/* * Copyright © 1997-2003 by The XFree86 Project, Inc. * Copyright © 2007 Dave Airlie * Copyright © 2007-2008 Intel Corporation * Jesse Barnes * Copyright 2005-2006 Luc Verhaegen * Copyright (c) 2001, Andy Ritger aritger@nvidia.com * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the copyright holder(s) * and author(s) shall not be used in advertising or otherwise to promote * the sale, use or other dealings in this Software without prior written * authorization from the copyright holder(s) and author(s). */ #include #include #include "drmP.h" #include "drm.h" #include "drm_crtc.h" /** * drm_mode_debug_printmodeline - debug print a mode * @dev: DRM device * @mode: mode to print * * LOCKING: * None. * * Describe @mode using DRM_DEBUG. */ void drm_mode_debug_printmodeline(struct drm_display_mode *mode) { DRM_DEBUG_KMS("Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d " "0x%x 0x%x\n", mode->base.id, mode->name, mode->vrefresh, mode->clock, mode->hdisplay, mode->hsync_start, mode->hsync_end, mode->htotal, mode->vdisplay, mode->vsync_start, mode->vsync_end, mode->vtotal, mode->type, mode->flags); } EXPORT_SYMBOL(drm_mode_debug_printmodeline); /** * drm_cvt_mode -create a modeline based on CVT algorithm * @dev: DRM device * @hdisplay: hdisplay size * @vdisplay: vdisplay size * @vrefresh : vrefresh rate * @reduced : Whether the GTF calculation is simplified * @interlaced:Whether the interlace is supported * * LOCKING: * none. * * return the modeline based on CVT algorithm * * This function is called to generate the modeline based on CVT algorithm * according to the hdisplay, vdisplay, vrefresh. * It is based from the VESA(TM) Coordinated Video Timing Generator by * Graham Loveridge April 9, 2003 available at * http://www.vesa.org/public/CVT/CVTd6r1.xls * * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c. * What I have done is to translate it by using integer calculation. */ #define HV_FACTOR 1000 struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay, int vdisplay, int vrefresh, bool reduced, bool interlaced, bool margins) { /* 1) top/bottom margin size (% of height) - default: 1.8, */ #define CVT_MARGIN_PERCENTAGE 18 /* 2) character cell horizontal granularity (pixels) - default 8 */ #define CVT_H_GRANULARITY 8 /* 3) Minimum vertical porch (lines) - default 3 */ #define CVT_MIN_V_PORCH 3 /* 4) Minimum number of vertical back porch lines - default 6 */ #define CVT_MIN_V_BPORCH 6 /* Pixel Clock step (kHz) */ #define CVT_CLOCK_STEP 250 struct drm_display_mode *drm_mode; unsigned int vfieldrate, hperiod; int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync; int interlace; /* allocate the drm_display_mode structure. If failure, we will * return directly */ drm_mode = drm_mode_create(dev); if (!drm_mode) return NULL; /* the CVT default refresh rate is 60Hz */ if (!vrefresh) vrefresh = 60; /* the required field fresh rate */ if (interlaced) vfieldrate = vrefresh * 2; else vfieldrate = vrefresh; /* horizontal pixels */ hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY); /* determine the left&right borders */ hmargin = 0; if (margins) { hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000; hmargin -= hmargin % CVT_H_GRANULARITY; } /* find the total active pixels */ drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin; /* find the number of lines per field */ if (interlaced) vdisplay_rnd = vdisplay / 2; else vdisplay_rnd = vdisplay; /* find the top & bottom borders */ vmargin = 0; if (margins) vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000; drm_mode->vdisplay = vdisplay + 2 * vmargin; /* Interlaced */ if (interlaced) interlace = 1; else interlace = 0; /* Determine VSync Width from aspect ratio */ if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay)) vsync = 