/* * Some low level IO code, and hacks for various block layer limitations * * Copyright 2010, 2011 Kent Overstreet * Copyright 2012 Google, Inc. */ #include "bcache.h" #include "bset.h" #include "debug.h" #include static void bch_bi_idx_hack_endio(struct bio *bio, int error) { struct bio *p = bio->bi_private; bio_endio(p, error); bio_put(bio); } static void bch_generic_make_request_hack(struct bio *bio) { if (bio->bi_iter.bi_idx) { struct bio_vec bv; struct bvec_iter iter; struct bio *clone = bio_alloc(GFP_NOIO, bio_segments(bio)); bio_for_each_segment(bv, bio, iter) clone->bi_io_vec[clone->bi_vcnt++] = bv; clone->bi_iter.bi_sector = bio->bi_iter.bi_sector; clone->bi_bdev = bio->bi_bdev; clone->bi_rw = bio->bi_rw; clone->bi_vcnt = bio_segments(bio); clone->bi_iter.bi_size = bio->bi_iter.bi_size; clone->bi_private = bio; clone->bi_end_io = bch_bi_idx_hack_endio; bio = clone; } /* * Hack, since drivers that clone bios clone up to bi_max_vecs, but our * bios might have had more than that (before we split them per device * limitations). * * To be taken out once immutable bvec stuff is in. */ bio->bi_max_vecs = bio->bi_vcnt; generic_make_request(bio); } /** * bch_bio_split - split a bio * @bio: bio to split * @sectors: number of sectors to split from the front of @bio * @gfp: gfp mask * @bs: bio set to allocate from * * Allocates and returns a new bio which represents @sectors from the start of * @bio, and updates @bio to represent the remaining sectors. * * If bio_sectors(@bio) was less than or equal to @sectors, returns @bio * unchanged. * * The newly allocated bio will point to @bio's bi_io_vec, if the split was on a * bvec boundry; it is the caller's responsibility to ensure that @bio is not * freed before the split. */ struct bio *bch_bio_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs) { unsigned vcnt = 0, nbytes = sectors << 9; struct bio_vec bv; struct bvec_iter iter; struct bio *ret = NULL; BUG_ON(sectors <= 0); if (sectors >= bio_sectors(bio)) return bio; if (bio->bi_rw & REQ_DISCARD) { ret = bio_alloc_bioset(gfp, 1, bs); if (!ret) return NULL; goto out; } bio_for_each_segment(bv, bio, iter) { vcnt++; if (nbytes <= bv.bv_len) break; nbytes -= bv.bv_len; } ret = bio_alloc_bioset(gfp, vcnt, bs); if (!ret) return NULL; bio_for_each_segment(bv, bio, iter) { ret->bi_io_vec[ret->bi_vcnt++] = bv; if (ret->bi_vcnt == vcnt) break; } ret->bi_io_vec[ret->bi_vcnt - 1].bv_len = nbytes; out: ret->bi_bdev = bio->bi_bdev; ret->bi_iter.bi_sector = bio->bi_iter.bi_sector; ret->bi_iter.bi_size = sectors << 9; ret->bi_rw = bio->bi_rw; if (bio_integrity(bio)) { if (bio_integrity_clone(ret, bio, gfp)) { bio_put(ret); return NULL; } bio_integrity_trim(ret, 0, bio_sectors(ret)); } bio_advance(bio, ret->bi_iter.bi_size); return ret; } static unsigned bch_bio_max_sectors(struct bio *bio) { unsigned ret = bio_sectors(bio); struct request_queue *q = bdev_get_queue(bio->bi_bdev); unsigned max_segments = min_t(unsigned, BIO_MAX_PAGES, queue_max_segments(q)); if (bio->bi_rw & REQ_DISCARD) return min(ret, q->limits.max_discard_sectors); if (bio_segments(bio) > max_segments || q->merge_bvec_fn) { struct bio_vec bv; struct bvec_iter iter; unsigned seg = 0; ret = 0; bio_for_each_segment(bv, bio, iter) { struct bvec_merge_data bvm = { .bi_bdev = bio->bi_bdev, .bi_sector = bio->bi_iter.bi_sector, .bi_size = ret << 9, .bi_rw = bio->bi_rw, }; if (seg == max_segments) break; if (q->merge_bvec_fn && q->merge_bvec_fn(q, &bvm, &bv) < (int) bv.bv_len) break; seg++; ret += bv.bv_len >> 9; } } ret = min(ret, queue_max_sectors(q)); WARN_ON(!ret); ret = max_t(int, ret, bio_iovec(bio).bv_len >> 9); return ret; } static void bch_bio_submit_split_done(struct closure *cl) { struct bio_split_hook *s = container_of(cl, struct bio_split_hook, cl); s->bio->bi_end_io = s->bi_end_io; s->bio->bi_private = s->bi_private; bio_endio(s->bio, 0); closure_debug_destroy(&s->cl); mempool_free(s, s->p->bio_split_hook); } static void bch_bio_submit_split_endio(struct bio *bio, int error) { struct closure *cl = bio->bi_private; struct bio_split_hook *s = container_of(cl, struct bio_split_hook, cl); if (error) clear_bit(BIO_UPTODATE, &s->bio->bi_flags); bio_put(bio); closure_put(cl); } void bch_generic_make_request(struct bio *bio, struct bio_split_pool *p) { struct bio_split_hook *s; struct bio *n; if (!bio_has_data(bio) && !