/* * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the GNU General Public License v.2. */ #include "lock_dlm.h" static char junk_lvb[GDLM_LVB_SIZE]; static void queue_complete(struct gdlm_lock *lp) { struct gdlm_ls *ls = lp->ls; clear_bit(LFL_ACTIVE, &lp->flags); spin_lock(&ls->async_lock); list_add_tail(&lp->clist, &ls->complete); spin_unlock(&ls->async_lock); wake_up(&ls->thread_wait); } static inline void gdlm_ast(void *astarg) { queue_complete((struct gdlm_lock *) astarg); } static inline void gdlm_bast(void *astarg, int mode) { struct gdlm_lock *lp = astarg; struct gdlm_ls *ls = lp->ls; if (!mode) { printk("lock_dlm: bast mode zero %x,%llx\n", lp->lockname.ln_type, lp->lockname.ln_number); return; } spin_lock(&ls->async_lock); if (!lp->bast_mode) { list_add_tail(&lp->blist, &ls->blocking); lp->bast_mode = mode; } else if (lp->bast_mode < mode) lp->bast_mode = mode; spin_unlock(&ls->async_lock); wake_up(&ls->thread_wait); } void gdlm_queue_delayed(struct gdlm_lock *lp) { struct gdlm_ls *ls = lp->ls; spin_lock(&ls->async_lock); list_add_tail(&lp->delay_list, &ls->delayed); spin_unlock(&ls->async_lock); } /* convert gfs lock-state to dlm lock-mode */ static int16_t make_mode(int16_t lmstate) { switch (lmstate) { case LM_ST_UNLOCKED: return DLM_LOCK_NL; case LM_ST_EXCLUSIVE: return DLM_LOCK_EX; case LM_ST_DEFERRED: return DLM_LOCK_CW; case LM_ST_SHARED: return DLM_LOCK_PR; } gdlm_assert(0, "unknown LM state %d", lmstate); return -1; } /* convert dlm lock-mode to gfs lock-state */ int16_t gdlm_make_lmstate(int16_t dlmmode) { switch (dlmmode) { case DLM_LOCK_IV: case DLM_LOCK_NL: return LM_ST_UNLOCKED; case DLM_LOCK_EX: return LM_ST_EXCLUSIVE; case DLM_LOCK_CW: return LM_ST_DEFERRED; case DLM_LOCK_PR: return LM_ST_SHARED; } gdlm_assert(0, "unknown DLM mode %d", dlmmode); return -1; } /* verify agreement with GFS on the current lock state, NB: DLM_LOCK_NL and DLM_LOCK_IV are both considered LM_ST_UNLOCKED by GFS. */ static void check_cur_state(struct gdlm_lock *lp, unsigned int cur_state) { int16_t cur = make_mode(cur_state); if (lp->cur != DLM_LOCK_IV) gdlm_assert(lp->cur == cur, "%d, %d", lp->cur, cur); } static inline unsigned int make_flags(struct gdlm_lock *lp, unsigned int gfs_flags, int16_t cur, int16_t req) { unsigned int lkf = 0; if (gfs_flags & LM_FLAG_TRY) lkf |= DLM_LKF_NOQUEUE; if (gfs_flags & LM_FLAG_TRY_1CB) { lkf |= DLM_LKF_NOQUEUE; lkf |= DLM_LKF_NOQUEUEBAST; } if (gfs_flags & LM_FLAG_PRIORITY) { lkf |= DLM_LKF_NOORDER; lkf |= DLM_LKF_HEADQUE; } if (gfs_flags & LM_FLAG_ANY) { if (req == DLM_LOCK_PR) lkf |= DLM_LKF_ALTCW; else if (req == DLM_LOCK_CW) lkf |= DLM_LKF_ALTPR; } if (lp->lksb.sb_lkid != 0) { lkf |= DLM_LKF_CONVERT; /* Conversion deadlock avoidance by DLM */ if (!test_bit(LFL_FORCE_PROMOTE, &lp->flags) && !