4; else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay)) vsync = 5; else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay)) vsync = 6; else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay)) vsync = 7; else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay)) vsync = 7; else /* custom */ vsync = 10; if (!reduced) { /* simplify the GTF calculation */ /* 4) Minimum time of vertical sync + back porch interval (µs) * default 550.0 */ int tmp1, tmp2; #define CVT_MIN_VSYNC_BP 550 /* 3) Nominal HSync width (% of line period) - default 8 */ #define CVT_HSYNC_PERCENTAGE 8 unsigned int hblank_percentage; int vsyncandback_porch, vback_porch, hblank; /* estimated the horizontal period */ tmp1 = HV_FACTOR * 1000000 - CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate; tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 + interlace; hperiod = tmp1 * 2 / (tmp2 * vfieldrate); tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1; /* 9. Find number of lines in sync + backporch */ if (tmp1 < (vsync + CVT_MIN_V_PORCH)) vsyncandback_porch = vsync + CVT_MIN_V_PORCH; else vsyncandback_porch = tmp1; /* 10. Find number of lines in back porch */ vback_porch = vsyncandback_porch - vsync; drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vsyncandback_porch + CVT_MIN_V_PORCH; /* 5) Definition of Horizontal blanking time limitation */ /* Gradient (%/kHz) - default 600 */ #define CVT_M_FACTOR 600 /* Offset (%) - default 40 */ #define CVT_C_FACTOR 40 /* Blanking time scaling factor - default 128 */ #define CVT_K_FACTOR 128 /* Scaling factor weighting - default 20 */ #define CVT_J_FACTOR 20 #define CVT_M_PRIME (CVT_M_FACTOR * CVT_K_FACTOR / 256) #define CVT_C_PRIME ((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \ CVT_J_FACTOR) /* 12. Find ideal blanking duty cycle from formula */ hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME * hperiod / 1000; /* 13. Blanking time */ if (hblank_percentage < 20 * HV_FACTOR) hblank_percentage = 20 * HV_FACTOR; hblank = drm_mode->hdisplay * hblank_percentage / (100 * HV_FACTOR - hblank_percentage); hblank -= hblank % (2 * CVT_H_GRANULARITY); /* 14. find the total pixes per line */ drm_mode->htotal = drm_mode->hdisplay + hblank; drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2; drm_mode->hsync_start = drm_mode->hsync_end - (drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100; drm_mode->hsync_start += CVT_H_GRANULARITY - drm_mode->hsync_start % CVT_H_GRANULARITY; /* fill the Vsync values */ drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH; drm_mode->vsync_end = drm_mode->vsync_start + vsync; } else { /* Reduced blanking */ /* Minimum vertical blanking interval time (µs)- default 460 */ #define CVT_RB_MIN_VBLANK 460 /* Fixed number of clocks for horizontal sync */ #define CVT_RB_H_SYNC 32 /* Fixed number of clocks for horizontal blanking */ #define CVT_RB_H_BLANK 160 /* Fixed number of lines for vertical front porch - default 3*/ #define CVT_RB_VFPORCH 3 int vbilines; int tmp1, tmp2; /* 8. Estimate Horizontal period. */ tmp1 = HV_FACTOR * 1000000 - CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate; tmp2 = vdisplay_rnd + 2 * vmargin; hperiod = tmp1 / (tmp2 * vfieldrate); /* 9. Find number of lines in vertical blanking */ vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1; /* 10. Check if vertical blanking is sufficient */ if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH)) vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH; /* 11. Find total number of lines in vertical field */ drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines; /* 12. Find total number of pixels in a line */ drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK; /* Fill in HSync values */ drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2; drm_mode->hsync_start = drm_mode->hsync_end = CVT_RB_H_SYNC; } /* 15/13. Find pixel clock frequency (kHz for xf86) */ drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod; drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP; /* 18/16. Find actual vertical frame frequency */ /* ignore - just set the mode flag for interlaced */ if (interlaced) drm_mode->vtotal *= 2; /* Fill the mode line name */ drm_mode_set_name(drm_mode); if (reduced) drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC); else drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NHSYNC); if (interlaced) drm_mode->flags |= DRM_MODE_FLAG_INTERLACE; return drm_mode; } EXPORT_SYMBOL(drm_cvt_mode); /** * drm_gtf_mode_complex - create the modeline based on full GTF algorithm * * @dev :drm device * @hdisplay :hdisplay size * @vdisplay :vdisplay size * @vrefresh :vrefresh rate. * @interlaced :whether the interlace is supported * @margins :desired margin size * @GTF_[MCKJ] :extended GTF formula parameters * * LOCKING. * none. * * return the modeline based on full GTF algorithm. * * GTF feature blocks specify C and J in multiples of 0.5, so we pass them * in here multiplied by two. For a C of 40, pass in 80. */ struct drm_display_mode * drm_gtf_mode_complex(struct drm_device *dev, int hdisplay, int vdisplay, int vrefresh, bool interlaced, int margins, int GTF_M, int GTF_2C, int GTF_K, int GTF_2J) { /* 1) top/bottom margin size (% of height) - default: 1.8, */ #define GTF_MARGIN_PERCENTAGE 18 /* 2) character cell horizontal granularity (pixels) - default 8 */ #define GTF_CELL_GRAN 8 /* 3) Minimum vertical porch (lines) - default 3 */ #define GTF_MIN_V_PORCH 1 /* width of vsync in lines */ #define V_SYNC_RQD 3 /* width of hsync as % of total line */ #define H_SYNC_PERCENT 8 /* min time of vsync + back porch (microsec) */ #define MIN_VSYNC_PLUS_BP 550 /* C' and M' are part of the Blanking Duty Cycle computation */ #define GTF_C_PRIME ((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2) #define GTF_M_PRIME (GTF_K * GTF_M / 256) struct drm_display_mode *drm_mode; unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd; int top_margin, bottom_margin; int interlace; unsigned int hfreq_est; int vsync_plus_bp, vback_porch; unsigned int vtotal_lines, vfieldrate_est, hperiod; unsigned int vfield_rate, vframe_rate; int left_margin, right_margin; unsigned int total_active_pixels, ideal_duty_cycle; unsigned int hblank, total_pixels, pixel_freq; int hsync, hfront_porch, vodd_front_porch_lines; unsigned int tmp1, tmp2; drm_mode = drm_mode_create(dev); if (!drm_mode) return NULL; /* 1. In order to give correct results, the number of horizontal * pixels requested is first processed to ensure that it is divisible * by the character size, by rounding it to the nearest character * cell boundary: */ hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN; hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN; /* 2. If interlace is requested, the number of vertical lines assumed * by the calculation must be halved, as the computation calculates * the number of vertical lines per field. */ if (interlaced) vdisplay_rnd = vdisplay / 2; else vdisplay_rnd = vdisplay; /* 3. Find the frame rate required: */ if (interlaced) vfieldrate_rqd = vrefresh * 2; else vfieldrate_rqd = vrefresh; /* 4. Find number of lines in Top margin: */ top_margin = 0; if (margins) top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) / 1000; /* 5. Find number of lines in bottom margin: */ bottom_margin = top_margin; /* 6. If interlace is required, then set variable interlace: */ if (interlaced) interlace = 1; else interlace = 0; /* 7. Estimate the Horizontal frequency */ { tmp1 = (1000000 - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500; tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) * 2 + interlace; hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1; } /* 