/* * Copyright (C) 2013 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #define PU_SOC_VOLTAGE_NORMAL 1250000 #define PU_SOC_VOLTAGE_HIGH 1275000 #define FREQ_1P2_GHZ 1200000000 static struct regulator *arm_reg; static struct regulator *pu_reg; static struct regulator *soc_reg; static struct clk *arm_clk; static struct clk *pll1_sys_clk; static struct clk *pll1_sw_clk; static struct clk *step_clk; static struct clk *pll2_pfd2_396m_clk; static struct device *cpu_dev; static struct cpufreq_frequency_table *freq_table; static unsigned int transition_latency; static unsigned int imx6q_get_speed(unsigned int cpu) { return clk_get_rate(arm_clk) / 1000; } static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct cpufreq_freqs freqs; struct opp *opp; unsigned long freq_hz, volt, volt_old; unsigned int index; int ret; ret = cpufreq_frequency_table_target(policy, freq_table, target_freq, relation, &index); if (ret) { dev_err(cpu_dev, "failed to match target frequency %d: %d\n", target_freq, ret); return ret; } freqs.new = freq_table[index].frequency; freq_hz = freqs.new * 1000; freqs.old = clk_get_rate(arm_clk) / 1000; if (freqs.old == freqs.new) return 0; rcu_read_lock(); opp = opp_find_freq_ceil(cpu_dev, &freq_hz); if (IS_ERR(opp)) { rcu_read_unlock(); dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz); return PTR_ERR(opp); } volt = opp_get_voltage(opp); rcu_read_unlock(); volt_old = regulator_get_voltage(arm_reg); dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n", freqs.old / 1000, volt_old / 1000, freqs.new / 1000, volt / 1000); cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); /* scaling up? scale voltage before frequency */ if (freqs.new > freqs.old) { ret = regulator_set_voltage_tol(arm_reg, volt, 0); if (ret) { dev_err(cpu_dev, "failed to scale vddarm up: %d\n", ret); freqs.new = freqs.old; goto post_notify; } /* * Need to increase vddpu and vddsoc for safety * if we are about to run at 1.2 GHz. */ if (freqs.new == FREQ_1P2_GHZ / 1000) { regulator_set_voltage_tol(pu_reg, PU_SOC_VOLTAGE_HIGH, 0); regulator_set_voltage_tol(soc_reg, PU_SOC_VOLTAGE_HIGH, 0); } } /* * The setpoints are selected per PLL/PDF frequencies, so we need to * reprogram PLL for frequency scaling. The procedure of reprogramming * PLL1 is as below. * * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it * - Disable pll2_pfd2_396m_clk */ clk_set_parent(step_clk, pll2_pfd2_396m_clk); clk_set_parent(pll1_sw_clk, step_clk); if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) { clk_set_rate(pll1_sys_clk, freqs.new * 1000); clk_set_parent(pll1_sw_clk, pll1_sys_clk); } /* Ensure the arm clock divider is what we expect */ ret = clk_set_rate(arm_clk, freqs.new * 1000); if (ret) { dev_err(cpu_dev, "failed to set clock rate: %d\n", ret); regulator_set_voltage_tol(arm_reg, volt_old, 0); freqs.new = freqs.old; goto post_notify; } /* scaling down? scale voltage after frequency */ if (freqs.new < freqs.old) { ret = regulator_set_voltage_tol(arm_reg, volt, 0); if (ret) { dev_warn(cpu_dev, "failed to scale vddarm down: %d\n", ret); ret = 0; } if (freqs.old == FREQ_1P2_GHZ / 1000) { regulator_set_voltage_tol(pu_reg, PU_SOC_VOLTAGE_NORMAL, 0); regulator_set_voltage_tol(soc_reg, PU_SOC_VOLTAGE_NORMAL, 0); } } post_notify: cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); return ret; } static int imx6q_cpufreq_init(struct cpufreq_policy *policy) { return cpufreq_generic_init(policy, freq_table, transition_latency); } static struct cpufreq_driver imx6q_cpufreq_driver = { .verify = cpufreq_generic_frequency_table_verify, .target = imx6q_set_target, .get = imx6q_get_speed, .init = imx6q_cpufreq_init, .exit = cpufreq_generic_exit, .name = "imx6q-cpufreq", .attr = cpufreq_generic_attr, }; static int imx6q_cpufreq_probe(struct platform_device *pdev) { struct device_node *np; struct opp *opp; unsigned long min_volt, max_volt; int num, ret; cpu_dev = get_cpu_device(0); if (!cpu_dev) { pr_err("failed to get cpu0 device\n"); return -ENODEV; } np = of_node_get(cpu_dev->of_node); if (!np) { dev_err(cpu_dev, "failed to find cpu0 node\n"); return -ENOENT; } arm_clk = devm_clk_get(cpu_dev, "arm"); pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys"); pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw"); step_clk = devm_clk_get(cpu_dev, "step"); pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m"); if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) || IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) { dev_err(cpu_dev, "failed to get clocks\n"); ret = -ENOENT; goto put_node; } arm_reg = devm_regulator_get(cpu_dev, "arm"); pu_reg = devm_regulator_get(cpu_dev, "pu"); soc_reg = devm_regulator_get(cpu_dev, "soc"); if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) { dev_err(cpu_dev, "failed to get regulators\n"); ret = -ENOENT; goto put_node; } /* We expect an OPP table supplied by platform */ num = opp_get_opp_count(cpu_dev); if (num < 0) { ret = num; dev_err(cpu_dev, "no OPP table is found: %d\n", ret); goto put_node; } ret = opp_init_cpufreq_table(cpu_dev, &freq_table); if (ret) { dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret); goto put_node; } if (of_property_read_u32(np, "clock-latency", &transition_latency)) transition_latency = CPUFREQ_ETERNAL; /* * OPP is maintained in order of increasing frequency, and * freq_table initialised from OPP is therefore sorted in the * same order. */ rcu_read_lock(); opp = opp_find_freq_exact(cpu_dev, freq_table[0].frequency * 1000, true); min_volt = opp_get_voltage(opp); opp = opp_find_freq_exact(cpu_dev, freq_table[--num].frequency * 1000, true); max_volt = opp_get_voltage(opp); rcu_read_unlock(); ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt); if (ret > 0) transition_latency += ret * 1000; /* Count vddpu and vddsoc latency in for 1.2 GHz support */ if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) { ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL, PU_SOC_VOLTAGE_HIGH); if (ret > 0) transition_latency += ret * 1000; ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL, PU_SOC_VOLTAGE_HIGH); if (ret > 0) transition_latency += ret * 1000; } ret = cpufreq_register_driver(&imx6q_cpufreq_driver); if (ret) { dev_err(cpu_dev, "failed register driver: %d\n", ret); goto free_freq_table; } of_node_put(np); return 0; free_freq_table: opp_free_cpufreq_table(cpu_dev, &freq_table); put_node: of_node_put(np); return ret; } static int imx6q_cpufreq_remove(struct platform_device *pdev) { cpufreq_unregister_driver(&imx6q_cpufreq_driver); opp_free_cpufreq_table(cpu_dev, &freq_table); return 0; } static struct platform_driver imx6q_cpufreq_platdrv = { .driver = { .name = "imx6q-cpufreq", .owner = THIS_MODULE, }, .probe = imx6q_cpufreq_probe, .remove = imx6q_cpufreq_remove, }; module_platform_driver(imx6q_cpufreq_platdrv); MODULE_AUTHOR("Shawn Guo "); MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver"); MODULE_LICENSE("GPL");