/* * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Rafał Miłecki * Alex Deucher */ #include #include "amdgpu.h" #include "amdgpu_drv.h" #include "amdgpu_pm.h" #include "amdgpu_dpm.h" #include "atom.h" #include #include #include static int amdgpu_debugfs_pm_init(struct amdgpu_device *adev); void amdgpu_pm_acpi_event_handler(struct amdgpu_device *adev) { if (adev->pm.dpm_enabled) { mutex_lock(&adev->pm.mutex); if (power_supply_is_system_supplied() > 0) adev->pm.dpm.ac_power = true; else adev->pm.dpm.ac_power = false; if (adev->pm.funcs->enable_bapm) amdgpu_dpm_enable_bapm(adev, adev->pm.dpm.ac_power); mutex_unlock(&adev->pm.mutex); } } static ssize_t amdgpu_get_dpm_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; enum amdgpu_pm_state_type pm = adev->pm.dpm.user_state; return snprintf(buf, PAGE_SIZE, "%s\n", (pm == POWER_STATE_TYPE_BATTERY) ? "battery" : (pm == POWER_STATE_TYPE_BALANCED) ? "balanced" : "performance"); } static ssize_t amdgpu_set_dpm_state(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; mutex_lock(&adev->pm.mutex); if (strncmp("battery", buf, strlen("battery")) == 0) adev->pm.dpm.user_state = POWER_STATE_TYPE_BATTERY; else if (strncmp("balanced", buf, strlen("balanced")) == 0) adev->pm.dpm.user_state = POWER_STATE_TYPE_BALANCED; else if (strncmp("performance", buf, strlen("performance")) == 0) adev->pm.dpm.user_state = POWER_STATE_TYPE_PERFORMANCE; else { mutex_unlock(&adev->pm.mutex); count = -EINVAL; goto fail; } mutex_unlock(&adev->pm.mutex); /* Can't set dpm state when the card is off */ if (!(adev->flags & AMD_IS_PX) || (ddev->switch_power_state == DRM_SWITCH_POWER_ON)) amdgpu_pm_compute_clocks(adev); fail: return count; } static ssize_t amdgpu_get_dpm_forced_performance_level(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; enum amdgpu_dpm_forced_level level = adev->pm.dpm.forced_level; return snprintf(buf, PAGE_SIZE, "%s\n", (level == AMDGPU_DPM_FORCED_LEVEL_AUTO) ? "auto" : (level == AMDGPU_DPM_FORCED_LEVEL_LOW) ? "low" : "high"); } static ssize_t amdgpu_set_dpm_forced_performance_level(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; enum amdgpu_dpm_forced_level level; int ret = 0; mutex_lock(&adev->pm.mutex); if (strncmp("low", buf, strlen("low")) == 0) { level = AMDGPU_DPM_FORCED_LEVEL_LOW; } else if (strncmp("high", buf, strlen("high")) == 0) { level = AMDGPU_DPM_FORCED_LEVEL_HIGH; } else if (strncmp("auto", buf, strlen("auto")) == 0) { level = AMDGPU_DPM_FORCED_LEVEL_AUTO; } else { count = -EINVAL; goto fail; } if (adev->pm.funcs->force_performance_level) { if (adev->pm.dpm.thermal_active) { count = -EINVAL; goto fail; } ret = amdgpu_dpm_force_performance_level(adev, level); if (ret) count = -EINVAL; } fail: mutex_unlock(&adev->pm.mutex); return count; } static DEVICE_ATTR(power_dpm_state, S_IRUGO | S_IWUSR, amdgpu_get_dpm_state, amdgpu_set_dpm_state); static DEVICE_ATTR(power_dpm_force_performance_level, S_IRUGO | S_IWUSR, amdgpu_get_dpm_forced_performance_level, amdgpu_set_dpm_forced_performance_level); static ssize_t amdgpu_hwmon_show_temp(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int temp; if (adev->pm.funcs->get_temperature) temp = amdgpu_dpm_get_temperature(adev); else temp = 0; return snprintf(buf, PAGE_SIZE, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_temp_thresh(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int hyst = to_sensor_dev_attr(attr)->index; int temp; if (hyst) temp = adev->pm.dpm.thermal.min_temp; else temp = adev->pm.dpm.thermal.max_temp; return snprintf(buf, PAGE_SIZE, "%d\n", temp); } static ssize_t amdgpu_hwmon_get_pwm1_enable(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 pwm_mode = 0; if (adev->pm.funcs->get_fan_control_mode) pwm_mode = amdgpu_dpm_get_fan_control_mode(adev); /* never 0 (full-speed), fuse or smc-controlled always */ return sprintf(buf, "%i\n", pwm_mode == FDO_PWM_MODE_STATIC ? 