(lkf & DLM_LKF_NOQUEUE) && cur > DLM_LOCK_NL && req > DLM_LOCK_NL && cur != req) lkf |= DLM_LKF_CONVDEADLK; } if (lp->lvb) lkf |= DLM_LKF_VALBLK; return lkf; } /* make_strname - convert GFS lock numbers to a string */ static inline void make_strname(struct lm_lockname *lockname, struct gdlm_strname *str) { sprintf(str->name, "%8x%16llx", lockname->ln_type, lockname->ln_number); str->namelen = GDLM_STRNAME_BYTES; } int gdlm_create_lp(struct gdlm_ls *ls, struct lm_lockname *name, struct gdlm_lock **lpp) { struct gdlm_lock *lp; lp = kzalloc(sizeof(struct gdlm_lock), GFP_KERNEL); if (!lp) return -ENOMEM; lp->lockname = *name; lp->ls = ls; lp->cur = DLM_LOCK_IV; lp->lvb = NULL; lp->hold_null = NULL; init_completion(&lp->ast_wait); INIT_LIST_HEAD(&lp->clist); INIT_LIST_HEAD(&lp->blist); INIT_LIST_HEAD(&lp->delay_list); spin_lock(&ls->async_lock); list_add(&lp->all_list, &ls->all_locks); ls->all_locks_count++; spin_unlock(&ls->async_lock); *lpp = lp; return 0; } void gdlm_delete_lp(struct gdlm_lock *lp) { struct gdlm_ls *ls = lp->ls; spin_lock(&ls->async_lock); if (!list_empty(&lp->clist)) list_del_init(&lp->clist); if (!list_empty(&lp->blist)) list_del_init(&lp->blist); if (!list_empty(&lp->delay_list)) list_del_init(&lp->delay_list); gdlm_assert(!list_empty(&lp->all_list), "%x,%llx", lp->lockname.ln_type, lp->lockname.ln_number); list_del_init(&lp->all_list); ls->all_locks_count--; spin_unlock(&ls->async_lock); kfree(lp); } int gdlm_get_lock(lm_lockspace_t *lockspace, struct lm_lockname *name, lm_lock_t **lockp) { struct gdlm_lock *lp; int error; error = gdlm_create_lp((struct gdlm_ls *) lockspace, name, &lp); *lockp = (lm_lock_t *) lp; return error; } void gdlm_put_lock(lm_lock_t *lock) { gdlm_delete_lp((struct gdlm_lock *) lock); } unsigned int gdlm_do_lock(struct gdlm_lock *lp) { struct gdlm_ls *ls = lp->ls; struct gdlm_strname str; int error, bast = 1; /* * When recovery is in progress, delay lock requests for submission * once recovery is done. Requests for recovery (NOEXP) and unlocks * can pass. */ if (test_bit(DFL_BLOCK_LOCKS, &ls->flags) && !test_bit(LFL_NOBLOCK, &lp->flags) && lp->req != DLM_LOCK_NL) { gdlm_queue_delayed(lp); return LM_OUT_ASYNC; } /* * Submit the actual lock request. */ if (test_bit(LFL_NOBAST, &lp->flags)) bast = 0; make_strname(&lp->lockname, &str); set_bit(LFL_ACTIVE, &lp->flags); log_debug("lk %x,%llx id %x %d,%d %x", lp->lockname.ln_type, lp->lockname.ln_number, lp->lksb.sb_lkid, lp->cur, lp->req, lp->lkf); error = dlm_lock(ls->dlm_lockspace, lp->req, &lp->lksb, lp->lkf, str.name, str.namelen, 0, gdlm_ast, (void *) lp, bast ? gdlm_bast : NULL); if ((error == -EAGAIN) && (lp->lkf & DLM_LKF_NOQUEUE)) { lp->lksb.sb_status = -EAGAIN; queue_complete(lp); error = 0; } if (error) { log_debug("%s: gdlm_lock %x,%llx err=%d cur=%d req=%d lkf=%x " "flags=%lx", ls->fsname, lp->lockname.ln_type, lp->lockname.ln_number, error, lp->cur, lp->req, lp->lkf, lp->flags); return