/* bnx2x_sriov.c: Broadcom Everest network driver. * * Copyright 2009-2013 Broadcom Corporation * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2, available * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL"). * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other Broadcom software provided under a * license other than the GPL, without Broadcom's express prior written * consent. * * Maintained by: Eilon Greenstein * Written by: Shmulik Ravid * Ariel Elior * */ #include "bnx2x.h" #include "bnx2x_init.h" #include "bnx2x_cmn.h" #include "bnx2x_sp.h" #include #include /* General service functions */ static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, u16 pf_id) { REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), pf_id); REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), pf_id); REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), pf_id); REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), pf_id); } static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, u8 enable) { REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), enable); REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), enable); REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), enable); REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), enable); } int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) { int idx; for_each_vf(bp, idx) if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid) break; return idx; } static struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid) { u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid); return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL; } static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf, u8 igu_sb_id, u8 segment, u16 index, u8 op, u8 update) { /* acking a VF sb through the PF - use the GRC */ u32 ctl; u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; u32 func_encode = vf->abs_vfid; u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id; struct igu_regular cmd_data = {0}; cmd_data.sb_id_and_flags = ((index << IGU_REGULAR_SB_INDEX_SHIFT) | (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | (update << IGU_REGULAR_BUPDATE_SHIFT) | (op << IGU_REGULAR_ENABLE_INT_SHIFT)); ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | func_encode << IGU_CTRL_REG_FID_SHIFT | IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", cmd_data.sb_id_and_flags, igu_addr_data); REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags); mmiowb(); barrier(); DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", ctl, igu_addr_ctl); REG_WR(bp, igu_addr_ctl, ctl); mmiowb(); barrier(); } /* VFOP - VF slow-path operation support */ #define BNX2X_VFOP_FILTER_ADD_CNT_MAX 0x10000 /* VFOP operations states */ enum bnx2x_vfop_qctor_state { BNX2X_VFOP_QCTOR_INIT, BNX2X_VFOP_QCTOR_SETUP, BNX2X_VFOP_QCTOR_INT_EN }; enum bnx2x_vfop_qdtor_state { BNX2X_VFOP_QDTOR_HALT, BNX2X_VFOP_QDTOR_TERMINATE, BNX2X_VFOP_QDTOR_CFCDEL, BNX2X_VFOP_QDTOR_DONE }; enum bnx2x_vfop_vlan_mac_state { BNX2X_VFOP_VLAN_MAC_CONFIG_SINGLE, BNX2X_VFOP_VLAN_MAC_CLEAR, BNX2X_VFOP_VLAN_MAC_CHK_DONE, BNX2X_VFOP_MAC_CONFIG_LIST, BNX2X_VFOP_VLAN_CONFIG_LIST, BNX2X_VFOP_VLAN_CONFIG_LIST_0 }; enum bnx2x_vfop_qsetup_state { BNX2X_VFOP_QSETUP_CTOR, BNX2X_VFOP_QSETUP_VLAN0, BNX2X_VFOP_QSETUP_DONE }; enum bnx2x_vfop_mcast_state { BNX2X_VFOP_MCAST_DEL, BNX2X_VFOP_MCAST_ADD, BNX2X_VFOP_MCAST_CHK_DONE }; enum bnx2x_vfop_qflr_state { BNX2X_VFOP_QFLR_CLR_VLAN, BNX2X_VFOP_QFLR_CLR_MAC, BNX2X_VFOP_QFLR_TERMINATE, BNX2X_VFOP_QFLR_DONE }; enum bnx2x_vfop_flr_state { BNX2X_VFOP_FLR_QUEUES, BNX2X_VFOP_FLR_HW }; enum bnx2x_vfop_close_state { BNX2X_VFOP_CLOSE_QUEUES, BNX2X_VFOP_CLOSE_HW }; enum bnx2x_vfop_rxmode_state { BNX2X_VFOP_RXMODE_CONFIG, BNX2X_VFOP_RXMODE_DONE }; enum bnx2x_vfop_qteardown_state { BNX2X_VFOP_QTEARDOWN_RXMODE, BNX2X_VFOP_QTEARDOWN_CLR_VLAN, BNX2X_VFOP_QTEARDOWN_CLR_MAC, BNX2X_VFOP_QTEARDOWN_QDTOR, BNX2X_VFOP_QTEARDOWN_DONE }; #define bnx2x_vfop_reset_wq(vf) atomic_set(&vf->op_in_progress, 0) void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_queue_init_params *init_params, struct bnx2x_queue_setup_params *setup_params, u16 q_idx, u16 sb_idx) { DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d", vf->abs_vfid, q_idx, sb_idx, init_params->tx.sb_cq_index, init_params->tx.hc_rate, setup_params->flags, setup_params->txq_params.traffic_type); } void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_queue_init_params *init_params, struct bnx2x_queue_setup_params *setup_params, u16 q_idx, u16 sb_idx) { struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params; DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n" "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n", vf->abs_vfid, q_idx, sb_idx, init_params->rx.sb_cq_index, init_params->rx.hc_rate, setup_params->gen_params.mtu, rxq_params->buf_sz, rxq_params->sge_buf_sz, rxq_params->max_sges_pkt, rxq_params->tpa_agg_sz, setup_params->flags, rxq_params->drop_flags, rxq_params->cache_line_log); } void bnx2x_vfop_qctor_prep(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vf_queue *q, struct bnx2x_vfop_qctor_params *p, unsigned long q_type) { struct bnx2x_queue_init_params *init_p = &p->qstate.params.init; struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup; /* INIT */ /* Enable host coalescing in the transition to INIT state */ if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags)) __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags); if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags)) __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags); /* FW SB ID */ init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx); /* context */ init_p->cxts[0] = q->cxt; /* SETUP */ /* Setup-op general parameters */ setup_p->gen_params.spcl_id = vf->sp_cl_id; setup_p->gen_params.stat_id = vfq_stat_id(vf, q); /* Setup-op pause params: * Nothing to do, the pause thresholds are set by default to 0 which * effectively turns off the feature for this queue. We don't want * one queue (VF) to interfering with another queue (another VF) */ if (vf->cfg_flags & VF_CFG_FW_FC) BNX2X_ERR("No support for pause to VFs (abs_vfid: %d)\n", vf->abs_vfid); /* Setup-op flags: * collect statistics, zero statistics, local-switching, security, * OV for Flex10, RSS and MCAST for leading */ if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags)) __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags); /* for VFs, enable tx switching, bd coherency, and mac address * anti-spoofing */ __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags); __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags); __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags); if (vfq_is_leading(q)) { __set_bit(BNX2X_Q_FLG_LEADING_RSS, &setup_p->flags); __set_bit(BNX2X_Q_FLG_MCAST, &setup_p->flags); } /* Setup-op rx parameters */ if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) { struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params; rxq_p->cl_qzone_id = vfq_qzone_id(vf, q); rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx); rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid); if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags)) rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES; } /* Setup-op tx parameters */ if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) { setup_p->txq_params.tss_leading_cl_id = vf->leading_rss; setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx); } } /* VFOP queue construction */ static void bnx2x_vfop_qctor(struct bnx2x *bp, struct bnx2x_virtf *vf) { struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf); struct bnx2x_vfop_args_qctor *args = &vfop->args.qctor; struct bnx2x_queue_state_params *q_params = &vfop->op_p->qctor.qstate; enum bnx2x_vfop_qctor_state state = vfop->state; bnx2x_vfop_reset_wq(vf); if (vfop->rc < 0) goto op_err; DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state); switch (state) { case BNX2X_VFOP_QCTOR_INIT: /* has this queue already been opened? */ if (bnx2x_get_q_logical_state(bp, q_params->q_obj) == BNX2X_Q_LOGICAL_STATE_ACTIVE) { DP(BNX2X_MSG_IOV, "Entered qctor but queue was already up. Aborting gracefully\n"); goto op_done; } /* next state */ vfop->state = BNX2X_VFOP_QCTOR_SETUP; q_params->cmd = BNX2X_Q_CMD_INIT; vfop->rc = bnx2x_queue_state_change(bp, q_params); bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT); case BNX2X_VFOP_QCTOR_SETUP: /* next state */ vfop->state = BNX2X_VFOP_QCTOR_INT_EN; /* copy pre-prepared setup params to the queue-state params */ vfop->op_p->qctor.qstate.params.setup = vfop->op_p->qctor.prep_qsetup; q_params->cmd = BNX2X_Q_CMD_SETUP; vfop->rc = bnx2x_queue_state_change(bp, q_params); bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT); case BNX2X_VFOP_QCTOR_INT_EN: /* enable interrupts */ bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, args->sb_idx), USTORM_ID, 0, IGU_INT_ENABLE, 0); goto op_done; default: bnx2x_vfop_default(state); } op_err: BNX2X_ERR("QCTOR[%d:%d] error: cmd %d, rc %d\n", vf->abs_vfid, args->qid, q_params->cmd, vfop->rc); op_done: bnx2x_vfop_end(bp, vf, vfop); op_pending: return; } static int bnx2x_vfop_qctor_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop_cmd *cmd, int qid) { struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf); if (vfop) { vf->op_params.qctor.qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj); vfop->args.qctor.qid = qid; vfop->args.qctor.sb_idx = bnx2x_vfq(vf, qid, sb_idx); bnx2x_vfop_opset(BNX2X_VFOP_QCTOR_INIT, bnx2x_vfop_qctor, cmd->done); return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_qctor, cmd->block); } return -ENOMEM; } /* VFOP queue destruction */ static void bnx2x_vfop_qdtor(struct bnx2x *bp, struct bnx2x_virtf *vf) { struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf); struct bnx2x_vfop_args_qdtor *qdtor = &vfop->args.qdtor; struct bnx2x_queue_state_params *q_params = &vfop->op_p->qctor.qstate; enum bnx2x_vfop_qdtor_state state = vfop->state; bnx2x_vfop_reset_wq(vf); if (vfop->rc < 0) goto op_err; DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state); switch (state) { case BNX2X_VFOP_QDTOR_HALT: /* has this queue already been stopped? */ if (bnx2x_get_q_logical_state(bp, q_params->q_obj) == BNX2X_Q_LOGICAL_STATE_STOPPED) { DP(BNX2X_MSG_IOV, "Entered qdtor but queue was already stopped. Aborting gracefully\n"); goto op_done; } /* next state */ vfop->state = BNX2X_VFOP_QDTOR_TERMINATE; q_params->cmd = BNX2X_Q_CMD_HALT; vfop->rc = bnx2x_queue_state_change(bp, q_params); bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT); case BNX2X_VFOP_QDTOR_TERMINATE: /* next state */ vfop->state = BNX2X_VFOP_QDTOR_CFCDEL; q_params->cmd = BNX2X_Q_CMD_TERMINATE; vfop->rc = bnx2x_queue_state_change(bp, q_params); bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT); case BNX2X_VFOP_QDTOR_CFCDEL: /* next state */ vfop->state = BNX2X_VFOP_QDTOR_DONE; q_params->cmd = BNX2X_Q_CMD_CFC_DEL; vfop->rc = bnx2x_queue_state_change(bp, q_params); bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE); op_err: BNX2X_ERR("QDTOR[%d:%d] error: cmd %d, rc %d\n", vf->abs_vfid, qdtor->qid, q_params->cmd, vfop->rc); op_done: case BNX2X_VFOP_QDTOR_DONE: /* invalidate the context */ qdtor->cxt->ustorm_ag_context.cdu_usage = 0; qdtor->cxt->xstorm_ag_context.cdu_reserved = 0; bnx2x_vfop_end(bp, vf, vfop); return; default: bnx2x_vfop_default(state); } op_pending: return; } static int bnx2x_vfop_qdtor_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop_cmd *cmd, int qid) { struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf); if (vfop) { struct bnx2x_queue_state_params *qstate = &vf->op_params.qctor.qstate; memset(qstate, 0, sizeof(*qstate)); qstate->q_obj = &bnx2x_vfq(vf, qid, sp_obj); vfop->args.qdtor.qid = qid; vfop->args.qdtor.cxt = bnx2x_vfq(vf, qid, cxt); bnx2x_vfop_opset(BNX2X_VFOP_QDTOR_HALT, bnx2x_vfop_qdtor, cmd->done); return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_qdtor, cmd->block); } DP(BNX2X_MSG_IOV, "VF[%d] failed to add a vfop.