1 : 2); } static ssize_t amdgpu_hwmon_set_pwm1_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; int value; if(!adev->pm.funcs->set_fan_control_mode) return -EINVAL; err = kstrtoint(buf, 10, &value); if (err) return err; switch (value) { case 1: /* manual, percent-based */ amdgpu_dpm_set_fan_control_mode(adev, FDO_PWM_MODE_STATIC); break; default: /* disable */ amdgpu_dpm_set_fan_control_mode(adev, 0); break; } return count; } static ssize_t amdgpu_hwmon_get_pwm1_min(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%i\n", 0); } static ssize_t amdgpu_hwmon_get_pwm1_max(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%i\n", 255); } static ssize_t amdgpu_hwmon_set_pwm1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 value; err = kstrtou32(buf, 10, &value); if (err) return err; value = (value * 100) / 255; err = amdgpu_dpm_set_fan_speed_percent(adev, value); if (err) return err; return count; } static ssize_t amdgpu_hwmon_get_pwm1(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 speed; err = amdgpu_dpm_get_fan_speed_percent(adev, &speed); if (err) return err; speed = (speed * 255) / 100; return sprintf(buf, "%i\n", speed); } static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, 0); static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 0); static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 1); static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1, amdgpu_hwmon_set_pwm1, 0); static SENSOR_DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1_enable, amdgpu_hwmon_set_pwm1_enable, 0); static SENSOR_DEVICE_ATTR(pwm1_min, S_IRUGO, amdgpu_hwmon_get_pwm1_min, NULL, 0); static SENSOR_DEVICE_ATTR(pwm1_max, S_IRUGO, amdgpu_hwmon_get_pwm1_max, NULL, 0); static struct attribute *hwmon_attributes[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm1_min.dev_attr.attr, &sensor_dev_attr_pwm1_max.dev_attr.attr, NULL }; static umode_t hwmon_attributes_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = container_of(kobj, struct device, kobj); struct amdgpu_device *adev = dev_get_drvdata(dev); umode_t effective_mode = attr->mode; /* Skip limit attributes if DPM is not enabled */ if (!adev->pm.dpm_enabled && (attr == &sensor_dev_attr_temp1_crit.dev_attr.attr || attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr)) return 0; /* Skip fan attributes if fan is not present */ if (adev->pm.no_fan && (attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr)) return 0; /* mask fan attributes if we have no bindings for this asic to expose */ if ((!adev->pm.funcs->get_fan_speed_percent && attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't query fan */ (!adev->pm.funcs->get_fan_control_mode && attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't query state */ effective_mode &= ~S_IRUGO; if ((!adev->pm.funcs->set_fan_speed_percent && attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't manage fan */ (!adev->pm.funcs->set_fan_control_mode && attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't manage state */ effective_mode &= ~S_IWUSR; /* hide max/min values if we can't both query and manage the fan */ if ((!adev->pm.funcs->set_fan_speed_percent && !adev->pm.funcs->get_fan_speed_percent) && (attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr)) return 0; return effective_mode; } static const struct attribute_group hwmon_attrgroup = { .attrs = hwmon_attributes, .is_visible = hwmon_attributes_visible, }; static const struct attribute_group *hwmon_groups[] = { &hwmon_attrgroup, NULL }; void amdgpu_dpm_thermal_work_handler(struct work_struct *work) { struct amdgpu_device *adev = container_of(work, struct amdgpu_device, pm.dpm.thermal.work); /* switch to the thermal state */ enum amdgpu_pm_state_type dpm_state = POWER_STATE_TYPE_INTERNAL_THERMAL; if (!adev->pm.dpm_enabled) return; if (adev->pm.funcs->get_temperature) { int temp = amdgpu_dpm_get_temperature(adev); if (temp < adev->pm.dpm.thermal.min_temp) /* switch back the user