/* * linux/arch/arm/mach-tegra/platsmp.c * * Copyright (C) 2002 ARM Ltd. * All Rights Reserved * * Copyright (C) 2009 Palm * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include extern void tegra_secondary_startup(void); static DEFINE_SPINLOCK(boot_lock); static void __iomem *scu_base = IO_ADDRESS(TEGRA_ARM_PERIF_BASE); #define EVP_CPU_RESET_VECTOR \ (IO_ADDRESS(TEGRA_EXCEPTION_VECTORS_BASE) + 0x100) #define CLK_RST_CONTROLLER_CLK_CPU_CMPLX \ (IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x4c) #define CLK_RST_CONTROLLER_RST_CPU_CMPLX_CLR \ (IO_ADDRESS(TEGRA_CLK_RESET_BASE) + 0x344) void __cpuinit platform_secondary_init(unsigned int cpu) { trace_hardirqs_off(); /* * if any interrupts are already enabled for the primary * core (e.g. timer irq), then they will not have been enabled * for us: do so */ gic_cpu_init(0, IO_ADDRESS(TEGRA_ARM_PERIF_BASE) + 0x100); /* * Synchronise with the boot thread. */ spin_lock(&boot_lock); spin_unlock(&boot_lock); } int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) { unsigned long old_boot_vector; unsigned long boot_vector; unsigned long timeout; u32 reg; /* * set synchronisation state between this boot processor * and the secondary one */ spin_lock(&boot_lock); /* set the reset vector to point to the secondary_startup routine */ boot_vector = virt_to_phys(tegra_secondary_startup); old_boot_vector = readl(EVP_CPU_RESET_VECTOR); writel(boot_vector, EVP_CPU_RESET_VECTOR); /* enable cpu clock on cpu1 */ reg = readl(CLK_RST_CONTROLLER_CLK_CPU_CMPLX); writel(reg & ~(1<<9), CLK_RST_CONTROLLER_CLK_CPU_CMPLX); reg = (1<<13) | (1<<9) | (1<<5) | (1<<1); writel(reg, CLK_RST_CONTROLLER_RST_CPU_CMPLX_CLR); smp_wmb(); flush_cache_all(); /* unhalt the cpu */ writel(0, IO_ADDRESS(TEGRA_FLOW_CTRL_BASE) + 0x14); timeout = jiffies + (1 * HZ); while (time_before(jiffies, timeout)) { if (readl(EVP_CPU_RESET_VECTOR) != boot_vector) break; udelay(10); } /* put the old boot vector back */ writel(old_boot_vector, EVP_CPU_RESET_VECTOR); /* * now the secondary core is starting up let it run its * calibrations, then wait for it to finish */ spin_unlock(&boot_lock); return 0; } /* * Initialise the CPU possible map early - this describes the CPUs * which may be present or become present in the system. */ void __init smp_init_cpus(void) { unsigned int i, ncores = scu_get_core_count(scu_base); if (ncores > NR_CPUS) { printk(KERN_ERR "Tegra: no. of cores (%u) greater than configured (%u), clipping\n", ncores, NR_CPUS); ncores = NR_CPUS; } for (i = 0; i < ncores; i++) cpu_set(i, cpu_possible_map); } void __init smp_prepare_cpus(unsigned int max_cpus) { unsigned int ncores = scu_get_core_count(scu_base); unsigned int cpu = smp_processor_id(); int i; smp_store_cpu_info(cpu); /* * are we trying to boot more cores than exist? */ if (max_cpus > ncores) max_cpus = ncores; /* * Initialise the present map, which describes the set of CPUs * actually populated at the present time. */ for (i = 0; i < max_cpus; i++) set_cpu_present(i, true); /* * Initialise the SCU if there are more than one CPU and let * them know where to start. Note that, on modern versions of * MILO, the "poke" doesn't actually do anything until each * individual core is sent a soft interrupt to get it out of * WFI */ if (max_cpus > 1) { percpu_timer_setup(); scu_enable(scu_base); } }