\n", vf->abs_vfid); return -ENOMEM; } static void bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid) { struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); if (vf) { if (!vf_sb_count(vf)) vf->igu_base_id = igu_sb_id; ++vf_sb_count(vf); } } /* VFOP MAC/VLAN helpers */ static inline void bnx2x_vfop_credit(struct bnx2x *bp, struct bnx2x_vfop *vfop, struct bnx2x_vlan_mac_obj *obj) { struct bnx2x_vfop_args_filters *args = &vfop->args.filters; /* update credit only if there is no error * and a valid credit counter */ if (!vfop->rc && args->credit) { struct list_head *pos; int read_lock; int cnt = 0; read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj); if (read_lock) DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n"); list_for_each(pos, &obj->head) cnt++; if (!read_lock) bnx2x_vlan_mac_h_read_unlock(bp, obj); atomic_set(args->credit, cnt); } } static int bnx2x_vfop_set_user_req(struct bnx2x *bp, struct bnx2x_vfop_filter *pos, struct bnx2x_vlan_mac_data *user_req) { user_req->cmd = pos->add ? BNX2X_VLAN_MAC_ADD : BNX2X_VLAN_MAC_DEL; switch (pos->type) { case BNX2X_VFOP_FILTER_MAC: memcpy(user_req->u.mac.mac, pos->mac, ETH_ALEN); break; case BNX2X_VFOP_FILTER_VLAN: user_req->u.vlan.vlan = pos->vid; break; default: BNX2X_ERR("Invalid filter type, skipping\n"); return 1; } return 0; } static int bnx2x_vfop_config_vlan0(struct bnx2x *bp, struct bnx2x_vlan_mac_ramrod_params *vlan_mac, bool add) { int rc; vlan_mac->user_req.cmd = add ? BNX2X_VLAN_MAC_ADD : BNX2X_VLAN_MAC_DEL; vlan_mac->user_req.u.vlan.vlan = 0; rc = bnx2x_config_vlan_mac(bp, vlan_mac); if (rc == -EEXIST) rc = 0; return rc; } static int bnx2x_vfop_config_list(struct bnx2x *bp, struct bnx2x_vfop_filters *filters, struct bnx2x_vlan_mac_ramrod_params *vlan_mac) { struct bnx2x_vfop_filter *pos, *tmp; struct list_head rollback_list, *filters_list = &filters->head; struct bnx2x_vlan_mac_data *user_req = &vlan_mac->user_req; int rc = 0, cnt = 0; INIT_LIST_HEAD(&rollback_list); list_for_each_entry_safe(pos, tmp, filters_list, link) { if (bnx2x_vfop_set_user_req(bp, pos, user_req)) continue; rc = bnx2x_config_vlan_mac(bp, vlan_mac); if (rc >= 0) { cnt += pos->add ? 1 : -1; list_move(&pos->link, &rollback_list); rc = 0; } else if (rc == -EEXIST) { rc = 0; } else { BNX2X_ERR("Failed to add a new vlan_mac command\n"); break; } } /* rollback if error or too many rules added */ if (rc || cnt > filters->add_cnt) { BNX2X_ERR("error or too many rules added. Performing rollback\n"); list_for_each_entry_safe(pos, tmp, &rollback_list, link) { pos->add = !pos->add; /* reverse op */ bnx2x_vfop_set_user_req(bp, pos, user_req); bnx2x_config_vlan_mac(bp, vlan_mac); list_del(&pos->link); } cnt = 0; if (!rc) rc = -EINVAL; } filters->add_cnt = cnt; return rc; } /* VFOP set VLAN/MAC */ static void bnx2x_vfop_vlan_mac(struct bnx2x *bp, struct bnx2x_virtf *vf) { struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf); struct bnx2x_vlan_mac_ramrod_params *vlan_mac = &vfop->op_p->vlan_mac; struct bnx2x_vlan_mac_obj *obj = vlan_mac->vlan_mac_obj; struct bnx2x_vfop_filters *filters = vfop->args.filters.multi_filter; enum bnx2x_vfop_vlan_mac_state state = vfop->state; if (vfop->rc < 0) goto op_err; DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state); bnx2x_vfop_reset_wq(vf); switch (state) { case BNX2X_VFOP_VLAN_MAC_CLEAR: /* next state */ vfop->state = BNX2X_VFOP_VLAN_MAC_CHK_DONE; /* do delete */ vfop->rc = obj->delete_all(bp, obj, &vlan_mac->user_req.vlan_mac_flags, &vlan_mac->ramrod_flags); bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE); case BNX2X_VFOP_VLAN_MAC_CONFIG_SINGLE: /* next state */ vfop->state = BNX2X_VFOP_VLAN_MAC_CHK_DONE; /* do config */ vfop->rc = bnx2x_config_vlan_mac(bp, vlan_mac); if (vfop->rc == -EEXIST) vfop->rc = 0; bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE); case BNX2X_VFOP_VLAN_MAC_CHK_DONE: vfop->rc = !!obj->raw.check_pending(&obj->raw); bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE); case BNX2X_VFOP_MAC_CONFIG_LIST: /* next state */ vfop->state = BNX2X_VFOP_VLAN_MAC_CHK_DONE; /* do list config */ vfop->rc = bnx2x_vfop_config_list(bp, filters, vlan_mac); if (vfop->rc) goto op_err; set_bit(RAMROD_CONT, &vlan_mac->ramrod_flags); vfop->rc = bnx2x_config_vlan_mac(bp, vlan_mac); bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE); case BNX2X_VFOP_VLAN_CONFIG_LIST: /* next state */ vfop->state = BNX2X_VFOP_VLAN_CONFIG_LIST_0; /* remove vlan0 - could be no-op */ vfop->rc = bnx2x_vfop_config_vlan0(bp, vlan_mac, false); if (vfop->rc) goto op_err; /* Do vlan list config. if this operation fails we try to * restore vlan0 to keep the queue is working order */ vfop->rc = bnx2x_vfop_config_list(bp, filters, vlan_mac); if (!vfop->rc) { set_bit(RAMROD_CONT, &vlan_mac->ramrod_flags); vfop->rc = bnx2x_config_vlan_mac(bp, vlan_mac); } bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT); /* fall-through */ case BNX2X_VFOP_VLAN_CONFIG_LIST_0: /* next state */ vfop->state = BNX2X_VFOP_VLAN_MAC_CHK_DONE; if (list_empty(&obj->head)) /* add vlan0 */ vfop->rc = bnx2x_vfop_config_vlan0(bp, vlan_mac, true); bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE); default: bnx2x_vfop_default(state); } op_err: BNX2X_ERR("VLAN-MAC error: rc %d\n", vfop->rc); op_done: kfree(filters); bnx2x_vfop_credit(bp, vfop, obj); bnx2x_vfop_end(bp, vf, vfop); op_pending: return; } struct bnx2x_vfop_vlan_mac_flags { bool drv_only; bool dont_consume; bool single_cmd; bool add; }; static void bnx2x_vfop_vlan_mac_prep_ramrod(struct bnx2x_vlan_mac_ramrod_params *ramrod, struct bnx2x_vfop_vlan_mac_flags *flags) { struct bnx2x_vlan_mac_data *ureq = &ramrod->user_req; memset(ramrod, 0, sizeof(*ramrod)); /* ramrod flags */ if (flags->drv_only) set_bit(RAMROD_DRV_CLR_ONLY, &ramrod->ramrod_flags); if (flags->single_cmd) set_bit(RAMROD_EXEC, &ramrod->ramrod_flags); /* mac_vlan flags */ if (flags->dont_consume) set_bit(BNX2X_DONT_CONSUME_CAM_CREDIT, &ureq->vlan_mac_flags); /* cmd */ ureq->cmd = flags->add ? BNX2X_VLAN_MAC_ADD : BNX2X_VLAN_MAC_DEL; } static inline void bnx2x_vfop_mac_prep_ramrod(struct bnx2x_vlan_mac_ramrod_params *ramrod, struct bnx2x_vfop_vlan_mac_flags *flags) { bnx2x_vfop_vlan_mac_prep_ramrod(ramrod, flags); set_bit(BNX2X_ETH_MAC, &ramrod->user_req.vlan_mac_flags); } static int bnx2x_vfop_mac_delall_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop_cmd *cmd, int qid, bool drv_only) { struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf); if (vfop) { struct bnx2x_vfop_args_filters filters = { .multi_filter = NULL, /* single */ .credit = NULL, /* consume credit */ }; struct bnx2x_vfop_vlan_mac_flags flags = { .drv_only = drv_only, .dont_consume = (filters.credit != NULL), .single_cmd = true, .add = false /* don't care */, }; struct bnx2x_vlan_mac_ramrod_params *ramrod = &vf->op_params.vlan_mac; /* set ramrod params */ bnx2x_vfop_mac_prep_ramrod(ramrod, &flags); /* set object */ ramrod->vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); /* set extra args */ vfop->args.filters = filters; bnx2x_vfop_opset(BNX2X_VFOP_VLAN_MAC_CLEAR, bnx2x_vfop_vlan_mac, cmd->done); return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_vlan_mac, cmd->block); } return -ENOMEM; } int bnx2x_vfop_mac_list_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop_cmd *cmd, struct bnx2x_vfop_filters *macs, int qid, bool drv_only) { struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf); if (vfop) { struct bnx2x_vfop_args_filters filters = { .multi_filter = macs, .credit = NULL, /* consume credit */ }; struct bnx2x_vfop_vlan_mac_flags flags = { .drv_only = drv_only, .dont_consume = (filters.credit != NULL), .single_cmd = false, .add = false, /* don't care since only the items in the * filters list affect the sp operation, * not the list itself */ }; struct bnx2x_vlan_mac_ramrod_params *ramrod = &vf->op_params.vlan_mac; /* set ramrod params */ bnx2x_vfop_mac_prep_ramrod(ramrod, &flags); /* set object */ ramrod->vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj); /* set extra args */ filters.multi_filter->add_cnt = BNX2X_VFOP_FILTER_ADD_CNT_MAX; vfop->args.filters = filters; bnx2x_vfop_opset(BNX2X_VFOP_MAC_CONFIG_LIST, bnx2x_vfop_vlan_mac, cmd->done); return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_vlan_mac, cmd->block); } return -ENOMEM; } int bnx2x_vfop_vlan_set_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop_cmd *cmd, int qid, u16 vid, bool add) { struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf); if (vfop) { struct bnx2x_vfop_args_filters filters = { .multi_filter = NULL, /* single command */ .credit = &bnx2x_vfq(vf, qid, vlan_count), }; struct bnx2x_vfop_vlan_mac_flags flags = { .drv_only = false, .dont_consume = (filters.credit != NULL), .single_cmd = true, .add = add, }; struct bnx2x_vlan_mac_ramrod_params *ramrod = &vf->op_params.vlan_mac; /* set ramrod params */ bnx2x_vfop_vlan_mac_prep_ramrod(ramrod, &flags); ramrod->user_req.u.vlan.vlan = vid; /* set object */ ramrod->vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); /* set extra args */ vfop->args.filters = filters; bnx2x_vfop_opset(BNX2X_VFOP_VLAN_MAC_CONFIG_SINGLE, bnx2x_vfop_vlan_mac, cmd->done); return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_vlan_mac, cmd->block); } return -ENOMEM; } static int bnx2x_vfop_vlan_delall_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop_cmd *cmd, int qid, bool drv_only) { struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf); if (vfop) { struct bnx2x_vfop_args_filters filters = { .multi_filter = NULL, /* single command */ .credit = &bnx2x_vfq(vf, qid, vlan_count), }; struct bnx2x_vfop_vlan_mac_flags flags = { .drv_only = drv_only, .dont_consume = (filters.credit != NULL), .single_cmd = true, .add = false, /* don't care */ }; struct bnx2x_vlan_mac_ramrod_params *ramrod = &vf->op_params.vlan_mac; /* set ramrod params */ bnx2x_vfop_vlan_mac_prep_ramrod(ramrod, &flags); /* set object */ ramrod->vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); /* set extra args */ vfop->args.filters = filters; bnx2x_vfop_opset(BNX2X_VFOP_VLAN_MAC_CLEAR, bnx2x_vfop_vlan_mac, cmd->done); return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_vlan_mac, cmd->block); } return -ENOMEM; } int bnx2x_vfop_vlan_list_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop_cmd *cmd, struct bnx2x_vfop_filters *vlans, int qid, bool drv_only) { struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf); if (vfop) { struct bnx2x_vfop_args_filters filters = { .multi_filter = vlans, .credit = &bnx2x_vfq(vf, qid, vlan_count), }; struct