LM_OUT_ERROR; } return LM_OUT_ASYNC; } unsigned int gdlm_do_unlock(struct gdlm_lock *lp) { struct gdlm_ls *ls = lp->ls; unsigned int lkf = 0; int error; set_bit(LFL_DLM_UNLOCK, &lp->flags); set_bit(LFL_ACTIVE, &lp->flags); if (lp->lvb) lkf = DLM_LKF_VALBLK; log_debug("un %x,%llx %x %d %x", lp->lockname.ln_type, lp->lockname.ln_number, lp->lksb.sb_lkid, lp->cur, lkf); error = dlm_unlock(ls->dlm_lockspace, lp->lksb.sb_lkid, lkf, NULL, lp); if (error) { log_debug("%s: gdlm_unlock %x,%llx err=%d cur=%d req=%d lkf=%x " "flags=%lx", ls->fsname, lp->lockname.ln_type, lp->lockname.ln_number, error, lp->cur, lp->req, lp->lkf, lp->flags); return LM_OUT_ERROR; } return LM_OUT_ASYNC; } unsigned int gdlm_lock(lm_lock_t *lock, unsigned int cur_state, unsigned int req_state, unsigned int flags) { struct gdlm_lock *lp = (struct gdlm_lock *) lock; clear_bit(LFL_DLM_CANCEL, &lp->flags); if (flags & LM_FLAG_NOEXP) set_bit(LFL_NOBLOCK, &lp->flags); check_cur_state(lp, cur_state); lp->req = make_mode(req_state); lp->lkf = make_flags(lp, flags, lp->cur, lp->req); return gdlm_do_lock(lp); } unsigned int gdlm_unlock(lm_lock_t *lock, unsigned int cur_state) { struct gdlm_lock *lp = (struct gdlm_lock *) lock; clear_bit(LFL_DLM_CANCEL, &lp->flags); if (lp->cur == DLM_LOCK_IV) return 0; return gdlm_do_unlock(lp); } void gdlm_cancel(lm_lock_t *lock) { struct gdlm_lock *lp = (struct gdlm_lock *) lock; struct gdlm_ls *ls = lp->ls; int error, delay_list = 0; if (test_bit(LFL_DLM_CANCEL, &lp->flags)) return; log_info("gdlm_cancel %x,%llx flags %lx", lp->lockname.ln_type, lp->lockname.ln_number, lp->flags); spin_lock(&ls->async_lock); if (!list_empty(&lp->delay_list)) { list_del_init(&lp->delay_list); delay_list = 1; } spin_unlock(&ls->async_lock); if (delay_list) { set_bit(LFL_CANCEL, &lp->flags); set_bit(LFL_ACTIVE, &lp->flags); queue_complete(lp); return; } if (!test_bit(LFL_ACTIVE, &lp->flags) || test_bit(LFL_DLM_UNLOCK, &lp->flags)) { log_info("gdlm_cancel skip %x,%llx flags %lx", lp->lockname.ln_type, lp->lockname.ln_number, lp->flags); return; } /* the lock is blocked in the dlm */ set_bit(LFL_DLM_CANCEL, &lp->flags); set_bit(LFL_ACTIVE, &lp->flags); error = dlm_unlock(ls->dlm_lockspace, lp->lksb.sb_lkid, DLM_LKF_CANCEL, NULL, lp); log_info("gdlm_cancel rv %d %x,%llx flags %lx", error, lp->lockname.ln_type, lp->lockname.ln_number, lp->flags); if (error == -EBUSY) clear_bit(LFL_DLM_CANCEL, &lp->flags); } int gdlm_add_lvb(struct gdlm_lock *lp) { char *lvb; lvb = kzalloc(GDLM_LVB_SIZE, GFP_KERNEL); if (!lvb) return -ENOMEM; lp->lksb.sb_lvbptr = lvb; lp->lvb = lvb; return 0; } void gdlm_del_lvb(struct gdlm_lock *lp) { kfree(lp->lvb); lp->lvb = NULL; lp->lksb.sb_lvbptr = NULL; } /* This can do a synchronous dlm request (requiring a lock_dlm thread to get the completion) because gfs won't call hold_lvb() during a