8. Find the number of lines in V sync + back porch */ /* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */ vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000; vsync_plus_bp = (vsync_plus_bp + 500) / 1000; /* 9. Find the number of lines in V back porch alone: */ vback_porch = vsync_plus_bp - V_SYNC_RQD; /* 10. Find the total number of lines in Vertical field period: */ vtotal_lines = vdisplay_rnd + top_margin + bottom_margin + vsync_plus_bp + GTF_MIN_V_PORCH; /* 11. Estimate the Vertical field frequency: */ vfieldrate_est = hfreq_est / vtotal_lines; /* 12. Find the actual horizontal period: */ hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines); /* 13. Find the actual Vertical field frequency: */ vfield_rate = hfreq_est / vtotal_lines; /* 14. Find the Vertical frame frequency: */ if (interlaced) vframe_rate = vfield_rate / 2; else vframe_rate = vfield_rate; /* 15. Find number of pixels in left margin: */ if (margins) left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) / 1000; else left_margin = 0; /* 16.Find number of pixels in right margin: */ right_margin = left_margin; /* 17.Find total number of active pixels in image and left and right */ total_active_pixels = hdisplay_rnd + left_margin + right_margin; /* 18.Find the ideal blanking duty cycle from blanking duty cycle */ ideal_duty_cycle = GTF_C_PRIME * 1000 - (GTF_M_PRIME * 1000000 / hfreq_est); /* 19.Find the number of pixels in the blanking time to the nearest * double character cell: */ hblank = total_active_pixels * ideal_duty_cycle / (100000 - ideal_duty_cycle); hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN); hblank = hblank * 2 * GTF_CELL_GRAN; /* 20.Find total number of pixels: */ total_pixels = total_active_pixels + hblank; /* 21.Find pixel clock frequency: */ pixel_freq = total_pixels * hfreq_est / 1000; /* Stage 1 computations are now complete; I should really pass * the results to another function and do the Stage 2 computations, * but I only need a few more values so I'll just append the * computations here for now */ /* 17. Find the number of pixels in the horizontal sync period: */ hsync = H_SYNC_PERCENT * total_pixels / 100; hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN; hsync = hsync * GTF_CELL_GRAN; /* 18. Find the number of pixels in horizontal front porch period */ hfront_porch = hblank / 2 - hsync; /* 36. Find the number of lines in the odd front porch period: */ vodd_front_porch_lines = GTF_MIN_V_PORCH ; /* finally, pack the results in the mode struct */ drm_mode->hdisplay = hdisplay_rnd; drm_mode->hsync_start = hdisplay_rnd + hfront_porch; drm_mode->hsync_end = drm_mode->hsync_start + hsync; drm_mode->htotal = total_pixels; drm_mode->vdisplay = vdisplay_rnd; drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines; drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD; drm_mode->vtotal = vtotal_lines; drm_mode->clock = pixel_freq; drm_mode_set_name(drm_mode); drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC; if (interlaced) { drm_mode->vtotal *= 2; drm_mode->flags |= DRM_MODE_FLAG_INTERLACE; } return drm_mode; } EXPORT_SYMBOL(drm_gtf_mode_complex); /** * drm_gtf_mode - create the modeline based on GTF algorithm * * @dev :drm device * @hdisplay :hdisplay size * @vdisplay :vdisplay size * @vrefresh :vrefresh rate. * @interlaced :whether the interlace is supported * @margins :whether the margin is supported * * LOCKING. * none. * * return the modeline based on GTF algorithm * * This function is to create the modeline based on the GTF algorithm. * Generalized Timing Formula is derived from: * GTF Spreadsheet by Andy Morrish (1/5/97) * available at http://www.vesa.org * * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c. * What I have done is to translate it by using integer