state */ dpm_state = adev->pm.dpm.user_state; } else { if (adev->pm.dpm.thermal.high_to_low) /* switch back the user state */ dpm_state = adev->pm.dpm.user_state; } mutex_lock(&adev->pm.mutex); if (dpm_state == POWER_STATE_TYPE_INTERNAL_THERMAL) adev->pm.dpm.thermal_active = true; else adev->pm.dpm.thermal_active = false; adev->pm.dpm.state = dpm_state; mutex_unlock(&adev->pm.mutex); amdgpu_pm_compute_clocks(adev); } static struct amdgpu_ps *amdgpu_dpm_pick_power_state(struct amdgpu_device *adev, enum amdgpu_pm_state_type dpm_state) { int i; struct amdgpu_ps *ps; u32 ui_class; bool single_display = (adev->pm.dpm.new_active_crtc_count < 2) ? true : false; /* check if the vblank period is too short to adjust the mclk */ if (single_display && adev->pm.funcs->vblank_too_short) { if (amdgpu_dpm_vblank_too_short(adev)) single_display = false; } /* certain older asics have a separare 3D performance state, * so try that first if the user selected performance */ if (dpm_state == POWER_STATE_TYPE_PERFORMANCE) dpm_state = POWER_STATE_TYPE_INTERNAL_3DPERF; /* balanced states don't exist at the moment */ if (dpm_state == POWER_STATE_TYPE_BALANCED) dpm_state = POWER_STATE_TYPE_PERFORMANCE; restart_search: /* Pick the best power state based on current conditions */ for (i = 0; i < adev->pm.dpm.num_ps; i++) { ps = &adev->pm.dpm.ps[i]; ui_class = ps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK; switch (dpm_state) { /* user states */ case POWER_STATE_TYPE_BATTERY: if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY) { if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) { if (single_display) return ps; } else return ps; } break; case POWER_STATE_TYPE_BALANCED: if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BALANCED) { if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) { if (single_display) return ps; } else return ps; } break; case POWER_STATE_TYPE_PERFORMANCE: if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE) { if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) { if (single_display) return ps; } else return ps; } break; /* internal states */ case POWER_STATE_TYPE_INTERNAL_UVD: if (adev->pm.dpm.uvd_ps) return adev->pm.dpm.uvd_ps; else break; case POWER_STATE_TYPE_INTERNAL_UVD_SD: if (ps->class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) return ps; break; case POWER_STATE_TYPE_INTERNAL_UVD_HD: if (ps->class & ATOM_PPLIB_CLASSIFICATION_HDSTATE) return ps; break; case POWER_STATE_TYPE_INTERNAL_UVD_HD2: if (ps->class & ATOM_PPLIB_CLASSIFICATION_HD2STATE) return ps; break; case POWER_STATE_TYPE_INTERNAL_UVD_MVC: if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_MVC) return ps; break; case POWER_STATE_TYPE_INTERNAL_BOOT: return adev->pm.dpm.boot_ps; case POWER_STATE_TYPE_INTERNAL_THERMAL: if (ps->class & ATOM_PPLIB_CLASSIFICATION_THERMAL) return ps; break; case POWER_STATE_TYPE_INTERNAL_ACPI: if (ps->class & ATOM_PPLIB_CLASSIFICATION_ACPI) return ps; break; case POWER_STATE_TYPE_INTERNAL_ULV: if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) return ps; break; case POWER_STATE_TYPE_INTERNAL_3DPERF: if (ps->class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE) return ps; break; default: break; } } /* use a fallback state if we didn't match */ switch (dpm_state) { case POWER_STATE_TYPE_INTERNAL_UVD_SD: dpm_state = POWER_STATE_TYPE_INTERNAL_UVD_HD; goto restart_search; case POWER_STATE_TYPE_INTERNAL_UVD_HD: case POWER_STATE_TYPE_INTERNAL_UVD_HD2: case POWER_STATE_TYPE_INTERNAL_UVD_MVC: if (adev->pm.dpm.uvd_ps) { return adev->pm.dpm.uvd_ps; } else { dpm_state = POWER_STATE_TYPE_PERFORMANCE; goto restart_search; } case POWER_STATE_TYPE_INTERNAL_THERMAL: dpm_state = POWER_STATE_TYPE_INTERNAL_ACPI; goto restart_search; case POWER_STATE_TYPE_INTERNAL_ACPI: dpm_state = POWER_STATE_TYPE_BATTERY; goto restart_search; case POWER_STATE_TYPE_BATTERY: case POWER_STATE_TYPE_BALANCED: case POWER_STATE_TYPE_INTERNAL_3DPERF: