location to store more output data * @last: End of output data buffer * * Generate a generic MODE SENSE r/w error recovery page. * * LOCKING: * None. */ static unsigned int ata_msense_rw_recovery(u8 **ptr_io, const u8 *last) { ata_msense_push(ptr_io, last, def_rw_recovery_mpage, sizeof(def_rw_recovery_mpage)); return sizeof(def_rw_recovery_mpage); } /* * We can turn this into a real blacklist if it's needed, for now just * blacklist any Maxtor BANC1G10 revision firmware */ static int ata_dev_supports_fua(u16 *id) { unsigned char model[41], fw[9]; if (!libata_fua) return 0; if (!ata_id_has_fua(id)) return 0; ata_id_c_string(id, model, ATA_ID_PROD_OFS, sizeof(model)); ata_id_c_string(id, fw, ATA_ID_FW_REV_OFS, sizeof(fw)); if (strcmp(model, "Maxtor")) return 1; if (strcmp(fw, "BANC1G10")) return 1; return 0; /* blacklisted */ } /** * ata_scsiop_mode_sense - Simulate MODE SENSE 6, 10 commands * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * @buflen: Response buffer length. * * Simulate MODE SENSE commands. Assume this is invoked for direct * access devices (e.g. disks) only. There should be no block * descriptor for other device types. * * LOCKING: * spin_lock_irqsave(host_set lock) */ unsigned int ata_scsiop_mode_sense(struct ata_scsi_args *args, u8 *rbuf, unsigned int buflen) { struct ata_device *dev = args->dev; u8 *scsicmd = args->cmd->cmnd, *p, *last; const u8 sat_blk_desc[] = { 0, 0, 0, 0, /* number of blocks: sat unspecified */ 0, 0, 0x2, 0x0 /* block length: 512 bytes */ }; u8 pg, spg; unsigned int ebd, page_control, six_byte, output_len, alloc_len, minlen; u8 dpofua; VPRINTK("ENTER\n"); six_byte = (scsicmd[0] == MODE_SENSE); ebd = !(scsicmd[1] & 0x8); /* dbd bit inverted == edb */ /* * LLBA bit in msense(10) ignored (compliant) */ page_control = scsicmd[2] >> 6; switch (page_control) { case 0: /* current */ break; /* supported */ case 3: /* saved */ goto saving_not_supp; case 1: /* changeable */ case 2: /* defaults */ default: goto invalid_fld; } if (six_byte) { output_len = 4 + (ebd ? 8 : 0); alloc_len = scsicmd[4]; } else { output_len = 8 + (ebd ? 8 : 0); alloc_len = (scsicmd[7] << 8) + scsicmd[8]; } minlen = (alloc_len < buflen) ? alloc_len : buflen; p = rbuf + output_len; last = rbuf + minlen - 1; pg = scsicmd[2] & 0x3f; spg = scsicmd[3]; /* * No mode subpages supported (yet) but asking for _all_ * subpages may be valid */ if (spg && (spg != ALL_SUB_MPAGES)) goto invalid_fld; switch(pg) { case RW_RECOVERY_MPAGE: output_len += ata_msense_rw_recovery(&p, last); break; case CACHE_MPAGE: output_len += ata_msense_caching(args->id, &p, last); break; case CONTROL_MPAGE: { output_len += ata_msense_ctl_mode(&p, last); break; } case ALL_MPAGES: output_len += ata_msense_rw_recovery(&p, last); output_len += ata_msense_caching(args->id, &p, last); output_len += ata_msense_ctl_mode(&p, last); break; default: /* invalid page code */ goto invalid_fld; } if (minlen < 1) return 0; dpofua = 0; if (ata_dev_supports_fua(args->id) && dev->flags & ATA_DFLAG_LBA48 && (!