/* * linux/arch/arm/kernel/setup.c * * Copyright (C) 1995-2001 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_DEPRECATED_PARAM_STRUCT) #include "compat.h" #endif #include "atags.h" #include "tcm.h" #ifndef MEM_SIZE #define MEM_SIZE (16*1024*1024) #endif #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE) char fpe_type[8]; static int __init fpe_setup(char *line) { memcpy(fpe_type, line, 8); return 1; } __setup("fpe=", fpe_setup); #endif extern void paging_init(struct machine_desc *desc); extern void reboot_setup(char *str); unsigned int processor_id; EXPORT_SYMBOL(processor_id); unsigned int __machine_arch_type; EXPORT_SYMBOL(__machine_arch_type); unsigned int cacheid; EXPORT_SYMBOL(cacheid); unsigned int __atags_pointer __initdata; unsigned int system_rev; EXPORT_SYMBOL(system_rev); unsigned int system_serial_low; EXPORT_SYMBOL(system_serial_low); unsigned int system_serial_high; EXPORT_SYMBOL(system_serial_high); unsigned int elf_hwcap; EXPORT_SYMBOL(elf_hwcap); #ifdef MULTI_CPU struct processor processor; #endif #ifdef MULTI_TLB struct cpu_tlb_fns cpu_tlb; #endif #ifdef MULTI_USER struct cpu_user_fns cpu_user; #endif #ifdef MULTI_CACHE struct cpu_cache_fns cpu_cache; #endif #ifdef CONFIG_OUTER_CACHE struct outer_cache_fns outer_cache; EXPORT_SYMBOL(outer_cache); #endif struct stack { u32 irq[3]; u32 abt[3]; u32 und[3]; } ____cacheline_aligned; static struct stack stacks[NR_CPUS]; char elf_platform[ELF_PLATFORM_SIZE]; EXPORT_SYMBOL(elf_platform); static const char *cpu_name; static const char *machine_name; static char __initdata cmd_line[COMMAND_LINE_SIZE]; static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE; static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } }; #define ENDIANNESS ((char)endian_test.l) DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data); /* * Standard memory resources */ static struct resource mem_res[] = { { .name = "Video RAM", .start = 0, .end = 0, .flags = IORESOURCE_MEM }, { .name = "Kernel text", .start = 0, .end = 0, .flags = IORESOURCE_MEM }, { .name = "Kernel data", .start = 0, .end = 0, .flags = IORESOURCE_MEM } }; #define video_ram mem_res[0] #define kernel_code mem_res[1] #define kernel_data mem_res[2] static struct resource io_res[] = { { .name = "reserved", .start = 0x3bc, .end = 0x3be, .flags = IORESOURCE_IO | IORESOURCE_BUSY }, { .name = "reserved", .start = 0x378, .end = 0x37f, .flags = IORESOURCE_IO | IORESOURCE_BUSY }, { .name = "reserved", .start = 0x278, .end = 0x27f, .flags = IORESOURCE_IO | IORESOURCE_BUSY } }; #define lp0 io_res[0] #define lp1 io_res[1] #define lp2 io_res[2] static const char *proc_arch[] = { "undefined/unknown", "3", "4", "4T", "5", "5T", "5TE", "5TEJ", "6TEJ", "7", "?(11)", "?(12)", "?(13)", "?(14)", "?(15)", "?(16)", "?(17)", }; int cpu_architecture(void) { int cpu_arch; if ((read_cpuid_id() & 0x0008f000) == 0) { cpu_arch = CPU_ARCH_UNKNOWN; } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) { cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3; } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) { cpu_arch = (read_cpuid_id() >> 16) & 7; if (cpu_arch) cpu_arch += CPU_ARCH_ARMv3; } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) { unsigned int mmfr0; /* Revised CPUID format. Read the Memory Model Feature * Register 0 and check for VMSAv7 or PMSAv7 */ asm("mrc p15, 0, %0, c0, c1, 4" : "=r" (mmfr0)); if ((mmfr0 & 0x0000000f) == 0x00000003 || (mmfr0 & 0x000000f0) == 0x00000030) cpu_arch = CPU_ARCH_ARMv7; else if ((mmfr0 & 0x0000000f) == 0x00000002 || (mmfr0 & 0x000000f0) == 