bnx2x_vfop_vlan_mac_flags flags = { .drv_only = drv_only, .dont_consume = (filters.credit != NULL), .single_cmd = false, .add = false, /* don't care */ }; struct bnx2x_vlan_mac_ramrod_params *ramrod = &vf->op_params.vlan_mac; /* set ramrod params */ bnx2x_vfop_vlan_mac_prep_ramrod(ramrod, &flags); /* set object */ ramrod->vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj); /* set extra args */ filters.multi_filter->add_cnt = vf_vlan_rules_cnt(vf) - atomic_read(filters.credit); vfop->args.filters = filters; bnx2x_vfop_opset(BNX2X_VFOP_VLAN_CONFIG_LIST, bnx2x_vfop_vlan_mac, cmd->done); return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_vlan_mac, cmd->block); } return -ENOMEM; } /* VFOP queue setup (queue constructor + set vlan 0) */ static void bnx2x_vfop_qsetup(struct bnx2x *bp, struct bnx2x_virtf *vf) { struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf); int qid = vfop->args.qctor.qid; enum bnx2x_vfop_qsetup_state state = vfop->state; struct bnx2x_vfop_cmd cmd = { .done = bnx2x_vfop_qsetup, .block = false, }; if (vfop->rc < 0) goto op_err; DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state); switch (state) { case BNX2X_VFOP_QSETUP_CTOR: /* init the queue ctor command */ vfop->state = BNX2X_VFOP_QSETUP_VLAN0; vfop->rc = bnx2x_vfop_qctor_cmd(bp, vf, &cmd, qid); if (vfop->rc) goto op_err; return; case BNX2X_VFOP_QSETUP_VLAN0: /* skip if non-leading or FPGA/EMU*/ if (qid) goto op_done; /* init the queue set-vlan command (for vlan 0) */ vfop->state = BNX2X_VFOP_QSETUP_DONE; vfop->rc = bnx2x_vfop_vlan_set_cmd(bp, vf, &cmd, qid, 0, true); if (vfop->rc) goto op_err; return; op_err: BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, vfop->rc); op_done: case BNX2X_VFOP_QSETUP_DONE: vf->cfg_flags |= VF_CFG_VLAN; smp_mb__before_clear_bit(); set_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, &bp->sp_rtnl_state); smp_mb__after_clear_bit(); schedule_delayed_work(&bp->sp_rtnl_task, 0); bnx2x_vfop_end(bp, vf, vfop); return; default: bnx2x_vfop_default(state); } } int bnx2x_vfop_qsetup_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop_cmd *cmd, int qid) { struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf); if (vfop) { vfop->args.qctor.qid = qid; bnx2x_vfop_opset(BNX2X_VFOP_QSETUP_CTOR, bnx2x_vfop_qsetup, cmd->done); return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_qsetup, cmd->block); } return -ENOMEM; } /* VFOP queue FLR handling (clear vlans, clear macs, queue destructor) */ static void bnx2x_vfop_qflr(struct bnx2x *bp, struct bnx2x_virtf *vf) { struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf); int qid = vfop->args.qx.qid; enum bnx2x_vfop_qflr_state state = vfop->state; struct bnx2x_queue_state_params *qstate; struct bnx2x_vfop_cmd cmd; bnx2x_vfop_reset_wq(vf); if (vfop->rc < 0) goto op_err; DP(BNX2X_MSG_IOV, "VF[%d] STATE: %d\n", vf->abs_vfid, state); cmd.done = bnx2x_vfop_qflr; cmd.block = false; switch (state) { case BNX2X_VFOP_QFLR_CLR_VLAN: /* vlan-clear-all: driver-only, don't consume credit */ vfop->state = BNX2X_VFOP_QFLR_CLR_MAC; vfop->rc = bnx2x_vfop_vlan_delall_cmd(bp, vf, &cmd, qid, true); if (vfop->rc) goto op_err; return; case BNX2X_VFOP_QFLR_CLR_MAC: /* mac-clear-all: driver only consume credit */ vfop->state = BNX2X_VFOP_QFLR_TERMINATE; vfop->rc = bnx2x_vfop_mac_delall_cmd(bp, vf, &cmd, qid, true); DP(BNX2X_MSG_IOV, "VF[%d] vfop->rc after bnx2x_vfop_mac_delall_cmd was %d", vf->abs_vfid, vfop->rc); if (vfop->rc) goto op_err; return; case BNX2X_VFOP_QFLR_TERMINATE: qstate = &vfop->op_p->qctor.qstate; memset(qstate , 0, sizeof(*qstate)); qstate->q_obj = &bnx2x_vfq(vf, qid, sp_obj); vfop->state = BNX2X_VFOP_QFLR_DONE; DP(BNX2X_MSG_IOV, "VF[%d] qstate during flr was %d\n", vf->abs_vfid, qstate->q_obj->state); if (qstate->q_obj->state != BNX2X_Q_STATE_RESET) { qstate->q_obj->state = BNX2X_Q_STATE_STOPPED; qstate->cmd = BNX2X_Q_CMD_TERMINATE; vfop->rc = bnx2x_queue_state_change(bp, qstate); bnx2x_vfop_finalize(vf, vfop->rc, VFOP_VERIFY_PEND); } else { goto op_done; } op_err: BNX2X_ERR("QFLR[%d:%d] error: rc %d\n", vf->abs_vfid, qid, vfop->rc); op_done: case BNX2X_VFOP_QFLR_DONE: bnx2x_vfop_end(bp, vf, vfop); return; default: bnx2x_vfop_default(state); } op_pending: return; } static int bnx2x_vfop_qflr_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop_cmd *cmd, int qid) { struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf); if (vfop) { vfop->args.qx.qid = qid; bnx2x_vfop_opset(BNX2X_VFOP_QFLR_CLR_VLAN, bnx2x_vfop_qflr, cmd->done); return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_qflr, cmd->block); } return -ENOMEM; } /* VFOP multi-casts */ static void bnx2x_vfop_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf) { struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf); struct bnx2x_mcast_ramrod_params *mcast = &vfop->op_p->mcast; struct bnx2x_raw_obj *raw = &mcast->mcast_obj->raw; struct bnx2x_vfop_args_mcast *args = &vfop->args.mc_list; enum bnx2x_vfop_mcast_state state = vfop->state; int i; bnx2x_vfop_reset_wq(vf); if (vfop->rc < 0) goto op_err; DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state); switch (state) { case BNX2X_VFOP_MCAST_DEL: /* clear existing mcasts */ vfop->state = BNX2X_VFOP_MCAST_ADD; vfop->rc = bnx2x_config_mcast(bp, mcast, BNX2X_MCAST_CMD_DEL); bnx2x_vfop_finalize(vf, vfop->rc, VFOP_CONT); case BNX2X_VFOP_MCAST_ADD: if (raw->check_pending(raw)) goto op_pending; if (args->mc_num) { /* update mcast list on the ramrod params */ INIT_LIST_HEAD(&mcast->mcast_list); for (i = 0; i < args->mc_num; i++) list_add_tail(&(args->mc[i].link), &mcast->mcast_list); /* add new mcasts */ vfop->state = BNX2X_VFOP_MCAST_CHK_DONE; vfop->rc = bnx2x_config_mcast(bp, mcast, BNX2X_MCAST_CMD_ADD); } bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE); case BNX2X_VFOP_MCAST_CHK_DONE: vfop->rc = raw->check_pending(raw) ? 1 : 0; bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE); default: bnx2x_vfop_default(state); } op_err: BNX2X_ERR("MCAST CONFIG error: rc %d\n", vfop->rc); op_done: kfree(args->mc); bnx2x_vfop_end(bp, vf, vfop); op_pending: return; } int bnx2x_vfop_mcast_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop_cmd *cmd, bnx2x_mac_addr_t *mcasts, int mcast_num, bool drv_only) { struct bnx2x_vfop *vfop = NULL; size_t mc_sz = mcast_num * sizeof(struct bnx2x_mcast_list_elem); struct bnx2x_mcast_list_elem *mc = mc_sz ? kzalloc(mc_sz, GFP_KERNEL) : NULL; if (!mc_sz || mc) { vfop = bnx2x_vfop_add(bp, vf); if (vfop) { int i; struct bnx2x_mcast_ramrod_params *ramrod = &vf->op_params.mcast; /* set ramrod params */ memset(ramrod, 0, sizeof(*ramrod)); ramrod->mcast_obj = &vf->mcast_obj; if (drv_only) set_bit(RAMROD_DRV_CLR_ONLY, &ramrod->ramrod_flags); /* copy mcasts pointers */ vfop->args.mc_list.mc_num = mcast_num; vfop->args.mc_list.mc = mc; for (i = 0; i < mcast_num; i++) mc[i].mac = mcasts[i]; bnx2x_vfop_opset(BNX2X_VFOP_MCAST_DEL, bnx2x_vfop_mcast, cmd->done); return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_mcast, cmd->block); } else { kfree(mc); } } return -ENOMEM; } /* VFOP rx-mode */ static void bnx2x_vfop_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf) { struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf); struct bnx2x_rx_mode_ramrod_params *ramrod = &vfop->op_p->rx_mode; enum bnx2x_vfop_rxmode_state state = vfop->state; bnx2x_vfop_reset_wq(vf); if (vfop->rc < 0) goto op_err; DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state); switch (state) { case BNX2X_VFOP_RXMODE_CONFIG: /* next state */ vfop->state = BNX2X_VFOP_RXMODE_DONE; vfop->rc = bnx2x_config_rx_mode(bp, ramrod); bnx2x_vfop_finalize(vf, vfop->rc, VFOP_DONE); op_err: BNX2X_ERR("RXMODE error: rc %d\n", vfop->rc); op_done: case BNX2X_VFOP_RXMODE_DONE: bnx2x_vfop_end(bp, vf, vfop); return; default: bnx2x_vfop_default(state); } op_pending: return; } int bnx2x_vfop_rxmode_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop_cmd *cmd, int qid, unsigned long accept_flags) { struct bnx2x_vf_queue *vfq = vfq_get(vf, qid); struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf); if (vfop) { struct bnx2x_rx_mode_ramrod_params *ramrod = &vf->op_params.rx_mode; memset(ramrod, 0, sizeof(*ramrod)); /* Prepare ramrod parameters */ ramrod->cid = vfq->cid; ramrod->cl_id = vfq_cl_id(vf, vfq); ramrod->rx_mode_obj = &bp->rx_mode_obj; ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid); ramrod->rx_accept_flags = accept_flags; ramrod->tx_accept_flags = accept_flags; ramrod->pstate = &vf->filter_state; ramrod->state = BNX2X_FILTER_RX_MODE_PENDING; set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); set_bit(RAMROD_RX, &ramrod->ramrod_flags); set_bit(RAMROD_TX, &ramrod->ramrod_flags); ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2); ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2); bnx2x_vfop_opset(BNX2X_VFOP_RXMODE_CONFIG, bnx2x_vfop_rxmode, cmd->done); return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_rxmode, cmd->block); } return -ENOMEM; } /* VFOP queue tear-down ('drop all' rx-mode, clear vlans, clear macs, * queue destructor) */ static void bnx2x_vfop_qdown(struct bnx2x *bp, struct bnx2x_virtf *vf) { struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf); int qid = vfop->args.qx.qid; enum bnx2x_vfop_qteardown_state state = vfop->state; struct bnx2x_vfop_cmd cmd; if (vfop->rc < 0) goto op_err; DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state); cmd.done = bnx2x_vfop_qdown; cmd.block = false; switch (state) { case BNX2X_VFOP_QTEARDOWN_RXMODE: /* Drop all */ vfop->state = BNX2X_VFOP_QTEARDOWN_CLR_VLAN; vfop->rc = bnx2x_vfop_rxmode_cmd(bp, vf, &cmd, qid, 0); if (vfop->rc) goto op_err; return; case BNX2X_VFOP_QTEARDOWN_CLR_VLAN: /* vlan-clear-all: don't consume credit */ vfop->state = BNX2X_VFOP_QTEARDOWN_CLR_MAC; vfop->rc = bnx2x_vfop_vlan_delall_cmd(bp, vf, &cmd, qid, false); if (vfop->rc) goto op_err; return; case BNX2X_VFOP_QTEARDOWN_CLR_MAC: /* mac-clear-all: consume credit */ vfop->state = BNX2X_VFOP_QTEARDOWN_QDTOR; vfop->rc = bnx2x_vfop_mac_delall_cmd(bp, vf, &cmd, qid, false); if (vfop->rc) goto op_err; return; case BNX2X_VFOP_QTEARDOWN_QDTOR: /* run the queue destruction flow */ DP(BNX2X_MSG_IOV, "case: BNX2X_VFOP_QTEARDOWN_QDTOR\n"); vfop->state = BNX2X_VFOP_QTEARDOWN_DONE; DP(BNX2X_MSG_IOV, "new state: BNX2X_VFOP_QTEARDOWN_DONE\n"); vfop->rc = bnx2x_vfop_qdtor_cmd(bp, vf, &cmd, qid); DP(BNX2X_MSG_IOV, "returned from cmd\n"); if (vfop->rc) goto op_err; return; op_err: BNX2X_ERR("QTEARDOWN[%d:%d] error: rc %d\n", vf->abs_vfid, qid, vfop->rc); case BNX2X_VFOP_QTEARDOWN_DONE: bnx2x_vfop_end(bp, vf, vfop); return; default: bnx2x_vfop_default(state); } } int bnx2x_vfop_qdown_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop_cmd *cmd, int qid) { struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf); if (vfop) { vfop->args.qx.qid = qid; bnx2x_vfop_opset(BNX2X_VFOP_QTEARDOWN_RXMODE, bnx2x_vfop_qdown, cmd->done); return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_qdown, cmd->block); } return -ENOMEM; } /* VF enable primitives * when pretend is required the caller is responsible * for calling pretend prior to calling these routines */ /* internal vf enable - until vf is enabled internally all transactions * are blocked. This routine should always be called last with pretend. */ static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable) { REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0); } /* clears vf error in all semi blocks */ static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid) { REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid); REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid); REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid); REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid); } static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid) { u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5; u32 was_err_reg = 0; switch (was_err_group) { case 0: was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR; break; case 1: was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR; break; case 2: was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR; break; case 3: was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR; break; } REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f)); } static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf) { int i; u32 val; /* Set VF masks and configuration - pretend */ bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN); if (vf->cfg_flags & VF_CFG_INT_SIMD) val |= IGU_VF_CONF_SINGLE_ISR_EN; val &= ~IGU_VF_CONF_PARENT_MASK; val |= BP_FUNC(bp) << IGU_VF_CONF_PARENT_SHIFT; /* parent PF */ REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); DP(BNX2X_MSG_IOV, "value in IGU_REG_VF_CONFIGURATION of vf %d after write %x\n", vf->abs_vfid, REG_RD(bp, IGU_REG_VF_CONFIGURATION)); bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); /* iterate over all queues, clear sb consumer */ for (i = 0; i < vf_sb_count(vf); i++) { u8 igu_sb_id = vf_igu_sb(vf, i); /* zero prod memory */ REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0); /* clear sb state machine */ bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id, false /* VF */); /* disable + update */ bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 1); } } void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid) { /* set the VF-PF association in the FW */ storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp)); storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1); /* clear vf errors*/ bnx2x_vf_semi_clear_err(bp, abs_vfid); bnx2x_vf_pglue_clear_err(bp, abs_vfid); /* internal vf-enable - pretend */ bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid)); DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid); bnx2x_vf_enable_internal(bp, true); bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); } static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf) { /* Reset vf in IGU interrupts are still disabled */ bnx2x_vf_igu_reset(bp, vf); /* pretend to enable the vf with the PBF */ bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); REG_WR(bp, PBF_REG_DISABLE_VF, 0); bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); } static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid) { struct pci_dev *dev; struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); if (!vf) return false; dev = pci_get_bus_and_slot(vf->bus, vf->devfn); if (dev) return bnx2x_is_pcie_pending(dev); return false; } int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid) { /* Verify no pending pci transactions */ if (bnx2x_vf_is_pcie_pending(bp, abs_vfid)) BNX2X_ERR("PCIE Transactions still pending\n"); return 0; } /* must be called after the number of PF queues and the number of VFs are * both known */ static void bnx2x_iov_static_resc(struct bnx2x *bp, struct vf_pf_resc_request *resc) { u16 vlan_count = 0; /* will be set only during VF-ACQUIRE */ resc->num_rxqs = 0; resc->num_txqs = 0; /* no credit calculcis for macs (just yet) */ resc->num_mac_filters = 1; /* divvy up vlan rules */ vlan_count = bp->vlans_pool.check(&bp->vlans_pool); vlan_count = 1 << ilog2(vlan_count); resc->num_vlan_filters = vlan_count / BNX2X_NR_VIRTFN(bp); /* no real limitation */ resc->num_mc_filters = 0; /* num_sbs already set */ } /* FLR routines: */ static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf) { /* reset the state variables */ bnx2x_iov_static_resc(bp, &vf->alloc_resc); vf->state = VF_FREE; } static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf) { u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); /* DQ usage counter */ bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT, "DQ VF usage counter timed out", poll_cnt); bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); /* FW cleanup command - poll for the results */ if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid), poll_cnt)) BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid); /* verify TX hw is flushed */ bnx2x_tx_hw_flushed(bp, poll_cnt); } static void bnx2x_vfop_flr(struct bnx2x *bp, struct bnx2x_virtf *vf) { struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf); struct bnx2x_vfop_args_qx *qx = &vfop->args.qx; enum bnx2x_vfop_flr_state state = vfop->state; struct bnx2x_vfop_cmd cmd = { .done = bnx2x_vfop_flr, .block = false, }; if (vfop->rc < 0) goto op_err; DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state); switch (state) { case BNX2X_VFOP_FLR_QUEUES: /* the cleanup operations are valid if and only if the VF * was first acquired. */ if (++(qx->qid) < vf_rxq_count(vf)) { vfop->rc = bnx2x_vfop_qflr_cmd(bp, vf, &cmd, qx->qid); if (vfop->rc) goto op_err; return; } /* remove multicasts */ vfop->state = BNX2X_VFOP_FLR_HW; vfop->rc = bnx2x_vfop_mcast_cmd(bp, vf, &cmd, NULL, 0, true); if (vfop->rc) goto op_err; return; case BNX2X_VFOP_FLR_HW: /* dispatch final cleanup and wait for HW queues to flush */ bnx2x_vf_flr_clnup_hw(bp, vf); /* release VF resources */ bnx2x_vf_free_resc(bp, vf); /* re-open the mailbox */ bnx2x_vf_enable_mbx(bp, vf->abs_vfid); goto op_done; default: bnx2x_vfop_default(state); } op_err: BNX2X_ERR("VF[%d] FLR error: rc %d\n", vf->abs_vfid, vfop->rc); op_done: vf->flr_clnup_stage = VF_FLR_ACK; bnx2x_vfop_end(bp, vf, vfop); bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); } static int bnx2x_vfop_flr_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, vfop_handler_t done) { struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf); if (vfop) { vfop->args.qx.qid = -1; /* loop */ bnx2x_vfop_opset(BNX2X_VFOP_FLR_QUEUES, bnx2x_vfop_flr, done); return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_flr, false); } return -ENOMEM; } static void bnx2x_vf_flr_clnup(struct bnx2x *bp, struct bnx2x_virtf *prev_vf) { int i = prev_vf ? prev_vf->index + 1 : 0; struct bnx2x_virtf *vf; /* find next VF to cleanup */ next_vf_to_clean: for (; i < BNX2X_NR_VIRTFN(bp) && (bnx2x_vf(bp, i, state) != VF_RESET || bnx2x_vf(bp, i, flr_clnup_stage) != VF_FLR_CLN); i++) ; DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n", i, BNX2X_NR_VIRTFN(bp)); if (i < BNX2X_NR_VIRTFN(bp)) { vf = BP_VF(bp, i); /* lock the vf pf channel */ bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR); /* invoke the VF FLR SM */ if (bnx2x_vfop_flr_cmd(bp, vf, bnx2x_vf_flr_clnup)) { BNX2X_ERR("VF[%d]: FLR cleanup failed -ENOMEM\n", vf->abs_vfid); /* mark the VF to be ACKED and continue */ vf->flr_clnup_stage = VF_FLR_ACK; goto next_vf_to_clean; } return; } /* we are done, update vf records */ for_each_vf(bp, i) { vf = BP_VF(bp, i); if (vf->flr_clnup_stage != VF_FLR_ACK) continue; vf->flr_clnup_stage = VF_FLR_EPILOG; } /* Acknowledge the handled VFs. * we are acknowledge all the vfs which an flr was requested for, even * if amongst them there are such that we never opened, since the mcp * will interrupt us immediately again if we only ack some of the bits, * resulting in an endless loop. This can happen for example in KVM * where an 'all ones' flr request is sometimes given by hyper visor */ DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n", bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); for (i = 0; i < FLRD_VFS_DWORDS; i++) SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], bp->vfdb->flrd_vfs[i]); bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0); /* clear the acked bits - better yet if the MCP implemented * write to clear semantics */ for (i = 0; i < FLRD_VFS_DWORDS; i++) SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0); } void bnx2x_vf_handle_flr_event(struct bnx2x *bp) { int i; /* Read FLR'd VFs */ for (i = 0; i < FLRD_VFS_DWORDS; i++) bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]); DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n", bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]); for_each_vf(bp, i) { struct bnx2x_virtf *vf = BP_VF(bp, i); u32 reset = 0; if (vf->abs_vfid < 32) reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid); else reset = bp->vfdb->flrd_vfs[1] & (1 << (vf->abs_vfid - 32)); if (reset) { /* set as reset and ready for cleanup */ vf->state = VF_RESET; vf->flr_clnup_stage = VF_FLR_CLN; DP(BNX2X_MSG_IOV, "Initiating Final cleanup for VF %d\n", vf->abs_vfid); } } /* do the FLR cleanup for all marked VFs*/ bnx2x_vf_flr_clnup(bp, NULL); } /* IOV global initialization routines */ void bnx2x_iov_init_dq(struct bnx2x *bp) { if (!IS_SRIOV(bp)) return; /* Set the DQ such that the CID reflect the abs_vfid */ REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0); REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS)); /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to * the PF L2 queues */ REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); /* The VF window size is the log2 of the max number of CIDs per VF */ REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match * the Pf doorbell size although the 2 are independent. */ REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT); /* No security checks for now - * configure single rule (out of 16) mask = 0x1, value = 0x0, * CID range 0 - 0x1ffff */ REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1); REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0); REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); /* set the number of VF allowed doorbells to the full DQ range */ REG_WR(bp, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000); /* set the VF doorbell threshold */ REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 4); } void bnx2x_iov_init_dmae(struct bnx2x *bp) { DP(BNX2X_MSG_IOV, "SRIOV is %s\n", IS_SRIOV(bp) ? "ON" : "OFF"); if (!IS_SRIOV(bp)) return; REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0); } static int bnx2x_vf_bus(struct bnx2x *bp, int vfid) { struct pci_dev *dev = bp->pdev; struct bnx2x_sriov *iov = &bp->vfdb->sriov; return dev->bus->number + ((dev->devfn + iov->offset + iov->stride * vfid) >> 8); } static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid) { struct pci_dev *dev = bp->pdev; struct bnx2x_sriov *iov = &bp->vfdb->sriov; return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff; } static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf) { int i, n; struct pci_dev *dev = bp->pdev; struct bnx2x_sriov *iov = &bp->vfdb->sriov; for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) { u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i); u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i); size /= iov->total; vf->bars[n].bar = start + size * vf->abs_vfid; vf->bars[n].size = size; } } static int bnx2x_ari_enabled(struct pci_dev *dev) { return dev->bus->self && dev->bus->self->ari_enabled; } static void bnx2x_get_vf_igu_cam_info(struct bnx2x *bp) { int sb_id; u32 val; u8 fid; /* IGU in normal mode - read CAM */ for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) { val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4); if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) continue; fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID); if (!