calculation. * I also refer to the function of fb_get_mode in the file of * drivers/video/fbmon.c * * Standard GTF parameters: * M = 600 * C = 40 * K = 128 * J = 20 */ struct drm_display_mode * drm_gtf_mode(struct drm_device *dev, int hdisplay, int vdisplay, int vrefresh, bool lace, int margins) { return drm_gtf_mode_complex(dev, hdisplay, vdisplay, vrefresh, lace, margins, 600, 40 * 2, 128, 20 * 2); } EXPORT_SYMBOL(drm_gtf_mode); /** * drm_mode_set_name - set the name on a mode * @mode: name will be set in this mode * * LOCKING: * None. * * Set the name of @mode to a standard format. */ void drm_mode_set_name(struct drm_display_mode *mode) { snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d", mode->hdisplay, mode->vdisplay); } EXPORT_SYMBOL(drm_mode_set_name); /** * drm_mode_list_concat - move modes from one list to another * @head: source list * @new: dst list * * LOCKING: * Caller must ensure both lists are locked. * * Move all the modes from @head to @new. */ void drm_mode_list_concat(struct list_head *head, struct list_head *new) { struct list_head *entry, *tmp; list_for_each_safe(entry, tmp, head) { list_move_tail(entry, new); } } EXPORT_SYMBOL(drm_mode_list_concat); /** * drm_mode_width - get the width of a mode * @mode: mode * * LOCKING: * None. * * Return @mode's width (hdisplay) value. * * FIXME: is this needed? * * RETURNS: * @mode->hdisplay */ int drm_mode_width(struct drm_display_mode *mode) { return mode->hdisplay; } EXPORT_SYMBOL(drm_mode_width); /** * drm_mode_height - get the height of a mode * @mode: mode * * LOCKING: * None. * * Return @mode's height (vdisplay) value. * * FIXME: is this needed? * * RETURNS: * @mode->vdisplay */ int drm_mode_height(struct drm_display_mode *mode) { return mode->vdisplay; } EXPORT_SYMBOL(drm_mode_height); /** drm_mode_hsync - get the hsync of a mode * @mode: mode * * LOCKING: * None. * * Return @modes's hsync rate in kHz, rounded to the nearest int. */ int drm_mode_hsync(struct drm_display_mode *mode) { unsigned int calc_val; if (mode->hsync) return mode->hsync; if (mode->htotal < 0) return 0; calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */ calc_val += 500; /* round to 1000Hz */ calc_val /= 1000; /* truncate to kHz */ return calc_val; } EXPORT_SYMBOL(drm_mode_hsync); /** * drm_mode_vrefresh - get the vrefresh of a mode * @mode: mode * * LOCKING: * None. * * Return @mode's vrefresh rate in Hz or calculate it if necessary. * * FIXME: why is this needed? shouldn't vrefresh be set already? * * RETURNS: * Vertical refresh rate. It will be the result of actual value plus 0.5. * If it is 70.288, it will return 70Hz. * If it is 59.6, it will return 60Hz. */ int drm_mode_vrefresh(struct drm_display_mode *mode) { int refresh = 0; unsigned int calc_val; if (mode->vrefresh > 0) refresh = mode->vrefresh; else if (mode->htotal > 0 && mode->vtotal > 0) { int vtotal; vtotal = mode->vtotal; /* work out vrefresh the value will be x1000 */ calc_val = (mode->clock * 1000); calc_val /= mode->htotal; refresh = (calc_val + vtotal / 2) / vtotal; if (mode->flags & DRM_MODE_FLAG_INTERLACE) refresh *= 2; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) refresh /= 2; if (mode->vscan > 1) refresh /= mode->vscan; } return refresh; } EXPORT_SYMBOL(drm_mode_vrefresh); /** * drm_mode_set_crtcinfo - set CRTC modesetting parameters * @p: mode * @adjust_flags: unused? (FIXME) * * LOCKING: * None. * * Setup the CRTC modesetting parameters for @p, adjusting if necessary. */ void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags) { if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN)) return; p->crtc_hdisplay = p->hdisplay; p->crtc_hsync_start = p->hsync_start; p->crtc_hsync_end = p->hsync_end; p->crtc_htotal = p->htotal; p->crtc_hskew = p->hskew; p->crtc_vdisplay = p->vdisplay; p->crtc_vsync_start = p->vsync_start; p->crtc_vsync_end = p->vsync_end; p->crtc_vtotal = p->vtotal; if (p->flags & DRM_MODE_FLAG_INTERLACE) { if (adjust_flags & CRTC_INTERLACE_HALVE_V) { p->crtc_vdisplay /= 2; p->crtc_vsync_start /= 2; p->crtc_vsync_end /= 2; p->crtc_vtotal /= 2; } p->crtc_vtotal |= 1; } if (p->flags & DRM_MODE_FLAG_DBLSCAN) { p->crtc_vdisplay *= 2; p->crtc_vsync_start *= 2; p->crtc_vsync_end *= 2; p->crtc_vtotal *= 2; } if (p->vscan > 1) { p->crtc_vdisplay *= p->vscan; p->crtc_vsync_start *= p->vscan; p->crtc_vsync_end *= p->vscan; p->crtc_vtotal *= p->vscan; } p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay); p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal); p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay); p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal); p->crtc_hadjusted = false; p->crtc_vadjusted = false; } EXPORT_SYMBOL(drm_mode_set_crtcinfo); /** * drm_mode_duplicate - allocate and duplicate an existing mode * @m: mode to duplicate * * LOCKING: * None. * * Just allocate a new mode, copy the existing mode into it, and return * a pointer to it. Used to create new instances of established modes. */ struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev, struct drm_display_mode *mode) { struct drm_display_mode *nmode; int new_id; nmode = drm_mode_create(dev); if (!nmode) return NULL; new_id = nmode->base.id; *nmode = *mode; nmode->base.id = new_id; INIT_LIST_HEAD(&nmode->head); return nmode; } EXPORT_SYMBOL(drm_mode_duplicate); /** * drm_mode_equal - test modes for equality * @mode1: first mode * @mode2: second mode * * LOCKING: * None. * * Check to see if @mode1 and @mode2 are equivalent. * * RETURNS: * True if the modes are equal, false otherwise. */ bool drm_mode_equal(struct drm_display_mode *mode1, struct drm_display_mode *mode2) { /* do clock check convert to PICOS so fb modes get matched * the same */ if (mode1->clock && mode2->clock) { if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock)) return false; } else if (mode1->clock != mode2->clock) return false; if (mode1->hdisplay == mode2->hdisplay && mode1->hsync_start == mode2->hsync_start && mode1->hsync_end == mode2->hsync_end && mode1->htotal == mode2->htotal && mode1->hskew == mode2->hskew && mode1->vdisplay == mode2->vdisplay && mode1->vsync_start == mode2->vsync_start && mode1->vsync_end == mode2->vsync_end && mode1->vtotal == mode2->vtotal && mode1->vscan == mode2->vscan && mode1->flags == mode2->flags) return true; return false; } EXPORT_SYMBOL(drm_mode_equal); /** * drm_mode_validate_size - make sure modes adhere to size constraints * @dev: DRM device * @mode_list: list of modes to check * @maxX: maximum width * @maxY: maximum height * @maxPitch: max pitch * * LOCKING: * Caller must hold a lock protecting @mode_list. * * The DRM device (@dev) has size and pitch limits. Here we validate the * modes we probed for @dev against those limits and set their status as * necessary. */ void drm_mode_validate_size(struct drm_device *dev, struct list_head *mode_list, int maxX, int maxY, int maxPitch) { struct drm_display_mode *mode; list_for_each_entry(mode, mode_list, head) { if (maxPitch > 0 && mode->hdisplay > maxPitch) mode->status = MODE_BAD_WIDTH; if (maxX > 0 && mode->hdisplay > maxX) mode->status = MODE_VIRTUAL_X; if (maxY > 0 && mode->vdisplay > maxY) mode->status = MODE_VIRTUAL_Y; } } EXPORT_SYMBOL(drm_mode_validate_size); /** * drm_mode_validate_clocks - validate modes against clock limits * @dev: DRM device * @mode_list: list of modes to check * @min: minimum clock rate array * @max: maximum clock rate array * @n_ranges: number of clock ranges (size of arrays) * * LOCKING: * Caller must hold a lock protecting @mode_list. * * Some code may need to check a mode list against the clock limits of the * device in question. This