(bio->bi_rw & REQ_DISCARD)) goto submit; if (bio_sectors(bio) <= bch_bio_max_sectors(bio)) goto submit; s = mempool_alloc(p->bio_split_hook, GFP_NOIO); closure_init(&s->cl, NULL); s->bio = bio; s->p = p; s->bi_end_io = bio->bi_end_io; s->bi_private = bio->bi_private; bio_get(bio); do { n = bch_bio_split(bio, bch_bio_max_sectors(bio), GFP_NOIO, s->p->bio_split); n->bi_end_io = bch_bio_submit_split_endio; n->bi_private = &s->cl; closure_get(&s->cl); bch_generic_make_request_hack(n); } while (n != bio); continue_at(&s->cl, bch_bio_submit_split_done, NULL); submit: bch_generic_make_request_hack(bio); } /* Bios with headers */ void bch_bbio_free(struct bio *bio, struct cache_set *c) { struct bbio *b = container_of(bio, struct bbio, bio); mempool_free(b, c->bio_meta); } struct bio *bch_bbio_alloc(struct cache_set *c) { struct bbio *b = mempool_alloc(c->bio_meta, GFP_NOIO); struct bio *bio = &b->bio; bio_init(bio); bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET; bio->bi_max_vecs = bucket_pages(c); bio->bi_io_vec = bio->bi_inline_vecs; return bio; } void __bch_submit_bbio(struct bio *bio, struct cache_set *c) { struct bbio *b = container_of(bio, struct bbio, bio); bio->bi_iter.bi_sector = PTR_OFFSET(&b->key, 0); bio->bi_bdev = PTR_CACHE(c, &b->key, 0)->bdev; b->submit_time_us = local_clock_us(); closure_bio_submit(bio, bio->bi_private, PTR_CACHE(c, &b->key, 0)); } void bch_submit_bbio(struct bio *bio, struct cache_set *c, struct bkey *k, unsigned ptr) { struct bbio *b = container_of(bio, struct bbio, bio); bch_bkey_copy_single_ptr(&b->key, k, ptr); __bch_submit_bbio(bio, c); } /* IO errors */ void bch_count_io_errors(struct cache *ca, int error, const char *m) { /* * The halflife of an error is: * log2(1/2)/log2(127/128) * refresh ~= 88 * refresh */ if (ca->set->error_decay) { unsigned count = atomic_inc_return(&ca->io_count); while (count > ca->set->error_decay) { unsigned errors; unsigned old = count; unsigned new = count - ca->set->error_decay; /* * First we subtract refresh from count; each time we * succesfully do so, we rescale the errors once: */ count = atomic_cmpxchg(&ca->io_count, old, new); if (count == old) { count = new; errors = atomic_read(&ca->io_errors); do { old = errors; new = ((uint64_t) errors * 127) / 128; errors = atomic_cmpxchg(&ca->io_errors, old, new); } while (old != errors); } } } if (error) { char buf[BDEVNAME_SIZE]; unsigned errors = atomic_add_return(1 << IO_ERROR_SHIFT, &ca->io_errors); errors >>= IO_ERROR_SHIFT; if (errors < ca->set->error_limit) pr_err("%s: IO error on %s, recovering", bdevname(ca->bdev, buf), m); else bch_cache_set_error(ca->set, "%s: too many IO errors %s", bdevname(ca->bdev, buf), m); } } void bch_bbio_count_io_errors(struct cache_set *c, struct bio *bio, int error, const char *m) { struct bbio *b = container_of(bio, struct bbio, bio); struct cache *ca = PTR_CACHE(c, &b->key, 0); unsigned threshold = bio->bi_rw & REQ_WRITE ? c->congested_write_threshold_us : c->congested_read_threshold_us; if (threshold) { unsigned t = local_clock_us(); int us = t - b->submit_time_us; int congested = atomic_read(&c->congested); if (us > (int) threshold) { int ms = us / 1024; c->congested_last_us = t; ms = min(ms, CONGESTED_MAX + congested); atomic_sub(ms, &c->congested); } else if (congested < 0) atomic_inc(&c->congested); } bch_count_io_errors(ca, error, m); } void bch_bbio_endio(struct cache_set *c, struct bio *bio, int error, const char *m) { struct closure *cl = bio->bi_private; bch_bbio_count_io_errors(c, bio, error, m); bio_put(bio); closure_put(cl); }