callback (from the context of a lock_dlm thread). */ static int hold_null_lock(struct gdlm_lock *lp) { struct gdlm_lock *lpn = NULL; int error; if (lp->hold_null) { printk("lock_dlm: lvb already held\n"); return 0; } error = gdlm_create_lp(lp->ls, &lp->lockname, &lpn); if (error) goto out; lpn->lksb.sb_lvbptr = junk_lvb; lpn->lvb = junk_lvb; lpn->req = DLM_LOCK_NL; lpn->lkf = DLM_LKF_VALBLK | DLM_LKF_EXPEDITE; set_bit(LFL_NOBAST, &lpn->flags); set_bit(LFL_INLOCK, &lpn->flags); init_completion(&lpn->ast_wait); gdlm_do_lock(lpn); wait_for_completion(&lpn->ast_wait); error = lp->lksb.sb_status; if (error) { printk("lock_dlm: hold_null_lock dlm error %d\n", error); gdlm_delete_lp(lpn); lpn = NULL; } out: lp->hold_null = lpn; return error; } /* This cannot do a synchronous dlm request (requiring a lock_dlm thread to get the completion) because gfs may call unhold_lvb() during a callback (from the context of a lock_dlm thread) which could cause a deadlock since the other lock_dlm thread could be engaged in recovery. */ static void unhold_null_lock(struct gdlm_lock *lp) { struct gdlm_lock *lpn = lp->hold_null; gdlm_assert(lpn, "%x,%llx", lp->lockname.ln_type, lp->lockname.ln_number); lpn->lksb.sb_lvbptr = NULL; lpn->lvb = NULL; set_bit(LFL_UNLOCK_DELETE, &lpn->flags); gdlm_do_unlock(lpn); lp->hold_null = NULL; } /* Acquire a NL lock because gfs requires the value block to remain intact on the resource while the lvb is "held" even if it's holding no locks on the resource. */ int gdlm_hold_lvb(lm_lock_t *lock, char **lvbp) { struct gdlm_lock *lp = (struct gdlm_lock *) lock; int error; error = gdlm_add_lvb(lp); if (error) return error; *lvbp = lp->lvb; error = hold_null_lock(lp); if (error) gdlm_del_lvb(lp); return error; } void gdlm_unhold_lvb(lm_lock_t *lock, char *lvb) { struct gdlm_lock *lp = (struct gdlm_lock *) lock; unhold_null_lock(lp); gdlm_del_lvb(lp); } void gdlm_sync_lvb(lm_lock_t *lock, char *lvb) { struct gdlm_lock *lp = (struct gdlm_lock *) lock; if (lp->cur != DLM_LOCK_EX) return; init_completion(&lp->ast_wait); set_bit(LFL_SYNC_LVB, &lp->flags); lp->req = DLM_LOCK_EX; lp->lkf = make_flags(lp, 0, lp->cur, lp->req); gdlm_do_lock(lp); wait_for_completion(&lp->ast_wait); } void gdlm_submit_delayed(struct gdlm_ls *ls) { struct gdlm_lock *lp, *safe; spin_lock(&ls->async_lock); list_for_each_entry_safe(lp, safe, &ls->delayed, delay_list) { list_del_init(&lp->delay_list); list_add_tail(&lp->delay_list, &ls->submit); } spin_unlock(&ls->async_lock); wake_up(&ls->thread_wait); } int gdlm_release_all_locks(struct gdlm_ls *ls) { struct gdlm_lock *lp, *safe; int count = 0; spin_lock(&ls->async_lock); list_for_each_entry_safe(lp, safe, &ls->all_locks, all_list) { list_del_init(&lp->all_list); if (lp->lvb && lp->lvb != junk_lvb) kfree(lp->lvb); kfree(lp); count++; } spin_unlock(&ls->async_lock); return count; }