/* * Time of day based timer functions. * * S390 version * Copyright IBM Corp. 1999, 2008 * Author(s): Hartmut Penner (hp@de.ibm.com), * Martin Schwidefsky (schwidefsky@de.ibm.com), * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) * * Derived from "arch/i386/kernel/time.c" * Copyright (C) 1991, 1992, 1995 Linus Torvalds */ #define KMSG_COMPONENT "time" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "entry.h" u64 sched_clock_base_cc = -1; /* Force to data section. */ EXPORT_SYMBOL_GPL(sched_clock_base_cc); static DEFINE_PER_CPU(struct clock_event_device, comparators); ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); EXPORT_SYMBOL(s390_epoch_delta_notifier); unsigned char ptff_function_mask[16]; static unsigned long long lpar_offset; static unsigned long long initial_leap_seconds; static unsigned long long tod_steering_end; static long long tod_steering_delta; /* * Get time offsets with PTFF */ void __init time_early_init(void) { struct ptff_qto qto; struct ptff_qui qui; /* Initialize TOD steering parameters */ tod_steering_end = sched_clock_base_cc; vdso_data->ts_end = tod_steering_end; if (!test_facility(28)) return; ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); /* get LPAR offset */ if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) lpar_offset = qto.tod_epoch_difference; /* get initial leap seconds */ if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) initial_leap_seconds = (unsigned long long) ((long) qui.old_leap * 4096000000L); } /* * Scheduler clock - returns current time in nanosec units. */ unsigned long long notrace sched_clock(void) { return tod_to_ns(get_tod_clock_monotonic()); } NOKPROBE_SYMBOL(sched_clock); /* * Monotonic_clock - returns # of nanoseconds passed since time_init() */ unsigned long long monotonic_clock(void) { return sched_clock(); } EXPORT_SYMBOL(monotonic_clock); void tod_to_timeval(__u64 todval, struct timespec64 *xt) { unsigned long long sec; sec = todval >> 12; do_div(sec, 1000000); xt->tv_sec = sec; todval -= (sec * 1000000) << 12; xt->tv_nsec = ((todval * 1000) >> 12); } EXPORT_SYMBOL(tod_to_timeval); void clock_comparator_work(void) { struct clock_event_device *cd; S390_lowcore.clock_comparator = -1ULL; cd = this_cpu_ptr(&comparators); cd->event_handler(cd); } static int s390_next_event(unsigned long delta, struct clock_event_device *evt) { S390_lowcore.clock_comparator = get_tod_clock() + delta; set_clock_comparator(S390_lowcore.clock_comparator); return 0; } /* * Set up lowcore and control register of the current cpu to * enable TOD clock and clock comparator interrupts. */ void init_cpu_timer(void) { struct clock_event_device *cd; int cpu; S390_lowcore.clock_comparator = -1ULL; set_clock_comparator(S390_lowcore.clock_comparator); cpu = smp_processor_id(); cd = &per_cpu(comparators, cpu); cd->name = "comparator"; cd->features = CLOCK_EVT_FEAT_ONESHOT; cd->mult = 16777; cd->shift = 12; cd->min_delta_ns = 1; cd->max_delta_ns = LONG_MAX; cd->rating = 400; cd->cpumask = cpumask_of(cpu); cd->set_next_event = s390_next_event; clockevents_register_device(cd); /* Enable clock comparator timer interrupt. */ __ctl_set_bit(0,11); /* Always allow the timing alert external interrupt. */ __ctl_set_bit(0, 4); } static void clock_comparator_interrupt(struct ext_code ext_code, unsigned int param32, unsigned long param64) { inc_irq_stat(IRQEXT_CLK); if (S390_lowcore.clock_comparator == -1ULL) set_clock_comparator(S390_lowcore.clock_comparator); } static void stp_timing_alert(struct stp_irq_parm *); static void timing_alert_interrupt(struct ext_code ext_code, unsigned int param32, unsigned long param64) { inc_irq_stat(IRQEXT_TLA); if (param32 & 0x00038000) stp_timing_alert((struct stp_irq_parm *) ¶m32); } static void stp_reset(void); void read_persistent_clock64(struct timespec64 *ts) { __u64 clock; clock = get_tod_clock() - initial_leap_seconds; tod_to_timeval(clock - TOD_UNIX_EPOCH, ts); } void read_boot_clock64(struct timespec64 *ts) { __u64 clock; clock = sched_clock_base_cc - initial_leap_seconds; tod_to_timeval(clock - TOD_UNIX_EPOCH, ts); } static cycle_t read_tod_clock(struct clocksource *cs) { unsigned long long now, adj; preempt_disable(); /* protect from changes to steering parameters */ now = get_tod_clock(); adj = tod_steering_end - now; if (unlikely((s64) adj >= 0)) /* * manually steer by 1 cycle every 2^16 cycles. This * corresponds to shifting the tod delta by 15. 1s is * therefore steered in ~9h. The adjust will decrease * over time, until it finally reaches 0. */ now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); preempt_enable(); return now; } static struct clocksource clocksource_tod = { .name = "tod", .rating = 400, .read = read_tod_clock, .mask = -1ULL, .mult = 1000, .shift = 12, .