(fid & IGU_FID_ENCODE_IS_PF)) bnx2x_vf_set_igu_info(bp, sb_id, (fid & IGU_FID_VF_NUM_MASK)); DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n", ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"), ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) : (fid & IGU_FID_VF_NUM_MASK)), sb_id, GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)); } } static void __bnx2x_iov_free_vfdb(struct bnx2x *bp) { if (bp->vfdb) { kfree(bp->vfdb->vfqs); kfree(bp->vfdb->vfs); kfree(bp->vfdb); } bp->vfdb = NULL; } static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov) { int pos; struct pci_dev *dev = bp->pdev; pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV); if (!pos) { BNX2X_ERR("failed to find SRIOV capability in device\n"); return -ENODEV; } iov->pos = pos; DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos); pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl); pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total); pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial); pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset); pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride); pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap); pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); return 0; } static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov) { u32 val; /* read the SRIOV capability structure * The fields can be read via configuration read or * directly from the device (starting at offset PCICFG_OFFSET) */ if (bnx2x_sriov_pci_cfg_info(bp, iov)) return -ENODEV; /* get the number of SRIOV bars */ iov->nres = 0; /* read the first_vfid */ val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF); iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK) * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp)); DP(BNX2X_MSG_IOV, "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", BP_FUNC(bp), iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total, iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); return 0; } static u8 bnx2x_iov_get_max_queue_count(struct bnx2x *bp) { int i; u8 queue_count = 0; if (IS_SRIOV(bp)) for_each_vf(bp, i) queue_count += bnx2x_vf(bp, i, alloc_resc.num_sbs); return queue_count; } /* must be called after PF bars are mapped */ int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param, int num_vfs_param) { int err, i, qcount; struct bnx2x_sriov *iov; struct pci_dev *dev = bp->pdev; bp->vfdb = NULL; /* verify is pf */ if (IS_VF(bp)) return 0; /* verify sriov capability is present in configuration space */ if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV)) return 0; /* verify chip revision */ if (CHIP_IS_E1x(bp)) return 0; /* check if SRIOV support is turned off */ if (!num_vfs_param) return 0; /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */ if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) { BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n", BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID); return 0; } /* SRIOV can be enabled only with MSIX */ if (int_mode_param == BNX2X_INT_MODE_MSI || int_mode_param == BNX2X_INT_MODE_INTX) { BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n"); return 0; } err = -EIO; /* verify ari is enabled */ if (!bnx2x_ari_enabled(bp->pdev)) { BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n"); return 0; } /* verify igu is in normal mode */ if (CHIP_INT_MODE_IS_BC(bp)) { BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n"); return 0; } /* allocate the vfs database */ bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL); if (!bp->vfdb) { BNX2X_ERR("failed to allocate vf database\n"); err = -ENOMEM; goto failed; } /* get the sriov info - Linux already collected all the pertinent * information, however the sriov structure is for the private use * of the pci module. Also we want this information regardless * of the hyper-visor. */ iov = &(bp->vfdb->sriov); err = bnx2x_sriov_info(bp, iov); if (err) goto failed; /* SR-IOV capability was enabled but there are no VFs*/ if (iov->total == 0) goto failed; iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param); DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n", num_vfs_param, iov->nr_virtfn); /* allocate the vf array */ bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) * BNX2X_NR_VIRTFN(bp), GFP_KERNEL); if (!bp->vfdb->vfs) { BNX2X_ERR("failed to allocate vf array\n"); err = -ENOMEM; goto failed; } /* Initial VF init - index and abs_vfid - nr_virtfn must be set */ for_each_vf(bp, i) { bnx2x_vf(bp, i, index) = i; bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i; bnx2x_vf(bp, i, state) = VF_FREE; INIT_LIST_HEAD(&bnx2x_vf(bp, i, op_list_head)); mutex_init(&bnx2x_vf(bp, i, op_mutex)); bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE; } /* re-read the IGU CAM for VFs - index and abs_vfid must be set */ bnx2x_get_vf_igu_cam_info(bp); /* get the total queue count and allocate the global queue arrays */ qcount = bnx2x_iov_get_max_queue_count(bp); /* allocate the queue arrays for all VFs */ bp->vfdb->vfqs = kzalloc(qcount * sizeof(struct bnx2x_vf_queue), GFP_KERNEL); if (!bp->vfdb->vfqs) { BNX2X_ERR("failed to allocate vf queue array\n"); err = -ENOMEM; goto failed; } return 0; failed: DP(BNX2X_MSG_IOV, "Failed err=%d\n", err); __bnx2x_iov_free_vfdb(bp); return err; } void bnx2x_iov_remove_one(struct bnx2x *bp) { /* if SRIOV is not enabled there's nothing to do */ if (!IS_SRIOV(bp)) return; DP(BNX2X_MSG_IOV, "about to call disable sriov\n"); pci_disable_sriov(bp->pdev); DP(BNX2X_MSG_IOV, "sriov disabled\n"); /* free vf database */ __bnx2x_iov_free_vfdb(bp); } void bnx2x_iov_free_mem(struct bnx2x *bp) { int i; if (!IS_SRIOV(bp)) return; /* free vfs hw contexts */ for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { struct hw_dma *cxt = &bp->vfdb->context[i]; BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size); } BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr, BP_VFDB(bp)->sp_dma.mapping, BP_VFDB(bp)->sp_dma.size); BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr, BP_VF_MBX_DMA(bp)->mapping, BP_VF_MBX_DMA(bp)->size); BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr, BP_VF_BULLETIN_DMA(bp)->mapping, BP_VF_BULLETIN_DMA(bp)->size); } int bnx2x_iov_alloc_mem(struct bnx2x *bp) { size_t tot_size; int i, rc = 0; if (!IS_SRIOV(bp)) return rc; /* allocate vfs hw contexts */ tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) * BNX2X_CIDS_PER_VF * sizeof(union cdu_context); for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i); cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ); if (cxt->size) { BNX2X_PCI_ALLOC(cxt->addr, &cxt->mapping, cxt->size); } else { cxt->addr = NULL; cxt->mapping = 0; } tot_size -= cxt->size; } /* allocate vfs ramrods dma memory - client_init and set_mac */ tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp); BNX2X_PCI_ALLOC(BP_VFDB(bp)->sp_dma.addr, &BP_VFDB(bp)->sp_dma.mapping, tot_size); BP_VFDB(bp)->sp_dma.size = tot_size; /* allocate mailboxes */ tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE; BNX2X_PCI_ALLOC(BP_VF_MBX_DMA(bp)->addr, &BP_VF_MBX_DMA(bp)->mapping, tot_size); BP_VF_MBX_DMA(bp)->size = tot_size; /* allocate local bulletin boards */ tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE; BNX2X_PCI_ALLOC(BP_VF_BULLETIN_DMA(bp)->addr, &BP_VF_BULLETIN_DMA(bp)->mapping, tot_size); BP_VF_BULLETIN_DMA(bp)->size = tot_size; return 0; alloc_mem_err: return -ENOMEM; } static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vf_queue *q) { u8 cl_id = vfq_cl_id(vf, q); u8 func_id = FW_VF_HANDLE(vf->abs_vfid); unsigned long q_type = 0; set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); /* Queue State object */ bnx2x_init_queue_obj(bp, &q->sp_obj, cl_id, &q->cid, 1, func_id, bnx2x_vf_sp(bp, vf, q_data), bnx2x_vf_sp_map(bp, vf, q_data), q_type); DP(BNX2X_MSG_IOV, "initialized vf %d's queue object. func id set to %d\n", vf->abs_vfid, q->sp_obj.func_id); /* mac/vlan objects are per queue, but only those * that belong to the leading queue are initialized */ if (vfq_is_leading(q)) { /* mac */ bnx2x_init_mac_obj(bp, &q->mac_obj, cl_id, q->cid, func_id, bnx2x_vf_sp(bp, vf, mac_rdata), bnx2x_vf_sp_map(bp, vf, mac_rdata), BNX2X_FILTER_MAC_PENDING, &vf->filter_state, BNX2X_OBJ_TYPE_RX_TX, &bp->macs_pool); /* vlan */ bnx2x_init_vlan_obj(bp, &q->vlan_obj, cl_id, q->cid, func_id, bnx2x_vf_sp(bp, vf, vlan_rdata), bnx2x_vf_sp_map(bp, vf, vlan_rdata), BNX2X_FILTER_VLAN_PENDING, &vf->filter_state, BNX2X_OBJ_TYPE_RX_TX, &bp->vlans_pool); /* mcast */ bnx2x_init_mcast_obj(bp, &vf->mcast_obj, cl_id, q->cid, func_id, func_id, bnx2x_vf_sp(bp, vf, mcast_rdata), bnx2x_vf_sp_map(bp, vf, mcast_rdata), BNX2X_FILTER_MCAST_PENDING, &vf->filter_state, BNX2X_OBJ_TYPE_RX_TX); vf->leading_rss = cl_id; } } /* called by bnx2x_nic_load */ int bnx2x_iov_nic_init(struct bnx2x *bp) { int vfid, qcount, i; if (!IS_SRIOV(bp)) { DP(BNX2X_MSG_IOV, "vfdb was not allocated\n"); return 0; } DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn); /* let FLR complete ... */ msleep(100); /* initialize vf database */ for_each_vf(bp, vfid) { struct bnx2x_virtf *vf = BP_VF(bp, vfid); int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) * BNX2X_CIDS_PER_VF; union cdu_context *base_cxt = (union cdu_context *) BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + (base_vf_cid & (ILT_PAGE_CIDS-1)); DP(BNX2X_MSG_IOV, "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n", vf->abs_vfid, vf_sb_count(vf), base_vf_cid, BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt); /* init statically provisioned resources */ bnx2x_iov_static_resc(bp, &vf->alloc_resc); /* queues are initialized during VF-ACQUIRE */ /* reserve the vf vlan credit */ bp->vlans_pool.get(&bp->vlans_pool, vf_vlan_rules_cnt(vf)); vf->filter_state = 0; vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id); /* init mcast object - This object will be re-initialized * during VF-ACQUIRE with the proper cl_id and cid. * It needs to be initialized here so that it can be safely * handled by a subsequent FLR flow. */ bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF, 0xFF, 0xFF, 0xFF, bnx2x_vf_sp(bp, vf, mcast_rdata), bnx2x_vf_sp_map(bp, vf, mcast_rdata), BNX2X_FILTER_MCAST_PENDING, &vf->filter_state, BNX2X_OBJ_TYPE_RX_TX); /* set the mailbox message addresses */ BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *) (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid * MBX_MSG_ALIGNED_SIZE); BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping + vfid * MBX_MSG_ALIGNED_SIZE; /* Enable vf mailbox */ bnx2x_vf_enable_mbx(bp, vf->abs_vfid); } /* Final VF init */ qcount = 0; for_each_vf(bp, i) { struct bnx2x_virtf *vf = BP_VF(bp, i); /* fill in the BDF and bars */ vf->bus = bnx2x_vf_bus(bp, i); vf->devfn = bnx2x_vf_devfn(bp, i); bnx2x_vf_set_bars(bp, vf); DP(BNX2X_MSG_IOV, "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n", vf->abs_vfid, vf->bus, vf->devfn, (unsigned)vf->bars[0].bar, vf->bars[0].size, (unsigned)vf->bars[1].bar, vf->bars[1].size, (unsigned)vf->bars[2].bar, vf->bars[2].size); /* set local queue arrays */ vf->vfqs = &bp->vfdb->vfqs[qcount]; qcount += bnx2x_vf(bp, i, alloc_resc.num_sbs); } return 0; } /* called by bnx2x_chip_cleanup */ int bnx2x_iov_chip_cleanup(struct bnx2x *bp) { int i; if (!IS_SRIOV(bp)) return 0; /* release all the VFs */ for_each_vf(bp, i) bnx2x_vf_release(bp, BP_VF(bp, i), true); /* blocking */ return 0; } /* called by bnx2x_init_hw_func, returns the next ilt line */ int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line) { int i; struct bnx2x_ilt *ilt = BP_ILT(bp); if (!IS_SRIOV(bp)) return line; /* set vfs ilt lines */ for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) { struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i); ilt->lines[line+i].page = hw_cxt->addr; ilt->lines[line+i].page_mapping = hw_cxt->mapping; ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ } return line + i; } static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid) { return ((cid >= BNX2X_FIRST_VF_CID) && ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS)); } static void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp, struct bnx2x_vf_queue *vfq, union event_ring_elem *elem) { unsigned long ramrod_flags = 0; int rc = 0; /* Always push next commands out, don't wait here */ set_bit(RAMROD_CONT, &ramrod_flags); switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) { case BNX2X_FILTER_MAC_PENDING: rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem, &ramrod_flags); break; case BNX2X_FILTER_VLAN_PENDING: rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem, &ramrod_flags); break; default: BNX2X_ERR("Unsupported classification command: %d\n", elem->message.data.eth_event.echo); return; } if (rc < 0) BNX2X_ERR("Failed to schedule new commands: %d\n", rc); else if (rc > 0) DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n"); } static void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp, struct bnx2x_virtf *vf) { struct bnx2x_mcast_ramrod_params rparam = {NULL}; int rc; rparam.mcast_obj = &vf->mcast_obj; vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw); /* If there are pending mcast commands - send them */ if (vf->mcast_obj.check_pending(&vf->mcast_obj)) { rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); if (rc < 0) BNX2X_ERR("Failed to send pending mcast commands: %d\n", rc); } } static void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp, struct bnx2x_virtf *vf) { smp_mb__before_clear_bit(); clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state); smp_mb__after_clear_bit(); } int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem) { struct bnx2x_virtf *vf; int qidx = 0, abs_vfid; u8 opcode; u16 cid = 0xffff; if (!IS_SRIOV(bp)) return 1; /* first get the cid - the only events we handle here are cfc-delete * and set-mac completion */ opcode = elem->message.opcode; switch (opcode) { case EVENT_RING_OPCODE_CFC_DEL: cid = SW_CID((__force __le32) elem->message.data.cfc_del_event.cid); DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid); break; case EVENT_RING_OPCODE_CLASSIFICATION_RULES: case EVENT_RING_OPCODE_MULTICAST_RULES: case EVENT_RING_OPCODE_FILTERS_RULES: cid = (elem->message.data.eth_event.echo & BNX2X_SWCID_MASK); DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid); break; case EVENT_RING_OPCODE_VF_FLR: abs_vfid = elem->message.data.vf_flr_event.vf_id; DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n", abs_vfid); goto get_vf; case EVENT_RING_OPCODE_MALICIOUS_VF: abs_vfid = elem->message.data.malicious_vf_event.vf_id; DP(BNX2X_MSG_IOV, "Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n", abs_vfid, elem->message.data.malicious_vf_event.err_id); goto get_vf; default: return 1; } /* check if the cid is the VF range */ if (!bnx2x_iov_is_vf_cid(bp, cid)) { DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid); return 1; } /* extract vf and rxq index from vf_cid - relies on the following: * 1. vfid on cid reflects the true abs_vfid * 2. The max number of VFs (per path) is 64 */ qidx = cid & ((1 << BNX2X_VF_CID_WND)-1); abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); get_vf: vf = bnx2x_vf_by_abs_fid(bp, abs_vfid); if (!vf) { BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n", cid, abs_vfid); return 0; } switch (opcode) { case EVENT_RING_OPCODE_CFC_DEL: DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n", vf->abs_vfid, qidx); vfq_get(vf, qidx)->sp_obj.complete_cmd(bp, &vfq_get(vf, qidx)->sp_obj, BNX2X_Q_CMD_CFC_DEL); break; case EVENT_RING_OPCODE_CLASSIFICATION_RULES: DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n", vf->abs_vfid, qidx); bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem); break; case EVENT_RING_OPCODE_MULTICAST_RULES: DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n", vf->abs_vfid, qidx); bnx2x_vf_handle_mcast_eqe(bp, vf); break; case EVENT_RING_OPCODE_FILTERS_RULES: DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n", vf->abs_vfid, qidx); bnx2x_vf_handle_filters_eqe(bp, vf); break; case EVENT_RING_OPCODE_VF_FLR: DP(BNX2X_MSG_IOV, "got VF [%d] FLR notification\n", vf->abs_vfid); /* Do nothing for now */ break; case EVENT_RING_OPCODE_MALICIOUS_VF: DP(BNX2X_MSG_IOV, "Got VF MALICIOUS notification abs_vfid=%d error id %x\n", abs_vfid, elem->message.data.malicious_vf_event.err_id); /* Do nothing for now */ break; } /* SRIOV: reschedule any 'in_progress' operations */ bnx2x_iov_sp_event(bp, cid, false); return 0; } static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid) { /* extract the vf from vf_cid - relies on the following: * 1. vfid on cid reflects the true abs_vfid * 2. The max number of VFs (per path) is 64 */ int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1); return bnx2x_vf_by_abs_fid(bp, abs_vfid); } void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid, struct bnx2x_queue_sp_obj **q_obj) { struct bnx2x_virtf *vf; if (!IS_SRIOV(bp)) return; vf = bnx2x_vf_by_cid(bp, vf_cid); if (vf) { /* extract queue index from vf_cid - relies on the following: * 1. vfid on cid reflects the true abs_vfid * 2. The max number of VFs (per path) is 64 */ int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1); *q_obj = &bnx2x_vfq(vf, q_index, sp_obj); } else { BNX2X_ERR("No vf matching cid %d\n", vf_cid); } } void bnx2x_iov_sp_event(struct bnx2x *bp, int vf_cid, bool queue_work) { struct bnx2x_virtf *vf; /* check if the cid is the VF range */ if (!IS_SRIOV(bp) || !bnx2x_iov_is_vf_cid(bp, vf_cid)) return; vf = bnx2x_vf_by_cid(bp, vf_cid); if (vf) { /* set in_progress flag */ atomic_set(&vf->op_in_progress, 1); if (queue_work) queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); } } void bnx2x_iov_adjust_stats_req(struct bnx2x *bp) { int i; int first_queue_query_index, num_queues_req; dma_addr_t cur_data_offset; struct stats_query_entry *cur_query_entry; u8 stats_count = 0; bool is_fcoe = false; if (!IS_SRIOV(bp)) return; if (!NO_FCOE(bp)) is_fcoe = true; /* fcoe adds one global request and one queue request */ num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe; first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX - (is_fcoe ? 0 : 1); DP(BNX2X_MSG_IOV, "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n", BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index, first_queue_query_index + num_queues_req); cur_data_offset = bp->fw_stats_data_mapping + offsetof(struct bnx2x_fw_stats_data, queue_stats) + num_queues_req * sizeof(struct per_queue_stats); cur_query_entry = &bp->fw_stats_req-> query[first_queue_query_index + num_queues_req]; for_each_vf(bp, i) { int j; struct bnx2x_virtf *vf = BP_VF(bp, i); if (vf->state != VF_ENABLED) { DP(BNX2X_MSG_IOV, "vf %d not enabled so no stats for it\n", vf->abs_vfid); continue; } DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid); for_each_vfq(vf, j) { struct bnx2x_vf_queue *rxq = vfq_get(vf, j); /* collect stats fro active queues only */ if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) == BNX2X_Q_LOGICAL_STATE_STOPPED) continue; /* create stats query entry for this queue */ cur_query_entry->kind = STATS_TYPE_QUEUE; cur_query_entry->index = vfq_cl_id(vf, rxq); cur_query_entry->funcID = cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid)); cur_query_entry->address.hi = cpu_to_le32(U64_HI(vf->fw_stat_map)); cur_query_entry->address.lo = cpu_to_le32(U64_LO(vf->fw_stat_map)); DP(BNX2X_MSG_IOV, "added address %x %x for vf %d queue %d client %d\n", cur_query_entry->address.hi, cur_query_entry->address.lo, cur_query_entry->funcID, j, cur_query_entry->index); cur_query_entry++; cur_data_offset += sizeof(struct per_queue_stats); stats_count++; } } bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count; } void bnx2x_iov_sp_task(struct bnx2x *bp) { int i; if (!IS_SRIOV(bp)) return; /* Iterate over all VFs and invoke state transition for VFs with * 'in-progress' slow-path operations */ DP(BNX2X_MSG_IOV, "searching for pending vf operations\n"); for_each_vf(bp, i) { struct bnx2x_virtf *vf = BP_VF(bp, i); if (!list_empty(&vf->op_list_head) && atomic_read(&vf->op_in_progress)) { DP(BNX2X_MSG_IOV, "running pending op for vf %d\n", i); bnx2x_vfop_cur(bp, vf)->transition(bp, vf); } } } static inline struct bnx2x_virtf *__vf_from_stat_id(struct bnx2x *bp, u8 stat_id) { int i; struct bnx2x_virtf *vf = NULL; for_each_vf(bp, i) { vf = BP_VF(bp, i); if (stat_id >= vf->igu_base_id && stat_id < vf->igu_base_id + vf_sb_count(vf)) break; } return vf; } /* VF API helpers */ static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid, u8 enable) { u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4; u32 val = enable ? (abs_vfid | (1 << 6)) : 0; REG_WR(bp, reg, val); } static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf) { int i; for_each_vfq(vf, i) bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, vfq_qzone_id(vf, vfq_get(vf, i)), false); } static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf) { u32 val; /* clear the VF configuration - pretend */ bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid)); val = REG_RD(bp, IGU_REG_VF_CONFIGURATION); val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN | IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK); REG_WR(bp, IGU_REG_VF_CONFIGURATION, val); bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); } u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf) { return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF), BNX2X_VF_MAX_QUEUES); } static int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf, struct vf_pf_resc_request *req_resc) { u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf); return ((req_resc->num_rxqs <= rxq_cnt) && (req_resc->num_txqs <= txq_cnt) && (req_resc->num_sbs <= vf_sb_count(vf)) && (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) && (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf))); } /* CORE VF API */ int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf, struct vf_pf_resc_request *resc) { int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) * BNX2X_CIDS_PER_VF; union cdu_context *base_cxt = (union cdu_context *) BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr + (base_vf_cid & (ILT_PAGE_CIDS-1)); int i; /* if