(dev->flags & ATA_DFLAG_PIO) || dev->multi_count)) dpofua = 1 << 4; if (six_byte) { output_len--; rbuf[0] = output_len; if (minlen > 2) rbuf[2] |= dpofua; if (ebd) { if (minlen > 3) rbuf[3] = sizeof(sat_blk_desc); if (minlen > 11) memcpy(rbuf + 4, sat_blk_desc, sizeof(sat_blk_desc)); } } else { output_len -= 2; rbuf[0] = output_len >> 8; if (minlen > 1) rbuf[1] = output_len; if (minlen > 3) rbuf[3] |= dpofua; if (ebd) { if (minlen > 7) rbuf[7] = sizeof(sat_blk_desc); if (minlen > 15) memcpy(rbuf + 8, sat_blk_desc, sizeof(sat_blk_desc)); } } return 0; invalid_fld: ata_scsi_set_sense(args->cmd, ILLEGAL_REQUEST, 0x24, 0x0); /* "Invalid field in cbd" */ return 1; saving_not_supp: ata_scsi_set_sense(args->cmd, ILLEGAL_REQUEST, 0x39, 0x0); /* "Saving parameters not supported" */ return 1; } /** * ata_scsiop_read_cap - Simulate READ CAPACITY[ 16] commands * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * @buflen: Response buffer length. * * Simulate READ CAPACITY commands. * * LOCKING: * spin_lock_irqsave(host_set lock) */ unsigned int ata_scsiop_read_cap(struct ata_scsi_args *args, u8 *rbuf, unsigned int buflen) { u64 n_sectors; u32 tmp; VPRINTK("ENTER\n"); if (ata_id_has_lba(args->id)) { if (ata_id_has_lba48(args->id)) n_sectors = ata_id_u64(args->id, 100); else n_sectors = ata_id_u32(args->id, 60); } else { /* CHS default translation */ n_sectors = args->id[1] * args->id[3] * args->id[6]; if (ata_id_current_chs_valid(args->id)) /* CHS current translation */ n_sectors = ata_id_u32(args->id, 57); } n_sectors--; /* ATA TotalUserSectors - 1 */ if (args->cmd->cmnd[0] == READ_CAPACITY) { if( n_sectors >= 0xffffffffULL ) tmp = 0xffffffff ; /* Return max count on overflow */ else tmp = n_sectors ; /* sector count, 32-bit */ rbuf[0] = tmp >> (8 * 3); rbuf[1] = tmp >> (8 * 2); rbuf[2] = tmp >> (8 * 1); rbuf[3] = tmp; /* sector size */ tmp = ATA_SECT_SIZE; rbuf[6] = tmp >> 8; rbuf[7] = tmp; } else { /* sector count, 64-bit */ tmp = n_sectors >> (8 * 4); rbuf[2] = tmp >> (8 * 3); rbuf[3] = tmp >> (8 * 2); rbuf[4] = tmp >> (8 * 1); rbuf[5] = tmp; tmp = n_sectors; rbuf[6] = tmp >> (8 * 3); rbuf[7] = tmp >> (8 * 2); rbuf[8] = tmp >> (8 * 1); rbuf[9] = tmp; /* sector size */ tmp = ATA_SECT_SIZE; rbuf[12] = tmp >> 8; rbuf[13] = tmp; } return 0; } /** * ata_scsiop_report_luns - Simulate REPORT LUNS command * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * @buflen: Response buffer length. * * Simulate REPORT LUNS command. * * LOCKING: * spin_lock_irqsave(host_set lock) */ unsigned int ata_scsiop_report_luns(struct ata_scsi_args *args, u8 *rbuf, unsigned int buflen) { VPRINTK("ENTER\n"); rbuf[3] = 8; /* just one lun, LUN 0, size 8 bytes */ return 0; } /** * ata_scsi_set_sense - Set SCSI sense data and status * @cmd: SCSI request to be handled * @sk: SCSI-defined sense key * @asc: SCSI-defined additional sense code * @ascq: SCSI-defined additional sense code qualifier * * Helper function that builds a valid fixed format, current * response code and the given sense key (sk), additional sense * code (asc) and additional sense code qualifier (ascq) with * a SCSI command status of %SAM_STAT_CHECK_CONDITION and * DRIVER_SENSE set in the upper bits of scsi_cmnd::result . * * LOCKING: * Not required */ void ata_scsi_set_sense(struct scsi_cmnd *cmd, u8 sk, u8 asc, u8 ascq) { cmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION; cmd->sense_buffer[0] = 