dpm_state = POWER_STATE_TYPE_PERFORMANCE; goto restart_search; default: break; } return NULL; } static void amdgpu_dpm_change_power_state_locked(struct amdgpu_device *adev) { int i; struct amdgpu_ps *ps; enum amdgpu_pm_state_type dpm_state; int ret; /* if dpm init failed */ if (!adev->pm.dpm_enabled) return; if (adev->pm.dpm.user_state != adev->pm.dpm.state) { /* add other state override checks here */ if ((!adev->pm.dpm.thermal_active) && (!adev->pm.dpm.uvd_active)) adev->pm.dpm.state = adev->pm.dpm.user_state; } dpm_state = adev->pm.dpm.state; ps = amdgpu_dpm_pick_power_state(adev, dpm_state); if (ps) adev->pm.dpm.requested_ps = ps; else return; /* no need to reprogram if nothing changed unless we are on BTC+ */ if (adev->pm.dpm.current_ps == adev->pm.dpm.requested_ps) { /* vce just modifies an existing state so force a change */ if (ps->vce_active != adev->pm.dpm.vce_active) goto force; if (adev->flags & AMD_IS_APU) { /* for APUs if the num crtcs changed but state is the same, * all we need to do is update the display configuration. */ if (adev->pm.dpm.new_active_crtcs != adev->pm.dpm.current_active_crtcs) { /* update display watermarks based on new power state */ amdgpu_display_bandwidth_update(adev); /* update displays */ amdgpu_dpm_display_configuration_changed(adev); adev->pm.dpm.current_active_crtcs = adev->pm.dpm.new_active_crtcs; adev->pm.dpm.current_active_crtc_count = adev->pm.dpm.new_active_crtc_count; } return; } else { /* for BTC+ if the num crtcs hasn't changed and state is the same, * nothing to do, if the num crtcs is > 1 and state is the same, * update display configuration. */ if (adev->pm.dpm.new_active_crtcs == adev->pm.dpm.current_active_crtcs) { return; } else if ((adev->pm.dpm.current_active_crtc_count > 1) && (adev->pm.dpm.new_active_crtc_count > 1)) { /* update display watermarks based on new power state */ amdgpu_display_bandwidth_update(adev); /* update displays */ amdgpu_dpm_display_configuration_changed(adev); adev->pm.dpm.current_active_crtcs = adev->pm.dpm.new_active_crtcs; adev->pm.dpm.current_active_crtc_count = adev->pm.dpm.new_active_crtc_count; return; } } } force: if (amdgpu_dpm == 1) { printk("switching from power state:\n"); amdgpu_dpm_print_power_state(adev, adev->pm.dpm.current_ps); printk("switching to power state:\n"); amdgpu_dpm_print_power_state(adev, adev->pm.dpm.requested_ps); } mutex_lock(&adev->ddev->struct_mutex); mutex_lock(&adev->ring_lock); /* update whether vce is active */ ps->vce_active = adev->pm.dpm.vce_active; ret = amdgpu_dpm_pre_set_power_state(adev); if (ret) goto done; /* update display watermarks based on new power state */ amdgpu_display_bandwidth_update(adev); /* update displays */ amdgpu_dpm_display_configuration_changed(adev); adev->pm.dpm.current_active_crtcs = adev->pm.dpm.new_active_crtcs; adev->pm.dpm.current_active_crtc_count = adev->pm.dpm.new_active_crtc_count; /* wait for the rings to drain */ for (i = 0; i < AMDGPU_MAX_RINGS; i++) { struct amdgpu_ring *ring = adev->rings[i]; if (ring && ring->ready) amdgpu_fence_wait_empty(ring); } /* program the new power state */ amdgpu_dpm_set_power_state(adev); /* update current power state */ adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps; amdgpu_dpm_post_set_power_state(adev); if (adev->pm.funcs->force_performance_level) { if (adev->pm.dpm.thermal_active) { enum amdgpu_dpm_forced_level level = adev->pm.dpm.forced_level; /* force low perf level for thermal */ amdgpu_dpm_force_performance_level(adev, AMDGPU_DPM_FORCED_LEVEL_LOW); /* save the user's level */ adev->pm.dpm.forced_level = level; } else { /* otherwise, user selected level */ amdgpu_dpm_force_performance_level(adev, adev->pm.dpm.forced_level); } } done: mutex_unlock(&adev->ring_lock); mutex_unlock(&adev->ddev->struct_mutex); } void amdgpu_dpm_enable_uvd(struct amdgpu_device *adev, bool enable) { if (adev->pm.funcs->powergate_uvd) { mutex_lock(&adev->pm.mutex); /* enable/disable