state is 'acquired' the VF was not released or FLR'd, in * this case the returned resources match the acquired already * acquired resources. Verify that the requested numbers do * not exceed the already acquired numbers. */ if (vf->state == VF_ACQUIRED) { DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n", vf->abs_vfid); if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n", vf->abs_vfid); return -EINVAL; } return 0; } /* Otherwise vf state must be 'free' or 'reset' */ if (vf->state != VF_FREE && vf->state != VF_RESET) { BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n", vf->abs_vfid, vf->state); return -EINVAL; } /* static allocation: * the global maximum number are fixed per VF. Fail the request if * requested number exceed these globals */ if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) { DP(BNX2X_MSG_IOV, "cannot fulfill vf resource request. Placing maximal available values in response\n"); /* set the max resource in the vf */ return -ENOMEM; } /* Set resources counters - 0 request means max available */ vf_sb_count(vf) = resc->num_sbs; vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf); vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf); if (resc->num_mac_filters) vf_mac_rules_cnt(vf) = resc->num_mac_filters; if (resc->num_vlan_filters) vf_vlan_rules_cnt(vf) = resc->num_vlan_filters; DP(BNX2X_MSG_IOV, "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n", vf_sb_count(vf), vf_rxq_count(vf), vf_txq_count(vf), vf_mac_rules_cnt(vf), vf_vlan_rules_cnt(vf)); /* Initialize the queues */ if (!vf->vfqs) { DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n"); return -EINVAL; } for_each_vfq(vf, i) { struct bnx2x_vf_queue *q = vfq_get(vf, i); if (!q) { DP(BNX2X_MSG_IOV, "q number %d was not allocated\n", i); return -EINVAL; } q->index = i; q->cxt = &((base_cxt + i)->eth); q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i; DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n", vf->abs_vfid, i, q->index, q->cid, q->cxt); /* init SP objects */ bnx2x_vfq_init(bp, vf, q); } vf->state = VF_ACQUIRED; return 0; } int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map) { struct bnx2x_func_init_params func_init = {0}; u16 flags = 0; int i; /* the sb resources are initialized at this point, do the * FW/HW initializations */ for_each_vf_sb(vf, i) bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true, vf_igu_sb(vf, i), vf_igu_sb(vf, i)); /* Sanity checks */ if (vf->state != VF_ACQUIRED) { DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n", vf->abs_vfid, vf->state); return -EINVAL; } /* let FLR complete ... */ msleep(100); /* FLR cleanup epilogue */ if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid)) return -EBUSY; /* reset IGU VF statistics: MSIX */ REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0); /* vf init */ if (vf->cfg_flags & VF_CFG_STATS) flags |= (FUNC_FLG_STATS | FUNC_FLG_SPQ); if (vf->cfg_flags & VF_CFG_TPA) flags |= FUNC_FLG_TPA; if (is_vf_multi(vf)) flags |= FUNC_FLG_RSS; /* function setup */ func_init.func_flgs = flags; func_init.pf_id = BP_FUNC(bp); func_init.func_id = FW_VF_HANDLE(vf->abs_vfid); func_init.fw_stat_map = vf->fw_stat_map; func_init.spq_map = vf->spq_map; func_init.spq_prod = 0; bnx2x_func_init(bp, &func_init); /* Enable the vf */ bnx2x_vf_enable_access(bp, vf->abs_vfid); bnx2x_vf_enable_traffic(bp, vf); /* queue protection table */ for_each_vfq(vf, i) bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid, vfq_qzone_id(vf, vfq_get(vf, i)), true); vf->state = VF_ENABLED; /* update vf bulletin board */ bnx2x_post_vf_bulletin(bp, vf->index); return 0; } /* VFOP close (teardown the queues, delete mcasts and close HW) */ static void bnx2x_vfop_close(struct bnx2x *bp, struct bnx2x_virtf *vf) { struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf); struct bnx2x_vfop_args_qx *qx = &vfop->args.qx; enum bnx2x_vfop_close_state state = vfop->state; struct bnx2x_vfop_cmd cmd = { .done = bnx2x_vfop_close, .block = false, }; if (vfop->rc < 0) goto op_err; DP(BNX2X_MSG_IOV, "vf[%d] STATE: %d\n", vf->abs_vfid, state); switch (state) { case BNX2X_VFOP_CLOSE_QUEUES: if (++(qx->qid) < vf_rxq_count(vf)) { vfop->rc = bnx2x_vfop_qdown_cmd(bp, vf, &cmd, qx->qid); if (vfop->rc) goto op_err; return; } /* remove multicasts */ vfop->state = BNX2X_VFOP_CLOSE_HW; vfop->rc = bnx2x_vfop_mcast_cmd(bp, vf, &cmd, NULL, 0, false); if (vfop->rc) goto op_err; return; case BNX2X_VFOP_CLOSE_HW: /* disable the interrupts */ DP(BNX2X_MSG_IOV, "disabling igu\n"); bnx2x_vf_igu_disable(bp, vf); /* disable the VF */ DP(BNX2X_MSG_IOV, "clearing qtbl\n"); bnx2x_vf_clr_qtbl(bp, vf); goto op_done; default: bnx2x_vfop_default(state); } op_err: BNX2X_ERR("VF[%d] CLOSE error: rc %d\n", vf->abs_vfid, vfop->rc); op_done: vf->state = VF_ACQUIRED; DP(BNX2X_MSG_IOV, "set state to acquired\n"); bnx2x_vfop_end(bp, vf, vfop); } int bnx2x_vfop_close_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop_cmd *cmd) { struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf); if (vfop) { vfop->args.qx.qid = -1; /* loop */ bnx2x_vfop_opset(BNX2X_VFOP_CLOSE_QUEUES, bnx2x_vfop_close, cmd->done); return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_close, cmd->block); } return -ENOMEM; } /* VF release can be called either: 1. The VF was acquired but * not enabled 2. the vf was enabled or in the process of being * enabled */ static void bnx2x_vfop_release(struct bnx2x *bp, struct bnx2x_virtf *vf) { struct bnx2x_vfop *vfop = bnx2x_vfop_cur(bp, vf); struct bnx2x_vfop_cmd cmd = { .done = bnx2x_vfop_release, .block = false, }; DP(BNX2X_MSG_IOV, "vfop->rc %d\n", vfop->rc); if (vfop->rc < 0) goto op_err; DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid, vf->state == VF_FREE ? "Free" : vf->state == VF_ACQUIRED ? "Acquired" : vf->state == VF_ENABLED ? "Enabled" : vf->state == VF_RESET ? "Reset" : "Unknown"); switch (vf->state) { case VF_ENABLED: vfop->rc = bnx2x_vfop_close_cmd(bp, vf, &cmd); if (vfop->rc) goto op_err; return; case VF_ACQUIRED: DP(BNX2X_MSG_IOV, "about to free resources\n"); bnx2x_vf_free_resc(bp, vf); DP(BNX2X_MSG_IOV, "vfop->rc %d\n", vfop->rc); goto op_done; case VF_FREE: case VF_RESET: /* do nothing */ goto op_done; default: bnx2x_vfop_default(vf->state); } op_err: BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, vfop->rc); op_done: bnx2x_vfop_end(bp, vf, vfop); } int bnx2x_vfop_release_cmd(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vfop_cmd *cmd) { struct bnx2x_vfop *vfop = bnx2x_vfop_add(bp, vf); if (vfop) { bnx2x_vfop_opset(-1, /* use vf->state */ bnx2x_vfop_release, cmd->done); return bnx2x_vfop_transition(bp, vf, bnx2x_vfop_release, cmd->block); } return -ENOMEM; } /* VF release ~ VF close + VF release-resources * Release is the ultimate SW shutdown and is called whenever an * irrecoverable error is encountered. */ void bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf, bool block) { struct bnx2x_vfop_cmd cmd = { .done = NULL, .block = block, }; int rc; bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF); rc = bnx2x_vfop_release_cmd(bp, vf, &cmd); if (rc) WARN(rc, "VF[%d] Failed to allocate resources for release op- rc=%d\n", vf->abs_vfid, rc); } static inline void bnx2x_vf_get_sbdf(struct bnx2x *bp, struct bnx2x_virtf *vf, u32 *sbdf) { *sbdf = vf->devfn | (vf->bus << 8); } static inline void bnx2x_vf_get_bars(struct bnx2x *bp, struct bnx2x_virtf *vf, struct bnx2x_vf_bar_info *bar_info) { int n; bar_info->nr_bars = bp->vfdb->sriov.nres; for (n = 0; n < bar_info->nr_bars; n++) bar_info->bars[n] = vf->bars[n]; } void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, enum channel_tlvs tlv) { /* lock the channel */ mutex_lock(&vf->op_mutex); /* record the locking op */ vf->op_current = tlv; /* log the lock */ DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n", vf->abs_vfid, tlv); } void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf, enum channel_tlvs expected_tlv) { WARN(expected_tlv != vf->op_current, "lock mismatch: expected %d found %d", expected_tlv, vf->op_current); /* lock the channel */ mutex_unlock(&vf->op_mutex); /* log the unlock */ DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n", vf->abs_vfid, vf->op_current); /* record the locking op */ vf->op_current = CHANNEL_TLV_NONE; } int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param) { struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev)); DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n", num_vfs_param, BNX2X_NR_VIRTFN(bp)); /* HW channel is only operational when PF is up */ if (bp->state != BNX2X_STATE_OPEN) { BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n"); return -EINVAL; } /* we are always bound by the total_vfs in the configuration space */ if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) { BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n", num_vfs_param, BNX2X_NR_VIRTFN(bp)); num_vfs_param = BNX2X_NR_VIRTFN(bp); } bp->requested_nr_virtfn = num_vfs_param; if (num_vfs_param == 0) { pci_disable_sriov(dev); return 0; } else { return bnx2x_enable_sriov(bp); } } int bnx2x_enable_sriov(struct bnx2x *bp) { int rc = 0, req_vfs = bp->requested_nr_virtfn; rc = pci_enable_sriov(bp->pdev, req_vfs); if (rc) { BNX2X_ERR("pci_enable_sriov failed with %d\n", rc); return rc; } DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs); return req_vfs; } void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp) { int vfidx; struct pf_vf_bulletin_content *bulletin; DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n"); for_each_vf(bp, vfidx) { bulletin = BP_VF_BULLETIN(bp, vfidx); if (BP_VF(bp, vfidx)->cfg_flags & VF_CFG_VLAN) bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0); } } void bnx2x_disable_sriov(struct bnx2x *bp) { pci_disable_sriov(bp->pdev); } static int bnx2x_vf_ndo_sanity(struct bnx2x *bp, int vfidx, struct bnx2x_virtf *vf) { if (bp->state != BNX2X_STATE_OPEN) { BNX2X_ERR("vf ndo called though PF is down\n"); return -EINVAL; } if (!IS_SRIOV(bp)) { BNX2X_ERR("vf ndo called though sriov is disabled\n"); return -EINVAL; } if (vfidx >= BNX2X_NR_VIRTFN(bp)) { BNX2X_ERR("vf ndo called for uninitialized VF. vfidx was %d BNX2X_NR_VIRTFN was %d\n", vfidx, BNX2X_NR_VIRTFN(bp)); return -EINVAL; } if (!vf) { BNX2X_ERR("vf ndo called but vf was null. vfidx was %d\n", vfidx); return -EINVAL; } return 0; } int bnx2x_get_vf_config(struct net_device *dev, int vfidx, struct ifla_vf_info *ivi) { struct bnx2x *bp = netdev_priv(dev); struct bnx2x_virtf *vf = BP_VF(bp, vfidx); struct bnx2x_vlan_mac_obj *mac_obj = &bnx2x_vfq(vf, 0, mac_obj); struct bnx2x_vlan_mac_obj *vlan_obj = &bnx2x_vfq(vf, 0, vlan_obj); struct pf_vf_bulletin_content *bulletin = BP_VF_BULLETIN(bp, vfidx); int rc; /* sanity */ rc = bnx2x_vf_ndo_sanity(bp, vfidx, vf); if (rc) return rc; if (!mac_obj || !vlan_obj || !bulletin) { BNX2X_ERR("VF partially initialized\n"); return -EINVAL; } ivi->vf = vfidx; ivi->qos = 0; ivi->tx_rate = 10000; /* always 10G. TBA take from link struct */ ivi->spoofchk = 1; /*always enabled */ if (vf->state == VF_ENABLED) { /* mac and vlan are in vlan_mac objects */ mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac, 0, ETH_ALEN); vlan_obj->get_n_elements(bp, vlan_obj, 1, (u8 *)&ivi->vlan, 0, VLAN_HLEN); } else { /* mac */ if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID)) /* mac