function walks the mode list, testing to make * sure each mode falls within a given range (defined by @min and @max * arrays) and sets @mode->status as needed. */ void drm_mode_validate_clocks(struct drm_device *dev, struct list_head *mode_list, int *min, int *max, int n_ranges) { struct drm_display_mode *mode; int i; list_for_each_entry(mode, mode_list, head) { bool good = false; for (i = 0; i < n_ranges; i++) { if (mode->clock >= min[i] && mode->clock <= max[i]) { good = true; break; } } if (!good) mode->status = MODE_CLOCK_RANGE; } } EXPORT_SYMBOL(drm_mode_validate_clocks); /** * drm_mode_prune_invalid - remove invalid modes from mode list * @dev: DRM device * @mode_list: list of modes to check * @verbose: be verbose about it * * LOCKING: * Caller must hold a lock protecting @mode_list. * * Once mode list generation is complete, a caller can use this routine to * remove invalid modes from a mode list. If any of the modes have a * status other than %MODE_OK, they are removed from @mode_list and freed. */ void drm_mode_prune_invalid(struct drm_device *dev, struct list_head *mode_list, bool verbose) { struct drm_display_mode *mode, *t; list_for_each_entry_safe(mode, t, mode_list, head) { if (mode->status != MODE_OK) { list_del(&mode->head); if (verbose) { drm_mode_debug_printmodeline(mode); DRM_DEBUG_KMS("Not using %s mode %d\n", mode->name, mode->status); } drm_mode_destroy(dev, mode); } } } EXPORT_SYMBOL(drm_mode_prune_invalid); /** * drm_mode_compare - compare modes for favorability * @priv: unused * @lh_a: list_head for first mode * @lh_b: list_head for second mode * * LOCKING: * None. * * Compare two modes, given by @lh_a and @lh_b, returning a value indicating * which is better. * * RETURNS: * Negative if @lh_a is better than @lh_b, zero if they're equivalent, or * positive if @lh_b is better than @lh_a. */ static int drm_mode_compare(void *priv, struct list_head *lh_a, struct list_head *lh_b) { struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head); struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head); int diff; diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) - ((a->type & DRM_MODE_TYPE_PREFERRED) != 0); if (diff) return diff; diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay; if (diff) return diff; diff = b->clock - a->clock; return diff; } /** * drm_mode_sort - sort mode list * @mode_list: list to sort * * LOCKING: * Caller must hold a lock protecting @mode_list. * * Sort @mode_list by favorability, putting good modes first. */ void drm_mode_sort(struct list_head *mode_list) { list_sort(NULL, mode_list, drm_mode_compare); } EXPORT_SYMBOL(drm_mode_sort); /** * drm_mode_connector_list_update - update the mode list for the connector * @connector: the connector to update * * LOCKING: * Caller must hold a lock protecting @mode_list. * * This moves the modes from the @connector probed_modes list * to the actual mode list. It compares the probed mode against the current * list and only adds different modes. All modes unverified after this point * will be removed by the prune invalid modes. */ void drm_mode_connector_list_update(struct drm_connector *connector) { struct drm_display_mode *mode; struct drm_display_mode *pmode, *pt; int found_it; list_for_each_entry_safe(pmode, pt, &connector->probed_modes, head) { found_it = 0; /* go through current modes checking for the new probed mode */ list_for_each_entry(mode, &connector->modes, head) { if (drm_mode_equal(pmode, mode)) { found_it = 1; /* if equal delete the probed mode */ mode->status = pmode->status; /* Merge type bits together */ mode->type |= pmode->type; list_del(&pmode->head); drm_mode_destroy(connector->dev, pmode); break; } } if (!found_it) { list_move_tail(&pmode->head, &connector->modes); } } } EXPORT_SYMBOL(drm_mode_connector_list_update);