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; struct clocksource * __init clocksource_default_clock(void) { return &clocksource_tod; } void update_vsyscall(struct timekeeper *tk) { u64 nsecps; if (tk->tkr_mono.clock != &clocksource_tod) return; /* Make userspace gettimeofday spin until we're done. */ ++vdso_data->tb_update_count; smp_wmb(); vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last; vdso_data->xtime_clock_sec = tk->xtime_sec; vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec; vdso_data->wtom_clock_sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec + + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift); nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift; while (vdso_data->wtom_clock_nsec >= nsecps) { vdso_data->wtom_clock_nsec -= nsecps; vdso_data->wtom_clock_sec++; } vdso_data->xtime_coarse_sec = tk->xtime_sec; vdso_data->xtime_coarse_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); vdso_data->wtom_coarse_sec = vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec; vdso_data->wtom_coarse_nsec = vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec; while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) { vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC; vdso_data->wtom_coarse_sec++; } vdso_data->tk_mult = tk->tkr_mono.mult; vdso_data->tk_shift = tk->tkr_mono.shift; smp_wmb(); ++vdso_data->tb_update_count; } extern struct timezone sys_tz; void update_vsyscall_tz(void) { vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; vdso_data->tz_dsttime = sys_tz.tz_dsttime; } /* * Initialize the TOD clock and the CPU timer of * the boot cpu. */ void __init time_init(void) { /* Reset time synchronization interfaces. */ stp_reset(); /* request the clock comparator external interrupt */ if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) panic("Couldn't request external interrupt 0x1004"); /* request the timing alert external interrupt */ if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) panic("Couldn't request external interrupt 0x1406"); if (__clocksource_register(&clocksource_tod) != 0) panic("Could not register TOD clock source"); /* Enable TOD clock interrupts on the boot cpu. */ init_cpu_timer(); /* Enable cpu timer interrupts on the boot cpu. */ vtime_init(); } static DEFINE_PER_CPU(atomic_t, clock_sync_word); static DEFINE_MUTEX(clock_sync_mutex); static unsigned long clock_sync_flags; #define CLOCK_SYNC_HAS_STP 0 #define CLOCK_SYNC_STP 1 /* * The get_clock function for the physical clock. It will get the current * TOD clock, subtract the LPAR offset and write the result to *clock. * The function returns 0 if the clock is in sync with the external time * source. If the clock mode is local it will return -EOPNOTSUPP and * -EAGAIN if the clock is not in sync with the external reference. */ int get_phys_clock(unsigned long long *clock) { atomic_t *sw_ptr; unsigned int sw0, sw1; sw_ptr = &get_cpu_var(clock_sync_word); sw0 = atomic_read(sw_ptr); *clock = get_tod_clock() - lpar_offset; sw1 = atomic_read(sw_ptr); put_cpu_var(clock_sync_word); if (sw0 == sw1 && (sw0 & 0x80000000U)) /* Success: time is in sync. */ return 0; if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) return -EOPNOTSUPP; if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) return -EACCES; return -EAGAIN; } EXPORT_SYMBOL(get_phys_clock); /* * Make get_phys_clock() return -EAGAIN. */ static void disable_sync_clock(void *dummy) { atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); /* * Clear the in-sync bit 2^31. All get_phys_clock calls will * fail until the sync bit is turned back on. In addition * increase the "sequence" counter to avoid the race of an * stp event and the complete recovery against get_phys_clock. */ atomic_andnot(0x80000000, sw_ptr); atomic_inc(sw_ptr); } /* * Make get_phys_clock() return 0 again. * Needs to be called from a context disabled for preemption. */ static void enable_sync_clock(void) { atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); atomic_or(0x80000000, sw_ptr); } /* * Function to check if the clock is in sync. */ static inline int check_sync_clock(void) { atomic_t *sw_ptr; int rc; sw_ptr = &get_cpu_var(clock_sync_word); rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; put_cpu_var(clock_sync_word); return rc; } /* * Apply clock delta to the global data structures. * This is called once on the CPU that performed the clock sync. */ static void clock_sync_global(unsigned long long delta) { unsigned long now, adj; struct ptff_qto qto; /* Fixup the monotonic sched clock. */ sched_clock_base_cc += delta; /* Adjust TOD steering parameters. */ vdso_data->tb_update_count++; now = get_tod_clock(); adj = tod_steering_end - now; if (unlikely((s64) adj >= 0)) /* Calculate how much of the old adjustment is left. */ tod_steering_delta = (tod_steering_delta < 0) ? -(adj >> 15) : (adj >> 15); tod_steering_delta += delta; if ((abs(tod_steering_delta) >> 48) != 0) panic("TOD clock sync offset %lli is too large to