configured by ndo so its in bulletin board */ memcpy(&ivi->mac, bulletin->mac, ETH_ALEN); else /* function has not been loaded yet. Show mac as 0s */ memset(&ivi->mac, 0, ETH_ALEN); /* vlan */ if (bulletin->valid_bitmap & (1 << VLAN_VALID)) /* vlan configured by ndo so its in bulletin board */ memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN); else /* function has not been loaded yet. Show vlans as 0s */ memset(&ivi->vlan, 0, VLAN_HLEN); } return 0; } /* New mac for VF. Consider these cases: * 1. VF hasn't been acquired yet - save the mac in local bulletin board and * supply at acquire. * 2. VF has already been acquired but has not yet initialized - store in local * bulletin board. mac will be posted on VF bulletin board after VF init. VF * will configure this mac when it is ready. * 3. VF has already initialized but has not yet setup a queue - post the new * mac on VF's bulletin board right now. VF will configure this mac when it * is ready. * 4. VF has already set a queue - delete any macs already configured for this * queue and manually config the new mac. * In any event, once this function has been called refuse any attempts by the * VF to configure any mac for itself except for this mac. In case of a race * where the VF fails to see the new post on its bulletin board before sending a * mac configuration request, the PF will simply fail the request and VF can try * again after consulting its bulletin board. */ int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac) { struct bnx2x *bp = netdev_priv(dev); int rc, q_logical_state; struct bnx2x_virtf *vf = BP_VF(bp, vfidx); struct pf_vf_bulletin_content *bulletin = BP_VF_BULLETIN(bp, vfidx); /* sanity */ rc = bnx2x_vf_ndo_sanity(bp, vfidx, vf); if (rc) return rc; if (!is_valid_ether_addr(mac)) { BNX2X_ERR("mac address invalid\n"); return -EINVAL; } /* update PF's copy of the VF's bulletin. Will no longer accept mac * configuration requests from vf unless match this mac */ bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID; memcpy(bulletin->mac, mac, ETH_ALEN); /* Post update on VF's bulletin board */ rc = bnx2x_post_vf_bulletin(bp, vfidx); if (rc) { BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx); return rc; } /* is vf initialized and queue set up? */ q_logical_state = bnx2x_get_q_logical_state(bp, &bnx2x_vfq(vf, 0, sp_obj)); if (vf->state == VF_ENABLED && q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) { /* configure the mac in device on this vf's queue */ unsigned long ramrod_flags = 0; struct bnx2x_vlan_mac_obj *mac_obj = &bnx2x_vfq(vf, 0, mac_obj); /* must lock vfpf channel to protect against vf flows */ bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); /* remove existing eth macs */ rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true); if (rc) { BNX2X_ERR("failed to delete eth macs\n"); return -EINVAL; } /* remove existing uc list macs */ rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true); if (rc) { BNX2X_ERR("failed to delete uc_list macs\n"); return -EINVAL; } /* configure the new mac to device */ __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true, BNX2X_ETH_MAC, &ramrod_flags); bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC); } return 0; } int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos) { struct bnx2x *bp = netdev_priv(dev); int rc, q_logical_state; struct bnx2x_virtf *vf = BP_VF(bp, vfidx); struct pf_vf_bulletin_content *bulletin = BP_VF_BULLETIN(bp, vfidx); /* sanity */ rc = bnx2x_vf_ndo_sanity(bp, vfidx, vf); if (rc) return rc; if (vlan > 4095) { BNX2X_ERR("illegal vlan value %d\n", vlan); return -EINVAL; } DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n", vfidx, vlan, 0); /* update PF's copy of the VF's bulletin. No point in posting the vlan * to the VF since it doesn't have anything to do with it. But it useful * to store it here in case the VF is not up yet and we can only * configure the vlan later when it does. */ bulletin->valid_bitmap |= 1 << VLAN_VALID; bulletin->vlan = vlan; /* is vf initialized and queue set up? */ q_logical_state = bnx2x_get_q_logical_state(bp, &bnx2x_vfq(vf, 0, sp_obj)); if (vf->state == VF_ENABLED && q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) { /* configure the vlan in device on this vf's queue */ unsigned long ramrod_flags = 0; unsigned long vlan_mac_flags = 0; struct bnx2x_vlan_mac_obj *vlan_obj = &bnx2x_vfq(vf, 0, vlan_obj); struct bnx2x_vlan_mac_ramrod_params ramrod_param; struct bnx2x_queue_state_params q_params = {NULL}; struct bnx2x_queue_update_params *update_params; memset(&ramrod_param, 0, sizeof(ramrod_param)); /* must lock vfpf channel to protect against vf flows */ bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); /* remove existing vlans */ __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags, &ramrod_flags); if (rc) { BNX2X_ERR("failed to delete vlans\n"); return -EINVAL; } /* send queue update ramrod to configure default vlan and silent * vlan removal */ __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); q_params.cmd = BNX2X_Q_CMD_UPDATE; q_params.q_obj = &bnx2x_vfq(vf, 0, sp_obj); update_params = &q_params.params.update; __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG, &update_params->update_flags); __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, &update_params->update_flags); if (vlan == 0) { /* if vlan is 0 then we want to leave the VF traffic * untagged, and leave the incoming traffic untouched * (i.e. do not remove any vlan tags). */ __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &update_params->update_flags); __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &update_params->update_flags); } else { /* configure the new vlan to device */ __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); ramrod_param.vlan_mac_obj = vlan_obj; ramrod_param.ramrod_flags = ramrod_flags; ramrod_param.user_req.u.vlan.vlan = vlan; ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; rc = bnx2x_config_vlan_mac(bp, &ramrod_param); if (rc) { BNX2X_ERR("failed to configure vlan\n"); return -EINVAL; } /* configure default vlan to vf queue and set silent * vlan removal (the vf remains unaware of this vlan). */ update_params = &q_params.params.update; __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN, &update_params->update_flags); __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &update_params->update_flags); update_params->def_vlan = vlan; } /* Update the Queue state */ rc = bnx2x_queue_state_change(bp, &q_params); if (rc) { BNX2X_ERR("Failed to configure default VLAN\n"); return rc; } /* clear the flag indicating that this VF needs its vlan * (will only be set if the HV configured th Vlan before vf was * and we were called because the VF came up later */ vf->cfg_flags &= ~VF_CFG_VLAN; bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN); } return 0; } /* crc is the first field in the bulletin board. Compute the crc over the * entire bulletin board excluding the crc field itself. Use the length field * as the Bulletin Board was posted by a PF with possibly a different version * from the vf which will sample it. Therefore, the length is computed by the * PF and the used blindly by the VF. */ u32 bnx2x_crc_vf_bulletin(struct bnx2x *bp, struct pf_vf_bulletin_content *bulletin) { return crc32(BULLETIN_CRC_SEED, ((u8 *)bulletin) + sizeof(bulletin->crc), bulletin->length - sizeof(bulletin->crc)); } /* Check for new posts on the bulletin board */ enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp) { struct pf_vf_bulletin_content bulletin = bp->pf2vf_bulletin->content; int attempts; /* bulletin board hasn't changed since last sample */ if (bp->old_bulletin.version == bulletin.version) return PFVF_BULLETIN_UNCHANGED; /* validate crc of new bulletin board */ if (bp->old_bulletin.version != bp->pf2vf_bulletin->content.version) { /* sampling structure in mid post may result with corrupted data * validate crc to ensure coherency. */ for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) { bulletin = bp->pf2vf_bulletin->content; if (bulletin.crc == bnx2x_crc_vf_bulletin(bp, &bulletin)) break; BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n", bulletin.crc, bnx2x_crc_vf_bulletin(bp, &bulletin)); } if (attempts >= BULLETIN_ATTEMPTS) { BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n", attempts); return PFVF_BULLETIN_CRC_ERR; } } /* the mac address in bulletin board is valid and is new */ if (bulletin.valid_bitmap & 1 << MAC_ADDR_VALID && memcmp(bulletin.mac, bp->old_bulletin.mac, ETH_ALEN)) { /* update new mac to net device */ memcpy(bp->dev->dev_addr, bulletin.mac, ETH_ALEN); } /* the vlan in bulletin board is valid and is new */ if (bulletin.valid_bitmap & 1 << VLAN_VALID) memcpy(&bulletin.vlan, &bp->old_bulletin.vlan, VLAN_HLEN); /* copy new bulletin board to bp */ bp->old_bulletin = bulletin; return PFVF_BULLETIN_UPDATED; } void bnx2x_timer_sriov(struct bnx2x *bp) { bnx2x_sample_bulletin(bp); /* if channel is down we need to self destruct */ if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN) { smp_mb__before_clear_bit(); set_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, &bp->sp_rtnl_state); smp_mb__after_clear_bit(); schedule_delayed_work(&bp->sp_rtnl_task, 0); } } void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp) { /* vf doorbells are embedded within the regview */ return bp->regview + PXP_VF_ADDR_DB_START; } int bnx2x_vf_pci_alloc(struct bnx2x *bp) { mutex_init(&bp->vf2pf_mutex); /* allocate vf2pf mailbox for vf to pf channel */ BNX2X_PCI_ALLOC(bp->vf2pf_mbox, &bp->vf2pf_mbox_mapping, sizeof(struct bnx2x_vf_mbx_msg)); /* allocate pf 2 vf bulletin board */ BNX2X_PCI_ALLOC(bp->pf2vf_bulletin, &bp->pf2vf_bulletin_mapping, sizeof(union pf_vf_bulletin)); return 0; alloc_mem_err: BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping, sizeof(struct bnx2x_vf_mbx_msg)); BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping, sizeof(union pf_vf_bulletin)); return -ENOMEM; } int bnx2x_open_epilog(struct bnx2x *bp) { /* Enable sriov via delayed work. This must be done via delayed work * because it causes the probe of the vf devices to be run, which invoke * register_netdevice which must have rtnl lock taken. As we are holding * the lock right now, that could only work if the probe would not take * the lock. However, as the probe of the vf may be called from other * contexts as well (such as passthrough to vm fails) it can't assume * the lock is being held for it. Using delayed work here allows the * probe code to simply take the lock (i.e. wait for it to be released * if it is being held). We only want to do this if the number of VFs * was set before PF driver was loaded. */ if (IS_SRIOV(bp) && BNX2X_NR_VIRTFN(bp)) { smp_mb__before_clear_bit(); set_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, &bp->sp_rtnl_state); smp_mb__after_clear_bit(); schedule_delayed_work(&bp->sp_rtnl_task, 0); } return 0; } void bnx2x_iov_channel_down(struct bnx2x *bp) { int vf_idx; struct pf_vf_bulletin_content *bulletin; if (!IS_SRIOV(bp)) return; for_each_vf(bp, vf_idx) { /* locate this VFs bulletin board and update the channel down * bit */ bulletin = BP_VF_BULLETIN(bp, vf_idx); bulletin->valid_bitmap |= 1 << CHANNEL_DOWN; /* update vf bulletin board */ bnx2x_post_vf_bulletin(bp, vf_idx); } }