UVD */ amdgpu_dpm_powergate_uvd(adev, !enable); mutex_unlock(&adev->pm.mutex); } else { if (enable) { mutex_lock(&adev->pm.mutex); adev->pm.dpm.uvd_active = true; adev->pm.dpm.state = POWER_STATE_TYPE_INTERNAL_UVD; mutex_unlock(&adev->pm.mutex); } else { mutex_lock(&adev->pm.mutex); adev->pm.dpm.uvd_active = false; mutex_unlock(&adev->pm.mutex); } amdgpu_pm_compute_clocks(adev); } } void amdgpu_dpm_enable_vce(struct amdgpu_device *adev, bool enable) { if (adev->pm.funcs->powergate_vce) { mutex_lock(&adev->pm.mutex); /* enable/disable VCE */ amdgpu_dpm_powergate_vce(adev, !enable); mutex_unlock(&adev->pm.mutex); } else { if (enable) { mutex_lock(&adev->pm.mutex); adev->pm.dpm.vce_active = true; /* XXX select vce level based on ring/task */ adev->pm.dpm.vce_level = AMDGPU_VCE_LEVEL_AC_ALL; mutex_unlock(&adev->pm.mutex); } else { mutex_lock(&adev->pm.mutex); adev->pm.dpm.vce_active = false; mutex_unlock(&adev->pm.mutex); } amdgpu_pm_compute_clocks(adev); } } void amdgpu_pm_print_power_states(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->pm.dpm.num_ps; i++) { printk("== power state %d ==\n", i); amdgpu_dpm_print_power_state(adev, &adev->pm.dpm.ps[i]); } } int amdgpu_pm_sysfs_init(struct amdgpu_device *adev) { int ret; if (adev->pm.funcs->get_temperature == NULL) return 0; adev->pm.int_hwmon_dev = hwmon_device_register_with_groups(adev->dev, DRIVER_NAME, adev, hwmon_groups); if (IS_ERR(adev->pm.int_hwmon_dev)) { ret = PTR_ERR(adev->pm.int_hwmon_dev); dev_err(adev->dev, "Unable to register hwmon device: %d\n", ret); return ret; } ret = device_create_file(adev->dev, &dev_attr_power_dpm_state); if (ret) { DRM_ERROR("failed to create device file for dpm state\n"); return ret; } ret = device_create_file(adev->dev, &dev_attr_power_dpm_force_performance_level); if (ret) { DRM_ERROR("failed to create device file for dpm state\n"); return ret; } ret = amdgpu_debugfs_pm_init(adev); if (ret) { DRM_ERROR("Failed to register debugfs file for dpm!\n"); return ret; } return 0; } void amdgpu_pm_sysfs_fini(struct amdgpu_device *adev) { if (adev->pm.int_hwmon_dev) hwmon_device_unregister(adev->pm.int_hwmon_dev); device_remove_file(adev->dev, &dev_attr_power_dpm_state); device_remove_file(adev->dev, &dev_attr_power_dpm_force_performance_level); } void amdgpu_pm_compute_clocks(struct amdgpu_device *adev) { struct drm_device *ddev = adev->ddev; struct drm_crtc *crtc; struct amdgpu_crtc *amdgpu_crtc; if (!adev->pm.dpm_enabled) return; mutex_lock(&adev->pm.mutex); /* update active crtc counts */ adev->pm.dpm.new_active_crtcs = 0; adev->pm.dpm.new_active_crtc_count = 0; if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) { list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) { amdgpu_crtc = to_amdgpu_crtc(crtc); if (crtc->enabled) { adev->pm.dpm.new_active_crtcs |= (1 << amdgpu_crtc->crtc_id); adev->pm.dpm.new_active_crtc_count++; } } } /* update battery/ac status */ if (power_supply_is_system_supplied() > 0) adev->pm.dpm.ac_power = true; else adev->pm.dpm.ac_power = false; amdgpu_dpm_change_power_state_locked(adev); mutex_unlock(&adev->pm.mutex); } /* * Debugfs info */ #if defined(CONFIG_DEBUG_FS) static int amdgpu_debugfs_pm_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct amdgpu_device *adev = dev->dev_private; if (adev->pm.dpm_enabled) { mutex_lock(&adev->pm.mutex); if (adev->pm.funcs->debugfs_print_current_performance_level) amdgpu_dpm_debugfs_print_current_performance_level(adev, m); else seq_printf(m, "Debugfs support not implemented for this asic\n"); mutex_unlock(&adev->pm.mutex); } return 0; } static struct drm_info_list amdgpu_pm_info_list[] = { {"amdgpu_pm_info", amdgpu_debugfs_pm_info, 0, NULL}, }; #endif static int amdgpu_debugfs_pm_init(struct amdgpu_device *adev) { #if defined(CONFIG_DEBUG_FS) return amdgpu_debugfs_add_files(adev, amdgpu_pm_info_list, ARRAY_SIZE(amdgpu_pm_info_list)); #else return 0; #endif }