0x00000020) cpu_arch = CPU_ARCH_ARMv6; else cpu_arch = CPU_ARCH_UNKNOWN; } else cpu_arch = CPU_ARCH_UNKNOWN; return cpu_arch; } static int cpu_has_aliasing_icache(unsigned int arch) { int aliasing_icache; unsigned int id_reg, num_sets, line_size; /* arch specifies the register format */ switch (arch) { case CPU_ARCH_ARMv7: asm("mcr p15, 2, %1, c0, c0, 0 @ set CSSELR\n" "isb\n" "mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR" : "=r" (id_reg) : "r" (1)); line_size = 4 << ((id_reg & 0x7) + 2); num_sets = ((id_reg >> 13) & 0x7fff) + 1; aliasing_icache = (line_size * num_sets) > PAGE_SIZE; break; case CPU_ARCH_ARMv6: aliasing_icache = read_cpuid_cachetype() & (1 << 11); break; default: /* I-cache aliases will be handled by D-cache aliasing code */ aliasing_icache = 0; } return aliasing_icache; } static void __init cacheid_init(void) { unsigned int cachetype = read_cpuid_cachetype(); unsigned int arch = cpu_architecture(); if (arch >= CPU_ARCH_ARMv6) { if ((cachetype & (7 << 29)) == 4 << 29) { /* ARMv7 register format */ cacheid = CACHEID_VIPT_NONALIASING; if ((cachetype & (3 << 14)) == 1 << 14) cacheid |= CACHEID_ASID_TAGGED; else if (cpu_has_aliasing_icache(CPU_ARCH_ARMv7)) cacheid |= CACHEID_VIPT_I_ALIASING; } else if (cachetype & (1 << 23)) { cacheid = CACHEID_VIPT_ALIASING; } else { cacheid = CACHEID_VIPT_NONALIASING; if (cpu_has_aliasing_icache(CPU_ARCH_ARMv6)) cacheid |= CACHEID_VIPT_I_ALIASING; } } else { cacheid = CACHEID_VIVT; } printk("CPU: %s data cache, %s instruction cache\n", cache_is_vivt() ? "VIVT" : cache_is_vipt_aliasing() ? "VIPT aliasing" : cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown", cache_is_vivt() ? "VIVT" : icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" : icache_is_vipt_aliasing() ? "VIPT aliasing" : cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown"); } /* * These functions re-use the assembly code in head.S, which * already provide the required functionality. */ extern struct proc_info_list *lookup_processor_type(unsigned int); extern struct machine_desc *lookup_machine_type(unsigned int); static void __init feat_v6_fixup(void) { int id = read_cpuid_id(); if ((id & 0xff0f0000) != 0x41070000) return; /* * HWCAP_TLS is available only on 1136 r1p0 and later, * see also kuser_get_tls_init. */ if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0)) elf_hwcap &= ~HWCAP_TLS; } static void __init setup_processor(void) { struct proc_info_list *list; /* * locate processor in the list of supported processor * types. The linker builds this table for us from the * entries in arch/arm/mm/proc-*.S */ list = lookup_processor_type(read_cpuid_id()); if (!list) { printk("CPU configuration botched (ID %08x), unable " "to continue.\n", read_cpuid_id()); while (1); } cpu_name = list->cpu_name; #ifdef MULTI_CPU processor = *list->proc; #endif #ifdef MULTI_TLB cpu_tlb = *list->tlb; #endif #ifdef MULTI_USER cpu_user = *list->user; #endif #ifdef MULTI_CACHE cpu_cache = *list->cache; #endif printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n", cpu_name, read_cpuid_id(), read_cpuid_id() & 15, proc_arch[cpu_architecture()], cr_alignment); sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS); sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS); elf_hwcap = list->elf_hwcap; #ifndef CONFIG_ARM_THUMB elf_hwcap &= ~HWCAP_THUMB; #endif feat_v6_fixup(); cacheid_init(); cpu_proc_init(); } /* * cpu_init - initialise one CPU. * * cpu_init sets up the per-CPU stacks. */ void cpu_init(void) { unsigned int cpu = smp_processor_id(); struct stack *stk = &stacks[cpu]; if (cpu >= NR_CPUS) { printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu); BUG(); } /* * Define the placement constraint for the inline asm directive below. * In Thumb-2, msr with an immediate value is not allowed. */ #ifdef CONFIG_THUMB2_KERNEL #define PLC "r" #else #define PLC "I" #endif /* * setup stacks for re-entrant exception handlers */ __asm__ ( "msr cpsr_c, %1\n\t" "add r14, %0, %2\n\t" "mov sp, r14\n\t" "msr cpsr_c, %3\n\t" "add r14, %0, %4\n\t" "mov sp, r14\n\t" "msr cpsr_c, %5\n\t" "add r14, %0, %6\n\t" "mov sp, r14\n\t" "msr cpsr_c, %7" : : "r" (stk), PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE), "I" (offsetof(struct stack, irq[0])), PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE), "I" (offsetof(struct stack, abt[0])), PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE), "I" (offsetof(struct stack, und[0])), PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE) : "r14"); } static struct machine_desc * __init setup_machine(unsigned int nr) { struct machine_desc *list; /* * locate machine in the list of supported machines. */ list = lookup_machine_type(nr); if (!list) { printk("Machine configuration botched (nr %d), unable " "to continue.\n", nr); while (1); } printk("Machine: %s\n", list->name); return list; } static int __init arm_add_memory(unsigned long start, unsigned long size) { struct membank *bank = &meminfo.bank[meminfo.nr_banks]; if (meminfo.nr_banks >= NR_BANKS) { printk(KERN_CRIT "NR_BANKS too low, " "ignoring memory at %#lx\n", start); return -EINVAL; } /* * Ensure that start/size are aligned to a page boundary. * Size is appropriately rounded down, start is rounded up. */ size -= start & ~PAGE_MASK; bank->start = PAGE_ALIGN(start); bank->size = size & PAGE_MASK; /* * Check whether this memory region has non-zero size or * invalid node number. */ if (bank->size == 0) return -EINVAL; meminfo.nr_banks++; return 0; } /* * Pick out the memory size. We look for mem=size@start, * where start and size are "size[KkMm]" */ static int __init early_mem(char *p) { static int usermem __initdata = 0; unsigned long size, start; char *endp; /* * If the user specifies memory size, we * blow away any automatically generated * size. */ if (usermem == 0) { usermem = 1; meminfo.nr_banks = 0; } start = PHYS_OFFSET; size = memparse(p, &endp); if (*endp == '@') start = memparse(endp + 1, NULL); arm_add_memory(start, size); return 0; } early_param("mem", early_mem); static void __init setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz) { #ifdef CONFIG_BLK_DEV_RAM extern int rd_size, rd_image_start, rd_prompt, rd_doload; rd_image_start = image_start; rd_prompt = prompt; rd_doload = doload; if (rd_sz) rd_size = rd_sz; #endif } static void __init request_standard_resources(struct meminfo *mi, struct machine_desc *mdesc) { struct resource *res; int i; kernel_code.start = virt_to_phys(_text); kernel_code.end = virt_to_phys(_etext - 1); kernel_data.start = virt_to_phys(_data); kernel_data.end = virt_to_phys(_end - 1); for (i = 0; i < mi->nr_banks; i++) { if (mi->bank[i].size == 0) continue; res = alloc_bootmem_low(sizeof(*res)); res->name = "System RAM"; res->start = mi->bank[i].start; res->end = mi->bank[i].start + mi->bank[i].size - 1; res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; request_resource(&iomem_resource, res); if (kernel_code.start >= res->start && kernel_code.end <= res->end) request_resource(res, &kernel_code); if (kernel_data.start >= res->start && kernel_data.end <= res->end) request_resource(res, &kernel_data); } if (mdesc->video_start) { video_ram.start = mdesc->video_start; video_ram.end = mdesc->video_end; request_resource(&iomem_resource, &video_ram); } /* * Some machines don't have the possibility of ever * possessing lp0, lp1 or lp2 */ if (mdesc->reserve_lp0) request_resource(&ioport_resource, &lp0); if (mdesc->reserve_lp1) request_resource(&ioport_resource, &lp1); if (mdesc->reserve_lp2) request_resource(&ioport_resource, &lp2); } /* * Tag parsing. * * This is the new way of passing data to the kernel at boot time. Rather * than passing a fixed inflexible structure to the kernel, we pass a list * of variable-sized tags to the kernel. The first tag must be a ATAG_CORE * tag for the list to be recognised (to distinguish the tagged list from * a param_struct). The list is terminated with a zero-length tag (this tag * is not parsed in any way). */ static int __init parse_tag_core(const struct tag *tag) { if (tag->hdr.size > 2) { if ((tag->u.core.flags & 1) == 0) root_mountflags &= ~MS_RDONLY; ROOT_DEV = old_decode_dev(tag->u.core.rootdev); } return 0; } __tagtable(ATAG_CORE, parse_tag_core); static int __init parse_tag_mem32(const struct tag *tag) { return arm_add_memory(tag->u.mem.start, tag->u.mem.size); } __tagtable(ATAG_MEM, parse_tag_mem32); #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) struct screen_info screen_info = { .orig_video_lines = 30, .orig_video_cols = 80, .orig_video_mode = 0, .orig_video_ega_bx = 0, .orig_video_isVGA = 1, .orig_video_points = 8 }; static int __init parse_tag_videotext(const struct tag *tag) { screen_info.orig_x = tag->u.videotext.x; screen_info.orig_y = tag->u.videotext.y; screen_info.orig_video_page = tag->u.videotext.video_page; screen_info.orig_video_mode = tag->u.videotext.video_mode; screen_info.orig_video_cols = tag->u.videotext.video_cols; screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx; screen_info.orig_video_lines = tag->u.videotext.video_lines; screen_info.orig_video_isVGA = tag->u.videotext.video_isvga; screen_info.orig_video_points = tag->u.videotext.video_points; return 0; } __tagtable(ATAG_VIDEOTEXT, parse_tag_videotext); #endif static int __init parse_tag_ramdisk(const struct tag *tag) { setup_ramdisk((tag->u.ramdisk.flags & 1) == 0, (tag->u.ramdisk.flags & 2) == 0, tag->u.ramdisk.start, tag->u.ramdisk.size); return 0; } __tagtable(ATAG_RAMDISK, parse_tag_ramdisk); static int __init parse_tag_serialnr(const struct tag *tag) { system_serial_low = tag->u.serialnr.low; system_serial_high = tag->u.serialnr.high; return 0; } __tagtable(ATAG_SERIAL, parse_tag_serialnr); static int __init parse_tag_revision(const struct tag *tag) { system_rev = tag->u.revision.rev; return 0; } __tagtable(ATAG_REVISION, parse_tag_revision); #ifndef CONFIG_CMDLINE_FORCE static int __init parse_tag_cmdline(const struct tag *tag) { strlcpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE); return 0; } __tagtable(ATAG_CMDLINE, parse_tag_cmdline); #endif /* CONFIG_CMDLINE_FORCE */ /* * Scan the tag table for this tag, and call its parse function. * The tag table is built by the linker from all the __tagtable * declarations. */ static int __init parse_tag(const struct tag *tag) { extern struct tagtable __tagtable_begin, __tagtable_end; struct tagtable *t; for (t = &__tagtable_begin; t < &__tagtable_end; t++) if (tag->hdr.tag == t->tag) { t->parse(tag); break; } return t < &__tagtable_end; } /* * Parse all tags in the list, checking both the global and architecture * specific tag tables. */ static void __init parse_tags(const struct tag *t) { for (; t->hdr.size; t = tag_next(t)) if (!parse_tag(t)) printk(KERN_WARNING "Ignoring unrecognised tag 0x%08x\n", t->hdr.tag); } /* * This holds our defaults. */ static struct init_tags { struct tag_header hdr1; struct tag_core core; struct tag_header hdr2; struct tag_mem32 mem; struct tag_header hdr3; } init_tags __initdata = { { tag_size(tag_core), ATAG_CORE }, { 1, PAGE_SIZE, 0xff }, { tag_size(tag_mem32), ATAG_MEM }, { MEM_SIZE, PHYS_OFFSET }, { 0, ATAG_NONE } }; static void (*init_machine)(void) __initdata; static int __init customize_machine(void) { /* customizes platform devices, or adds new ones */ if (init_machine) init_machine(); return 0; } arch_initcall(customize_machine); #ifdef CONFIG_KEXEC static inline unsigned long long get_total_mem(void) { unsigned long total; total = max_low_pfn - min_low_pfn; return total << PAGE_SHIFT; } /** * reserve_crashkernel() - reserves memory are for crash kernel * * This function reserves memory area given in "crashkernel=" kernel command * line parameter. The memory reserved is used by a dump capture kernel when * primary kernel is crashing. */ static void __init reserve_crashkernel(void) { unsigned long long crash_size, crash_base; unsigned long long total_mem; int ret; total_mem = get_total_mem(); ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); if (ret) return; ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE); if (ret < 0) { printk(KERN_WARNING "crashkernel reservation failed - " "memory is in use (0x%lx)\n", (unsigned long)crash_base); return; } printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " "for crashkernel (System RAM: %ldMB)\n", (unsigned long)(crash_size >> 20), (unsigned long)(crash_base >> 20), (unsigned long)(total_mem >> 20)); crashk_res.start = crash_base; crashk_res.end = crash_base + crash_size - 1; insert_resource(&iomem_resource, &crashk_res); } #else static inline void reserve_crashkernel(void) {} #endif /* CONFIG_KEXEC */ /* * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by * is_kdump_kernel() to determine if we are booting after a panic. Hence * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE. */ #ifdef CONFIG_CRASH_DUMP /* * elfcorehdr= specifies the location of elf core header stored by the crashed * kernel. This option will be passed by kexec loader to the capture kernel. */ static int __init setup_elfcorehdr(char *arg) { char *end; if (!arg) return -EINVAL; elfcorehdr_addr = memparse(arg, &end); return end > arg ? 0 : -EINVAL; } early_param("elfcorehdr", setup_elfcorehdr); #endif /* CONFIG_CRASH_DUMP */ static void __init squash_mem_tags(struct tag *tag) { for (; tag->hdr.size; tag = tag_next(tag)) if (tag->hdr.tag == ATAG_MEM) tag->hdr.tag = ATAG_NONE; } void __init setup_arch(char **cmdline_p) { struct tag *tags = (struct tag *)&init_tags; struct machine_desc *mdesc; char *from = default_command_line; unwind_init(); setup_processor(); mdesc = setup_machine(machine_arch_type); machine_name = mdesc->name; if (mdesc->soft_reboot) reboot_setup("s"); if (__atags_pointer) tags = phys_to_virt(__atags_pointer); else if (mdesc->boot_params) tags = phys_to_virt(mdesc->boot_params); #if defined(CONFIG_DEPRECATED_PARAM_STRUCT) /* * If we have the old style parameters, convert them to * a tag list. */ if (tags->hdr.tag != ATAG_CORE) convert_to_tag_list(tags); #endif if (tags->hdr.tag != ATAG_CORE) tags = (struct tag *)&init_tags; if (mdesc->fixup) mdesc->fixup(mdesc, tags, &from, &meminfo); if (tags->hdr.tag == ATAG_CORE) { if (meminfo.nr_banks != 0) squash_mem_tags(tags); save_atags(tags); parse_tags(tags); } init_mm.start_code = (unsigned long) _text; init_mm.end_code = (unsigned long) _etext; init_mm.end_data = (unsigned long) _edata; init_mm.brk = (unsigned long) _end; /* parse_early_param needs a boot_command_line */ strlcpy(boot_command_line, from, COMMAND_LINE_SIZE); /* populate cmd_line too for later use, preserving boot_command_line */ strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE); *cmdline_p = cmd_line; parse_early_param(); arm_memblock_init(&meminfo, mdesc); paging_init(mdesc); request_standard_resources(&meminfo, mdesc); #ifdef CONFIG_SMP smp_init_cpus(); #endif reserve_crashkernel(); cpu_init(); tcm_init(); /* * Set up various architecture-specific pointers */ arch_nr_irqs = mdesc->nr_irqs; init_arch_irq = mdesc->init_irq; system_timer = mdesc->timer; init_machine = mdesc->init_machine; #ifdef CONFIG_VT #if defined(CONFIG_VGA_CONSOLE) conswitchp = &vga_con; #elif defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif #endif early_trap_init(); } static int __init topology_init(void) { int cpu; for_each_possible_cpu(cpu) { struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu); cpuinfo->cpu.hotpluggable = 1; register_cpu(&cpuinfo->cpu, cpu); } return 0; } subsys_initcall(topology_init); #ifdef CONFIG_HAVE_PROC_CPU static int __init proc_cpu_init(void) { struct proc_dir_entry *res; res = proc_mkdir("cpu", NULL); if (!res) return -ENOMEM; return 0; } fs_initcall(proc_cpu_init); #endif static const char *hwcap_str[] = { "swp", "half", "thumb", "26bit", "fastmult", "fpa", "vfp", "edsp", "java", "iwmmxt", "crunch", "thumbee", "neon", "vfpv3", "vfpv3d16", NULL }; static int c_show(struct seq_file *m, void *v) { int i; seq_printf(m, "Processor\t: %s rev %d (%s)\n", cpu_name, read_cpuid_id() & 15, elf_platform); #if defined(CONFIG_SMP) for_each_online_cpu(i) { /* * glibc reads /proc/cpuinfo to determine the number of * online processors, looking for lines beginning with * "processor". Give glibc what it expects. */ seq_printf(m, "processor\t: %d\n", i); seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n", per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ), (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100); } #else /* CONFIG_SMP */ seq_printf(m, "BogoMIPS\t: %lu.%02lu\n", loops_per_jiffy / (500000/HZ), (loops_per_jiffy / (5000/HZ)) % 100); #endif /* dump out the processor features */ seq_puts(m, "Features\t: "); for (i = 0; hwcap_str[i]; i++) if (elf_hwcap & (1 << i)) seq_printf(m, "%s ", hwcap_str[i]); seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24); seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]); if ((read_cpuid_id() & 0x0008f000) == 0x00000000) { /* pre-ARM7 */ seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4); } else { if ((read_cpuid_id() & 0x0008f000) == 0x00007000) { /* ARM7 */ seq_printf(m, "CPU variant\t: 0x%02x\n", (read_cpuid_id() >> 16) & 127); } else { /* post-ARM7 */ seq_printf(m, "CPU variant\t: 0x%x\n", (read_cpuid_id() >> 20) & 15); } seq_printf(m, "CPU part\t: 0x%03x\n", (read_cpuid_id() >> 4) & 0xfff); } seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15); seq_puts(m, "\n"); seq_printf(m, "Hardware\t: %s\n", machine_name); seq_printf(m, "Revision\t: %04x\n", system_rev); seq_printf(m, "Serial\t\t: %08x%08x\n", system_serial_high, system_serial_low); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { return *pos < 1 ? (void *)1 : NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return NULL; } static void c_stop(struct seq_file *m, void *v) { } const struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = c_show };