drift\n", tod_steering_delta); tod_steering_end = now + (abs(tod_steering_delta) << 15); vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1; vdso_data->ts_end = tod_steering_end; vdso_data->tb_update_count++; /* Update LPAR offset. */ if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) lpar_offset = qto.tod_epoch_difference; /* Call the TOD clock change notifier. */ atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); } /* * Apply clock delta to the per-CPU data structures of this CPU. * This is called for each online CPU after the call to clock_sync_global. */ static void clock_sync_local(unsigned long long delta) { /* Add the delta to the clock comparator. */ if (S390_lowcore.clock_comparator != -1ULL) { S390_lowcore.clock_comparator += delta; set_clock_comparator(S390_lowcore.clock_comparator); } /* Adjust the last_update_clock time-stamp. */ S390_lowcore.last_update_clock += delta; } /* Single threaded workqueue used for stp sync events */ static struct workqueue_struct *time_sync_wq; static void __init time_init_wq(void) { if (time_sync_wq) return; time_sync_wq = create_singlethread_workqueue("timesync"); } struct clock_sync_data { atomic_t cpus; int in_sync; unsigned long long clock_delta; }; /* * Server Time Protocol (STP) code. */ static bool stp_online; static struct stp_sstpi stp_info; static void *stp_page; static void stp_work_fn(struct work_struct *work); static DEFINE_MUTEX(stp_work_mutex); static DECLARE_WORK(stp_work, stp_work_fn); static struct timer_list stp_timer; static int __init early_parse_stp(char *p) { return kstrtobool(p, &stp_online); } early_param("stp", early_parse_stp); /* * Reset STP attachment. */ static void __init stp_reset(void) { int rc; stp_page = (void *) get_zeroed_page(GFP_ATOMIC); rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); if (rc == 0) set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); else if (stp_online) { pr_warn("The real or virtual hardware system does not provide an STP interface\n"); free_page((unsigned long) stp_page); stp_page = NULL; stp_online = 0; } } static void stp_timeout(unsigned long dummy) { queue_work(time_sync_wq, &stp_work); } static int __init stp_init(void) { if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) return 0; setup_timer(&stp_timer, stp_timeout, 0UL); time_init_wq(); if (!stp_online) return 0; queue_work(time_sync_wq, &stp_work); return 0; } arch_initcall(stp_init); /* * STP timing alert. There are three causes: * 1) timing status change * 2) link availability change * 3) time control parameter change * In all three cases we are only interested in the clock source state. * If a STP clock source is now available use it. */ static void stp_timing_alert(struct stp_irq_parm *intparm) { if (intparm->tsc || intparm->lac || intparm->tcpc) queue_work(time_sync_wq, &stp_work); } /* * STP sync check machine check. This is called when the timing state * changes from the synchronized state to the unsynchronized state. * After a STP sync check the clock is not in sync. The machine check * is broadcasted to all cpus at the same time. */ int stp_sync_check(void) { disable_sync_clock(NULL); return 1; } /* * STP island condition machine check. This is called when an attached * server attempts to communicate over an STP link and the servers * have matching CTN ids and have a valid stratum-1 configuration * but the configurations do not match. */ int stp_island_check(void) { disable_sync_clock(NULL); return 1; } void stp_queue_work(void) { queue_work(time_sync_wq, &stp_work); } static int stp_sync_clock(void *data) { struct clock_sync_data *sync = data; unsigned long long clock_delta; static int first; int rc; enable_sync_clock(); if (xchg(&first, 1) == 0) { /* Wait until all other cpus entered the sync function. */ while (atomic_read(&sync->cpus) != 0) cpu_relax(); rc = 0; if (stp_info.todoff[0] || stp_info.todoff[1] || stp_info.todoff[2] || stp_info.todoff[3] || stp_info.tmd != 2) { rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, &clock_delta); if (rc == 0) { sync->clock_delta = clock_delta; clock_sync_global(clock_delta); rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); if (rc == 0 && stp_info.tmd != 2) rc = -EAGAIN; } } sync->in_sync = rc ? -EAGAIN : 1; xchg(&first, 0); } else { /* Slave */ atomic_dec(&sync->cpus); /* Wait for in_sync to be set. */ while (READ_ONCE(sync->in_sync) == 0) __udelay(1); } if (sync->in_sync != 1) /* Didn't work. Clear per-cpu in sync bit again. */ disable_sync_clock(NULL); /* Apply clock delta to per-CPU fields of this CPU. */ clock_sync_local(sync->clock_delta); return 0; } /* * STP work. Check for the STP state and take over the clock * synchronization if the STP clock source is usable. */ static void stp_work_fn(struct work_struct *work) { struct clock_sync_data stp_sync; int rc; /* prevent multiple execution. */ mutex_lock(&stp_work_mutex); if (!stp_online) { chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); del_timer_sync(&stp_timer); goto out_unlock; } rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL); if (rc) goto out_unlock; rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); if (rc || stp_info.c == 0) goto out_unlock; /* Skip synchronization if the clock is already in sync. */ if (check_sync_clock()) goto out_unlock; memset(&stp_sync, 0, sizeof(stp_sync)); get_online_cpus(); atomic_set(&stp_sync.cpus, num_online_cpus() - 1); stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask); put_online_cpus(); if (!check_sync_clock()) /* * There is a usable clock but the synchonization failed. * Retry after a second. */ mod_timer(&stp_timer, jiffies + HZ); out_unlock: mutex_unlock(&stp_work_mutex); } /* * STP subsys sysfs interface functions */ static struct bus_type stp_subsys = { .name = "stp", .dev_name = "stp", }; static ssize_t stp_ctn_id_show(struct device *dev, struct device_attribute *attr, char *buf) { if (!stp_online) return -ENODATA; return sprintf(buf, "%016llx\n", *(unsigned long long *) stp_info.ctnid); } static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL); static ssize_t stp_ctn_type_show(struct device *dev, struct device_attribute *attr, char *buf) { if (!stp_online) return -ENODATA; return sprintf(buf, "%i\n", stp_info.ctn); } static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL); static ssize_t stp_dst_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { if (!stp_online || !(stp_info.vbits & 0x2000)) return -ENODATA; return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); } static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL); static ssize_t stp_leap_seconds_show(struct device *dev, struct device_attribute *attr, char *buf) { if (!stp_online || !(stp_info.vbits & 0x8000)) return -ENODATA; return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); } static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL); static ssize_t stp_stratum_show(struct device *dev, struct device_attribute *attr, char *buf) { if (!stp_online) return -ENODATA; return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); } static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL); static ssize_t stp_time_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { if (!stp_online || !(stp_info.vbits & 0x0800)) return -ENODATA; return sprintf(buf, "%i\n", (int) stp_info.tto); } static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL); static ssize_t stp_time_zone_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { if (!stp_online || !(stp_info.vbits & 0x4000)) return -ENODATA; return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); } static DEVICE_ATTR(time_zone_offset, 0400, stp_time_zone_offset_show, NULL); static ssize_t stp_timing_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { if (!stp_online) return -ENODATA; return sprintf(buf, "%i\n", stp_info.tmd); } static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL); static ssize_t stp_timing_state_show(struct device *dev, struct device_attribute *attr, char *buf) { if (!stp_online) return -ENODATA; return sprintf(buf, "%i\n", stp_info.tst); } static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL); static ssize_t stp_online_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%i\n", stp_online); } static ssize_t stp_online_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned int value; value = simple_strtoul(buf, NULL, 0); if (value != 0 && value != 1) return -EINVAL; if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) return -EOPNOTSUPP; mutex_lock(&clock_sync_mutex); stp_online = value; if (stp_online) set_bit(CLOCK_SYNC_STP, &clock_sync_flags); else clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); queue_work(time_sync_wq, &stp_work); mutex_unlock(&clock_sync_mutex); return count; } /* * Can't use DEVICE_ATTR because the attribute should be named * stp/online but dev_attr_online already exists in this file .. */ static struct device_attribute dev_attr_stp_online = { .attr = { .name = "online", .mode = 0600 }, .show = stp_online_show, .store = stp_online_store, }; static struct device_attribute *stp_attributes[] = { &dev_attr_ctn_id, &dev_attr_ctn_type, &dev_attr_dst_offset, &dev_attr_leap_seconds, &dev_attr_stp_online, &dev_attr_stratum, &dev_attr_time_offset, &dev_attr_time_zone_offset, &dev_attr_timing_mode, &dev_attr_timing_state, NULL }; static int __init stp_init_sysfs(void) { struct device_attribute **attr; int rc; rc = subsys_system_register(&stp_subsys, NULL); if (rc) goto out; for (attr = stp_attributes; *attr; attr++) { rc = device_create_file(stp_subsys.dev_root, *attr); if (rc) goto out_unreg; } return 0; out_unreg: for (; attr >= stp_attributes; attr--) device_remove_file(stp_subsys.dev_root, *attr); bus_unregister(&stp_subsys); out: return rc; } device_initcall(stp_init_sysfs);