/* * 64-bit pSeries and RS/6000 setup code. * * Copyright (C) 1995 Linus Torvalds * Adapted from 'alpha' version by Gary Thomas * Modified by Cort Dougan (cort@cs.nmt.edu) * Modified by PPC64 Team, IBM Corp * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ /* * bootup setup stuff.. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xics.h" #include #include #include #include #include #include #include #include "plpar_wrappers.h" #include "ras.h" #ifdef DEBUG #define DBG(fmt...) udbg_printf(fmt) #else #define DBG(fmt...) #endif extern void find_udbg_vterm(void); int fwnmi_active; /* TRUE if an FWNMI handler is present */ static void pseries_shared_idle(void); static void pseries_dedicated_idle(void); struct mpic *pSeries_mpic; static void pSeries_show_cpuinfo(struct seq_file *m) { struct device_node *root; const char *model = ""; root = of_find_node_by_path("/"); if (root) model = get_property(root, "model", NULL); seq_printf(m, "machine\t\t: CHRP %s\n", model); of_node_put(root); } /* Initialize firmware assisted non-maskable interrupts if * the firmware supports this feature. */ static void __init fwnmi_init(void) { unsigned long system_reset_addr, machine_check_addr; int ibm_nmi_register = rtas_token("ibm,nmi-register"); if (ibm_nmi_register == RTAS_UNKNOWN_SERVICE) return; /* If the kernel's not linked at zero we point the firmware at low * addresses anyway, and use a trampoline to get to the real code. */ system_reset_addr = __pa(system_reset_fwnmi) - PHYSICAL_START; machine_check_addr = __pa(machine_check_fwnmi) - PHYSICAL_START; if (0 == rtas_call(ibm_nmi_register, 2, 1, NULL, system_reset_addr, machine_check_addr)) fwnmi_active = 1; } static void __init pSeries_init_mpic(void) { unsigned int *addrp; struct device_node *np; unsigned long intack = 0; /* All ISUs are setup, complete initialization */ mpic_init(pSeries_mpic); /* Check what kind of cascade ACK we have */ if (!(np = of_find_node_by_name(NULL, "pci")) || !(addrp = (unsigned int *) get_property(np, "8259-interrupt-acknowledge", NULL))) printk(KERN_ERR "Cannot find pci to get ack address\n"); else intack = addrp[prom_n_addr_cells(np)-1]; of_node_put(np); /* Setup the legacy interrupts & controller */ i8259_init(intack, 0); /* Hook cascade to mpic */ mpic_setup_cascade(NUM_ISA_INTERRUPTS, i8259_irq_cascade, NULL); } static void __init pSeries_setup_mpic(void) { unsigned int *opprop; unsigned long openpic_addr = 0; unsigned char senses[NR_IRQS - NUM_ISA_INTERRUPTS]; struct device_node *root; int irq_count; /* Find the Open PIC if present */ root = of_find_node_by_path("/"); opprop = (unsigned int *) get_property(root, "platform-open-pic", NULL); if (opprop != 0) { int n = prom_n_addr_cells(root); for (openpic_addr = 0; n > 0; --n) openpic_addr = (openpic_addr << 32) + *opprop++; printk(KERN_DEBUG "OpenPIC addr: %lx\n", openpic_addr); } of_node_put(root); BUG_ON(openpic_addr == 0); /* Get the sense values from OF */ prom_get_irq_senses(senses, NUM_ISA_INTERRUPTS, NR_IRQS); /* Setup the openpic driver */ irq_count = NR_IRQS - NUM_ISA_INTERRUPTS - 4; /* leave room for IPIs */ pSeries_mpic = mpic_alloc(openpic_addr, MPIC_PRIMARY, 16, 16, irq_count, /* isu size, irq offset, irq count */ NR_IRQS - 4, /* ipi offset */ senses, irq_count, /* sense & sense size */ " MPIC "); } static void pseries_lpar_enable_pmcs(void) { unsigned long