0x70; /* fixed format, current */ cmd->sense_buffer[2] = sk; cmd->sense_buffer[7] = 18 - 8; /* additional sense length */ cmd->sense_buffer[12] = asc; cmd->sense_buffer[13] = ascq; } /** * ata_scsi_badcmd - End a SCSI request with an error * @cmd: SCSI request to be handled * @done: SCSI command completion function * @asc: SCSI-defined additional sense code * @ascq: SCSI-defined additional sense code qualifier * * Helper function that completes a SCSI command with * %SAM_STAT_CHECK_CONDITION, with a sense key %ILLEGAL_REQUEST * and the specified additional sense codes. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_scsi_badcmd(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *), u8 asc, u8 ascq) { DPRINTK("ENTER\n"); ata_scsi_set_sense(cmd, ILLEGAL_REQUEST, asc, ascq); done(cmd); } static void atapi_sense_complete(struct ata_queued_cmd *qc) { if (qc->err_mask && ((qc->err_mask & AC_ERR_DEV) == 0)) { /* FIXME: not quite right; we don't want the * translation of taskfile registers into * a sense descriptors, since that's only * correct for ATA, not ATAPI */ ata_gen_ata_desc_sense(qc); } qc->scsidone(qc->scsicmd); ata_qc_free(qc); } /* is it pointless to prefer PIO for "safety reasons"? */ static inline int ata_pio_use_silly(struct ata_port *ap) { return (ap->flags & ATA_FLAG_PIO_DMA); } static void atapi_request_sense(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct scsi_cmnd *cmd = qc->scsicmd; DPRINTK("ATAPI request sense\n"); /* FIXME: is this needed? */ memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer)); ap->ops->tf_read(ap, &qc->tf); /* fill these in, for the case where they are -not- overwritten */ cmd->sense_buffer[0] = 0x70; cmd->sense_buffer[2] = qc->tf.feature >> 4; ata_qc_reinit(qc); ata_sg_init_one(qc, cmd->sense_buffer, sizeof(cmd->sense_buffer)); qc->dma_dir = DMA_FROM_DEVICE; memset(&qc->cdb, 0, qc->dev->cdb_len); qc->cdb[0] = REQUEST_SENSE; qc->cdb[4] = SCSI_SENSE_BUFFERSIZE; qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; qc->tf.command = ATA_CMD_PACKET; if (ata_pio_use_silly(ap)) { qc->tf.protocol = ATA_PROT_ATAPI_DMA; qc->tf.feature |= ATAPI_PKT_DMA; } else { qc->tf.protocol = ATA_PROT_ATAPI; qc->tf.lbam = (8 * 1024) & 0xff; qc->tf.lbah = (8 * 1024) >> 8; } qc->nbytes = SCSI_SENSE_BUFFERSIZE; qc->complete_fn = atapi_sense_complete; ata_qc_issue(qc); DPRINTK("EXIT\n"); } static void atapi_qc_complete(struct ata_queued_cmd *qc) { struct scsi_cmnd *cmd = qc->scsicmd; unsigned int err_mask = qc->err_mask; VPRINTK("ENTER, err_mask 0x%X\n", err_mask); /* handle completion from new EH */ if (unlikely(qc->ap->ops->error_handler && (err_mask || qc->flags & ATA_QCFLAG_SENSE_VALID))) { if (!(qc->flags & ATA_QCFLAG_SENSE_VALID)) { /* FIXME: not quite right; we don't want the * translation of taskfile registers into a * sense descriptors, since that's only * correct for ATA, not ATAPI */ ata_gen_ata_desc_sense(qc); } qc->scsicmd->result = SAM_STAT_CHECK_CONDITION; qc->scsidone(cmd); ata_qc_free(qc); return; } /* successful completion or old EH failure path */ if (unlikely(err_mask & AC_ERR_DEV)) { cmd->result = SAM_STAT_CHECK_CONDITION; atapi_request_sense(qc); return; } else if (unlikely(err_mask)) { /* FIXME: not quite right; we don't want the * translation of taskfile registers into * a sense descriptors, since that's only * correct for ATA, not ATAPI */ ata_gen_ata_desc_sense(qc); } else { u8 *scsicmd = cmd->cmnd; if ((scsicmd[0] == INQUIRY) && ((scsicmd[1] & 0x03) == 0)) { u8 *buf = NULL; unsigned int buflen; buflen = ata_scsi_rbuf_get(cmd, &buf); /* ATAPI devices typically report zero for their SCSI version, * and sometimes deviate from the spec WRT response data * format. If SCSI version is reported as zero like normal, * then we make the following fixups: 1) Fake MMC-5 version, * to indicate to the Linux scsi midlayer this is a modern * device. 2) Ensure response data format / ATAPI information * are always correct. */ if (buf[2] == 0) { buf[2] = 0x5; buf[3] = 0x32; } ata_scsi_rbuf_put(cmd, buf); } cmd->result = SAM_STAT_GOOD; } qc->scsidone(cmd); ata_qc_free(qc); } /** * atapi_xlat - Initialize PACKET taskfile * @qc: command structure to be initialized * @scsicmd: SCSI CDB associated with this PACKET command * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Zero on success, non-zero on failure. */ static unsigned int atapi_xlat(struct ata_queued_cmd *qc, const u8 *scsicmd) { struct scsi_cmnd *cmd = qc->scsicmd; struct ata_device *dev = qc->dev; int using_pio = (dev->flags & ATA_DFLAG_PIO); int nodata = (cmd->sc_data_direction == DMA_NONE); if (!using_pio) /* Check whether ATAPI DMA is safe */ if (ata_check_atapi_dma(qc)) using_pio = 1; memcpy(&qc->cdb, scsicmd, dev->cdb_len); qc->complete_fn = atapi_qc_complete; qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; if (cmd->sc_data_direction == DMA_TO_DEVICE) { qc->tf.flags |= ATA_TFLAG_WRITE; DPRINTK("direction: write\n"); } qc->tf.command = ATA_CMD_PACKET; /* no data, or PIO data xfer */ if (using_pio || nodata) { if (nodata) qc->tf.protocol = ATA_PROT_ATAPI_NODATA; else qc->tf.protocol = ATA_PROT_ATAPI; qc->tf.lbam = (8 * 1024) & 0xff; qc->tf.lbah = (8 * 1024) >> 8; } /* DMA data xfer */ else { qc->tf.protocol = ATA_PROT_ATAPI_DMA; qc->tf.feature |= ATAPI_PKT_DMA; if (atapi_dmadir && (cmd->sc_data_direction != DMA_TO_DEVICE)) /* some SATA bridges need us to indicate data xfer direction */ qc->tf.feature |= ATAPI_DMADIR; } qc->nbytes = cmd->bufflen; return 0; } /** * ata_scsi_find_dev - lookup ata_device from scsi_cmnd * @ap: ATA port to which the device is attached * @scsidev: SCSI device from which we derive the ATA device * * Given various information provided in struct scsi_cmnd, * map that onto an ATA bus, and using that mapping * determine which ata_device is associated with the * SCSI command to be sent. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Associated ATA device, or %NULL if not found. */ static struct ata_device * ata_scsi_find_dev(struct ata_port *ap, const struct scsi_device *scsidev) { struct ata_device *dev; /* skip commands not addressed to targets we simulate */ if (likely(scsidev->id < ATA_MAX_DEVICES)) dev = &ap->device[scsidev->id]; else return NULL; if (unlikely((scsidev->channel != 0) || (scsidev->lun != 0))) return NULL; if (unlikely(!ata_dev_enabled(dev))) return NULL; if (!