set, reset; power4_enable_pmcs(); set = 1UL << 63; reset = 0; plpar_hcall_norets(H_PERFMON, set, reset); /* instruct hypervisor to maintain PMCs */ if (firmware_has_feature(FW_FEATURE_SPLPAR)) get_paca()->lppaca.pmcregs_in_use = 1; } static void __init pSeries_setup_arch(void) { /* Fixup ppc_md depending on the type of interrupt controller */ if (ppc64_interrupt_controller == IC_OPEN_PIC) { ppc_md.init_IRQ = pSeries_init_mpic; ppc_md.get_irq = mpic_get_irq; /* Allocate the mpic now, so that find_and_init_phbs() can * fill the ISUs */ pSeries_setup_mpic(); } else { ppc_md.init_IRQ = xics_init_IRQ; ppc_md.get_irq = xics_get_irq; } #ifdef CONFIG_SMP smp_init_pSeries(); #endif /* openpic global configuration register (64-bit format). */ /* openpic Interrupt Source Unit pointer (64-bit format). */ /* python0 facility area (mmio) (64-bit format) REAL address. */ /* init to some ~sane value until calibrate_delay() runs */ loops_per_jiffy = 50000000; if (ROOT_DEV == 0) { printk("No ramdisk, default root is /dev/sda2\n"); ROOT_DEV = Root_SDA2; } fwnmi_init(); /* Find and initialize PCI host bridges */ init_pci_config_tokens(); find_and_init_phbs(); eeh_init(); pSeries_nvram_init(); /* Choose an idle loop */ if (firmware_has_feature(FW_FEATURE_SPLPAR)) { vpa_init(boot_cpuid); if (get_paca()->lppaca.shared_proc) { printk(KERN_INFO "Using shared processor idle loop\n"); ppc_md.idle_loop = pseries_shared_idle; } else { printk(KERN_INFO "Using dedicated idle loop\n"); ppc_md.idle_loop = pseries_dedicated_idle; } } else { printk(KERN_INFO "Using default idle loop\n"); ppc_md.idle_loop = default_idle; } if (platform_is_lpar()) ppc_md.enable_pmcs = pseries_lpar_enable_pmcs; else ppc_md.enable_pmcs = power4_enable_pmcs; } static int __init pSeries_init_panel(void) { /* Manually leave the kernel version on the panel. */ ppc_md.progress("Linux ppc64\n", 0); ppc_md.progress(system_utsname.version, 0); return 0; } arch_initcall(pSeries_init_panel); /* Build up the ppc64_firmware_features bitmask field * using contents of device-tree/ibm,hypertas-functions. * Ultimately this functionality may be moved into prom.c prom_init(). */ static void __init fw_feature_init(void) { struct device_node * dn; char * hypertas; unsigned int len; DBG(" -> fw_feature_init()\n"); ppc64_firmware_features = 0; dn = of_find_node_by_path("/rtas"); if (dn == NULL) { printk(KERN_ERR "WARNING ! Cannot find RTAS in device-tree !\n"); goto no_rtas; } hypertas = get_property(dn, "ibm,hypertas-functions", &len); if (hypertas) { while (len > 0){ int i, hypertas_len; /* check value against table of strings */ for(i=0; i < FIRMWARE_MAX_FEATURES ;i++) { if ((firmware_features_table[i].name) && (strcmp(firmware_features_table[i].name,hypertas))==0) { /* we have a match */ ppc64_firmware_features |= (firmware_features_table[i].val); break; } } hypertas_len = strlen(hypertas); len -= hypertas_len +1; hypertas+= hypertas_len +1; } } of_node_put(dn); no_rtas: DBG(" <- fw_feature_init()\n"); } static void __init pSeries_discover_pic(void) { struct device_node *np; char *typep; /* * Setup interrupt mapping options that are needed for finish_device_tree * to properly parse the OF interrupt tree & do the virtual irq mapping */ __irq_offset_value = NUM_ISA_INTERRUPTS; ppc64_interrupt_controller = IC_INVALID; for (np = NULL; (np = of_find_node_by_name(np, "interrupt-controller"));) { typep = (char *)get_property(np, "compatible", NULL); if (strstr(typep, "open-pic")) { ppc64_interrupt_controller = IC_OPEN_PIC; break; } else if (strstr(typep, "ppc-xicp")) { ppc64_interrupt_controller = IC_PPC_XIC; break; } } if (ppc64_interrupt_controller == IC_INVALID) printk("pSeries_discover_pic: failed to recognize" " interrupt-controller\n"); } static void pSeries_mach_cpu_die(void) { local_irq_disable(); idle_task_exit(); /* Some hardware requires clearing the CPPR, while other hardware does not * it is safe either way */ pSeriesLP_cppr_info(0, 0); rtas_stop_self(); /* Should never get here... */ BUG(); for(;;); } static int pseries_set_dabr(unsigned long dabr) { return plpar_hcall_norets(H_SET_DABR, dabr); } static int pseries_set_xdabr(unsigned long dabr) { /* We want to catch accesses from kernel and userspace */ return plpar_hcall_norets(H_SET_XDABR, dabr, H_DABRX_KERNEL | H_DABRX_USER); } /* * Early initialization. Relocation is on but do not reference unbolted pages */ static void __init pSeries_init_early(void) { int iommu_off = 0; DBG(" -> pSeries_init_early()\n"); fw_feature_init(); if (platform_is_lpar()) hpte_init_lpar(); else { hpte_init_native(); iommu_off = (of_chosen && get_property(of_chosen, "linux,iommu-off", NULL)); } if (platform_is_lpar()) find_udbg_vterm(); if (firmware_has_feature(FW_FEATURE_DABR)) ppc_md.set_dabr = pseries_set_dabr; else if (firmware_has_feature(FW_FEATURE_XDABR)) ppc_md.set_dabr = pseries_set_xdabr; iommu_init_early_pSeries(); pSeries_discover_pic(); DBG(" <- pSeries_init_early()\n"); } static int pSeries_check_legacy_ioport(unsigned int baseport) { struct device_node *np; #define I8042_DATA_REG 0x60 #define FDC_BASE 0x3f0 switch(baseport) { case I8042_DATA_REG: np = of_find_node_by_type(NULL, "8042"); if (np == NULL) return -ENODEV; of_node_put(np); break; case FDC_BASE: np = of_find_node_by_type(NULL, "fdc"); if (np == NULL) return -ENODEV; of_node_put(np); break; } return 0; } /* * Called very early, MMU is off, device-tree isn't unflattened */ extern struct machdep_calls pSeries_md; static int __init pSeries_probe(int platform) { if (platform != PLATFORM_PSERIES && platform != PLATFORM_PSERIES_LPAR) return 0; /* if we have some ppc_md fixups for LPAR to do, do * it here ... */ return 1; } DECLARE_PER_CPU(unsigned long, smt_snooze_delay); static inline void dedicated_idle_sleep(unsigned int cpu) { struct paca_struct *ppaca = &paca[cpu ^ 1]; /* Only sleep if the other thread is not idle */ if (!(ppaca->lppaca.idle)) { local_irq_disable(); /* * We are about to sleep the thread and so wont be polling any * more. */ clear_thread_flag(TIF_POLLING_NRFLAG); smp_mb__after_clear_bit(); /* * SMT dynamic mode. Cede will result in this thread going * dormant, if the partner thread is still doing work. Thread * wakes up if partner goes idle, an interrupt is presented, or * a prod occurs. Returning from the cede enables external * interrupts. */ if (!need_resched()) cede_processor(); else local_irq_enable(); set_thread_flag(TIF_POLLING_NRFLAG); } else { /* * Give the HV an opportunity at the processor, since we are * not doing any work. */ poll_pending(); } } static void pseries_dedicated_idle(void) { struct paca_struct *lpaca = get_paca(); unsigned int cpu = smp_processor_id(); unsigned long start_snooze; unsigned long *smt_snooze_delay = &__get_cpu_var(smt_snooze_delay); set_thread_flag(TIF_POLLING_NRFLAG); while (1) { /* * Indicate to the HV that we are idle. Now would be * a good time to find other work to dispatch. */ lpaca->lppaca.idle = 1; if (!need_resched()) { start_snooze = get_tb() + *smt_snooze_delay * tb_ticks_per_usec; while (!need_resched() && !cpu_is_offline(cpu)) { ppc64_runlatch_off(); /* * Go into low thread priority and possibly * low power mode. */ HMT_low(); HMT_very_low(); if (*smt_snooze_delay != 0 && get_tb() > start_snooze) { HMT_medium(); dedicated_idle_sleep(cpu); } } HMT_medium(); } lpaca->lppaca.idle = 0; ppc64_runlatch_on(); preempt_enable_no_resched(); schedule(); preempt_disable(); if (cpu_is_offline(cpu) && system_state == SYSTEM_RUNNING) cpu_die(); } } static void pseries_shared_idle(void) { struct paca_struct *lpaca = get_paca(); unsigned int cpu = smp_processor_id(); while (1) { /* * Indicate to the HV that we are idle. Now would be * a good time to find other work to dispatch. */ lpaca->lppaca.idle = 1; while (!need_resched() && !cpu_is_offline(cpu)) { local_irq_disable(); ppc64_runlatch_off(); /* * Yield the processor to the hypervisor. We return if * an external interrupt occurs (which are driven prior * to returning here) or if a prod occurs from another * processor. When returning here, external interrupts * are enabled. * * Check need_resched() again with interrupts disabled * to avoid a race. */ if (!need_resched()) cede_processor(); else local_irq_enable(); HMT_medium(); } lpaca->lppaca.idle = 0; ppc64_runlatch_on(); preempt_enable_no_resched(); schedule(); preempt_disable(); if (cpu_is_offline(cpu) && system_state == SYSTEM_RUNNING) cpu_die(); } } static int pSeries_pci_probe_mode(struct pci_bus *bus) { if (platform_is_lpar()) return PCI_PROBE_DEVTREE; return PCI_PROBE_NORMAL; } #ifdef CONFIG_KEXEC static void pseries_kexec_cpu_down(int crash_shutdown, int secondary) { /* Don't risk a hypervisor call if we're crashing */ if (!crash_shutdown) { unsigned long vpa = __pa(&get_paca()->lppaca); if (unregister_vpa(hard_smp_processor_id(), vpa)) { printk("VPA deregistration of cpu %u (hw_cpu_id %d) " "failed\n", smp_processor_id(), hard_smp_processor_id()); } } if (ppc64_interrupt_controller == IC_OPEN_PIC) mpic_teardown_this_cpu(secondary); else xics_teardown_cpu(secondary); } #endif struct machdep_calls __initdata pSeries_md = { .probe = pSeries_probe, .setup_arch = pSeries_setup_arch, .init_early = pSeries_init_early, .show_cpuinfo = pSeries_show_cpuinfo, .log_error = pSeries_log_error, .pcibios_fixup = pSeries_final_fixup, .pci_probe_mode = pSeries_pci_probe_mode, .irq_bus_setup = pSeries_irq_bus_setup, .restart = rtas_restart, .power_off = rtas_power_off, .halt = rtas_halt, .panic = rtas_os_term, .cpu_die = pSeries_mach_cpu_die, .get_boot_time = rtas_get_boot_time, .get_rtc_time = rtas_get_rtc_time, .set_rtc_time = rtas_set_rtc_time, .calibrate_decr = generic_calibrate_decr, .progress = rtas_progress, .check_legacy_ioport = pSeries_check_legacy_ioport, .system_reset_exception = pSeries_system_reset_exception, .machine_check_exception = pSeries_machine_check_exception, #ifdef CONFIG_KEXEC .kexec_cpu_down = pseries_kexec_cpu_down, .machine_kexec = default_machine_kexec, .machine_kexec_prepare = default_machine_kexec_prepare, .machine_crash_shutdown = default_machine_crash_shutdown, #endif };