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) { if (unlikely(dev->class == ATA_DEV_ATAPI)) { ata_dev_printk(dev, KERN_WARNING, "WARNING: ATAPI is %s, device ignored.\n", atapi_enabled ? "not supported with this driver" : "disabled"); return NULL; } } return dev; } /* * ata_scsi_map_proto - Map pass-thru protocol value to taskfile value. * @byte1: Byte 1 from pass-thru CDB. * * RETURNS: * ATA_PROT_UNKNOWN if mapping failed/unimplemented, protocol otherwise. */ static u8 ata_scsi_map_proto(u8 byte1) { switch((byte1 & 0x1e) >> 1) { case 3: /* Non-data */ return ATA_PROT_NODATA; case 6: /* DMA */ return ATA_PROT_DMA; case 4: /* PIO Data-in */ case 5: /* PIO Data-out */ return ATA_PROT_PIO; case 10: /* Device Reset */ case 0: /* Hard Reset */ case 1: /* SRST */ case 2: /* Bus Idle */ case 7: /* Packet */ case 8: /* DMA Queued */ case 9: /* Device Diagnostic */ case 11: /* UDMA Data-in */ case 12: /* UDMA Data-Out */ case 13: /* FPDMA */ default: /* Reserved */ break; } return ATA_PROT_UNKNOWN; } /** * ata_scsi_pass_thru - convert ATA pass-thru CDB to taskfile * @qc: command structure to be initialized * @scsicmd: SCSI command to convert * * Handles either 12 or 16-byte versions of the CDB. * * RETURNS: * Zero on success, non-zero on failure. */ static unsigned int ata_scsi_pass_thru(struct ata_queued_cmd *qc, const u8 *scsicmd) { struct ata_taskfile *tf = &(qc->tf); struct scsi_cmnd *cmd = qc->scsicmd; if ((tf->protocol = ata_scsi_map_proto(scsicmd[1])) == ATA_PROT_UNKNOWN) goto invalid_fld; if (scsicmd[1] & 0xe0) /* PIO multi not supported yet */ goto invalid_fld; /* * 12 and 16 byte CDBs use different offsets to * provide the various register values. */ if (scsicmd[0] == ATA_16) { /* * 16-byte CDB - may contain extended commands. * * If that is the case, copy the upper byte register values. */ if (scsicmd[1] & 0x01) { tf->hob_feature = scsicmd[3]; tf->hob_nsect = scsicmd[5]; tf->hob_lbal = scsicmd[7]; tf->hob_lbam = scsicmd[9]; tf->hob_lbah = scsicmd[11]; tf->flags |= ATA_TFLAG_LBA48; } else tf->flags &= ~ATA_TFLAG_LBA48; /* * Always copy low byte, device and command registers. */ tf->feature = scsicmd[4]; tf->nsect = scsicmd[6]; tf->lbal = scsicmd[8]; tf->lbam = scsicmd[10]; tf->lbah = scsicmd[12]; tf->device = scsicmd[13]; tf->command = scsicmd[14]; } else { /* * 12-byte CDB - incapable of extended commands. */ tf->flags &= ~ATA_TFLAG_LBA48; tf->feature = scsicmd[3]; tf->nsect = scsicmd[4]; tf->lbal = scsicmd[5]; tf->lbam = scsicmd[6]; tf->lbah = scsicmd[7]; tf->device = scsicmd[8]; tf->command = scsicmd[9]; } /* * If slave is possible, enforce correct master/slave bit */ if (qc->ap->flags & ATA_FLAG_SLAVE_POSS) tf->device = qc->dev->devno ? tf->device | ATA_DEV1 : tf->device & ~ATA_DEV1; /* * Filter SET_FEATURES - XFER MODE command -- otherwise, * SET_FEATURES - XFER MODE must be preceded/succeeded * by an update to hardware-specific registers for each * controller (i.e. the reason for ->set_piomode(), * ->set_dmamode(), and ->post_set_mode() hooks). */ if ((tf->command == ATA_CMD_SET_FEATURES) && (tf->feature == SETFEATURES_XFER)) goto invalid_fld; /* * Set flags so that all registers will be written, * and pass on write indication (used for PIO/DMA * setup.) */ tf->flags |= (ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE); if (cmd->sc_data_direction == DMA_TO_DEVICE) tf->flags |= ATA_TFLAG_WRITE; /* * Set transfer length. * * TODO: find out if we need to do more here to * cover scatter/gather case. */ qc->nsect = cmd->bufflen / ATA_SECT_SIZE; /* request result TF */ qc->flags |= ATA_QCFLAG_RESULT_TF; return 0; invalid_fld: ata_scsi_set_sense(qc->scsicmd, ILLEGAL_REQUEST, 0x24, 0x00); /* "Invalid field in cdb" */ return 1; } /** * ata_get_xlat_func - check if SCSI to ATA translation is possible * @dev: ATA device * @cmd: SCSI command opcode to consider * * Look up the SCSI command given, and determine whether the * SCSI command is to be translated or simulated. * * RETURNS: * Pointer to translation function if possible, %NULL if not. */ static inline ata_xlat_func_t ata_get_xlat_func(struct ata_device *dev, u8 cmd) { switch (cmd) { case READ_6: case READ_10: case READ_16: case WRITE_6: case WRITE_10: case WRITE_16: return ata_scsi_rw_xlat; case SYNCHRONIZE_CACHE: if (ata_try_flush_cache(dev)) return ata_scsi_flush_xlat; break; case VERIFY: case VERIFY_16: return ata_scsi_verify_xlat; case ATA_12: case ATA_16: return ata_scsi_pass_thru; case START_STOP: return ata_scsi_start_stop_xlat; } return NULL; } /** * ata_scsi_dump_cdb - dump SCSI command contents to dmesg * @ap: ATA port to which the command was being sent * @cmd: SCSI command to dump * * Prints the contents of a SCSI command via printk(). */ static inline void ata_scsi_dump_cdb(struct ata_port *ap, struct scsi_cmnd *cmd) { #ifdef ATA_DEBUG struct scsi_device *scsidev = cmd->device; u8 *scsicmd = cmd->cmnd; DPRINTK("CDB (%u:%d,%d,%d) %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", ap->id, scsidev->channel, scsidev->id, scsidev->lun, scsicmd[0], scsicmd[1], scsicmd[2], scsicmd[3], scsicmd[4], scsicmd[5], scsicmd[6], scsicmd[7], scsicmd[8]); #endif } static inline int __ata_scsi_queuecmd(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *), struct ata_device *dev) { int rc = 0; if (dev->class == ATA_DEV_ATA) { ata_xlat_func_t xlat_func = ata_get_xlat_func(dev, cmd->cmnd[0]); if (xlat_func) rc = ata_scsi_translate(dev, cmd, done, xlat_func); else ata_scsi_simulate(dev, cmd, done); } else rc = ata_scsi_translate(dev, cmd, done, atapi_xlat); return rc; } /** * ata_scsi_queuecmd - Issue SCSI cdb to libata-managed device * @cmd: SCSI command to be sent * @done: Completion function, called when command is complete * * In some cases, this function translates SCSI commands into * ATA taskfiles, and queues the taskfiles to be sent to * hardware. In other cases, this function simulates a * SCSI device by evaluating and responding to certain * SCSI commands. This creates the overall effect of * ATA and ATAPI devices appearing as SCSI devices. * * LOCKING: * Releases scsi-layer-held lock, and obtains host_set lock. * * RETURNS: * Return value from __ata_scsi_queuecmd() if @cmd can be queued, * 0 otherwise. */ int ata_scsi_queuecmd(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) { struct ata_port *ap; struct ata_device *dev; struct scsi_device *scsidev = cmd->device; struct Scsi_Host *shost = scsidev->host; int rc = 0; ap = ata_shost_to_port(shost); spin_unlock(shost->host_lock); spin_lock(&ap->host_set->lock); ata_scsi_dump_cdb(ap, cmd); dev = ata_scsi_find_dev(ap, scsidev); if (likely(dev)) rc = __ata_scsi_queuecmd(cmd, done, dev); else { cmd->result = (DID_BAD_TARGET << 16); done(cmd); } spin_unlock(&ap->host_set->lock); spin_lock(shost->host_lock); return rc; } /** * ata_scsi_simulate - simulate SCSI command on ATA device * @dev: the target device * @cmd: SCSI command being sent to device. * @done: SCSI command completion function. * * Interprets and directly executes a select list of SCSI commands * that can be handled internally. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_scsi_simulate(struct ata_device *dev, struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) { struct ata_scsi_args args; const u8 *scsicmd = cmd->cmnd; args.dev = dev; args.id = dev->id; args.cmd = cmd; args.done = done; switch(scsicmd[0]) { /* no-op's, complete with success */ case SYNCHRONIZE_CACHE: case REZERO_UNIT: case SEEK_6: case SEEK_10: case TEST_UNIT_READY: case FORMAT_UNIT: /* FIXME: correct? */ case SEND_DIAGNOSTIC: /* FIXME: correct? */ ata_scsi_rbuf_fill(&args, ata_scsiop_noop); break; case INQUIRY: if (scsicmd[1] & 2) /* is CmdDt set? */ ata_scsi_invalid_field(cmd, done); else if ((scsicmd[1] & 1) == 0) /* is EVPD clear? */ ata_scsi_rbuf_fill(&args, ata_scsiop_inq_std); else if (scsicmd[2] == 0x00) ata_scsi_rbuf_fill(&args, ata_scsiop_inq_00); else if (scsicmd[2] == 0x80) ata_scsi_rbuf_fill(&args, ata_scsiop_inq_80); else if (scsicmd[2] == 0x83) ata_scsi_rbuf_fill(&args, ata_scsiop_inq_83); else ata_scsi_invalid_field(cmd, done); break; case MODE_SENSE: case MODE_SENSE_10: ata_scsi_rbuf_fill(&args, ata_scsiop_mode_sense); break; case MODE_SELECT: /* unconditionally return */ case MODE_SELECT_10: /* bad-field-in-cdb */ ata_scsi_invalid_field(cmd, done); break; case READ_CAPACITY: ata_scsi_rbuf_fill(&args, ata_scsiop_read_cap); break; case SERVICE_ACTION_IN: if ((scsicmd[1] & 0x1f) == SAI_READ_CAPACITY_16) ata_scsi_rbuf_fill(&args, ata_scsiop_read_cap); else ata_scsi_invalid_field(cmd, done); break; case REPORT_LUNS: ata_scsi_rbuf_fill(&args, ata_scsiop_report_luns); break; /* mandatory commands we haven't implemented yet */ case REQUEST_SENSE: /* all other commands */ default: ata_scsi_set_sense(cmd, ILLEGAL_REQUEST, 0x20, 0x0); /* "Invalid command operation code" */ done(cmd); break; } } void ata_scsi_scan_host(struct ata_port *ap) { struct ata_device *dev; unsigned int i; if (ap->flags & ATA_FLAG_DISABLED) return; for (i = 0; i < ATA_MAX_DEVICES; i++) { dev = &ap->device[i]; if (ata_dev_enabled(dev)) scsi_scan_target(&ap->host->shost_gendev, 0, i, 0, 0); } } /** * ata_schedule_scsi_eh - schedule EH for SCSI host * @shost: SCSI host to invoke error handling on. * * Schedule SCSI EH without scmd. This is a hack. * * LOCKING: * spin_lock_irqsave(host_set lock) **/ void ata_schedule_scsi_eh(struct Scsi_Host *shost) { unsigned long flags; spin_lock_irqsave(shost->host_lock, flags); if (scsi_host_set_state(shost, SHOST_RECOVERY) == 0 || scsi_host_set_state(shost, SHOST_CANCEL_RECOVERY) == 0) { shost->host_eh_scheduled++; scsi_eh_wakeup(shost); } spin_unlock_irqrestore(shost->host_lock, flags); }