// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) /* * Common eBPF ELF object loading operations. * * Copyright (C) 2013-2015 Alexei Starovoitov * Copyright (C) 2015 Wang Nan * Copyright (C) 2015 Huawei Inc. * Copyright (C) 2017 Nicira, Inc. * Copyright (C) 2019 Isovalent, Inc. */ #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libbpf.h" #include "bpf.h" #include "btf.h" #include "str_error.h" #include "libbpf_internal.h" #include "hashmap.h" #ifndef EM_BPF #define EM_BPF 247 #endif #ifndef BPF_FS_MAGIC #define BPF_FS_MAGIC 0xcafe4a11 #endif /* vsprintf() in __base_pr() uses nonliteral format string. It may break * compilation if user enables corresponding warning. Disable it explicitly. */ #pragma GCC diagnostic ignored "-Wformat-nonliteral" #define __printf(a, b) __attribute__((format(printf, a, b))) static int __base_pr(enum libbpf_print_level level, const char *format, va_list args) { if (level == LIBBPF_DEBUG) return 0; return vfprintf(stderr, format, args); } static libbpf_print_fn_t __libbpf_pr = __base_pr; libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) { libbpf_print_fn_t old_print_fn = __libbpf_pr; __libbpf_pr = fn; return old_print_fn; } __printf(2, 3) void libbpf_print(enum libbpf_print_level level, const char *format, ...) { va_list args; if (!__libbpf_pr) return; va_start(args, format); __libbpf_pr(level, format, args); va_end(args); } #define STRERR_BUFSIZE 128 #define CHECK_ERR(action, err, out) do { \ err = action; \ if (err) \ goto out; \ } while (0) /* Copied from tools/perf/util/util.h */ #ifndef zfree # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) #endif #ifndef zclose # define zclose(fd) ({ \ int ___err = 0; \ if ((fd) >= 0) \ ___err = close((fd)); \ fd = -1; \ ___err; }) #endif #ifdef HAVE_LIBELF_MMAP_SUPPORT # define LIBBPF_ELF_C_READ_MMAP ELF_C_READ_MMAP #else # define LIBBPF_ELF_C_READ_MMAP ELF_C_READ #endif static inline __u64 ptr_to_u64(const void *ptr) { return (__u64) (unsigned long) ptr; } struct bpf_capabilities { /* v4.14: kernel support for program & map names. */ __u32 name:1; /* v5.2: kernel support for global data sections. */ __u32 global_data:1; /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ __u32 btf_func:1; /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ __u32 btf_datasec:1; /* BPF_F_MMAPABLE is supported for arrays */ __u32 array_mmap:1; }; /* * bpf_prog should be a better name but it has been used in * linux/filter.h. */ struct bpf_program { /* Index in elf obj file, for relocation use. */ int idx; char *name; int prog_ifindex; char *section_name; /* section_name with / replaced by _; makes recursive pinning * in bpf_object__pin_programs easier */ char *pin_name; struct bpf_insn *insns; size_t insns_cnt, main_prog_cnt; enum bpf_prog_type type; struct reloc_desc { enum { RELO_LD64, RELO_CALL, RELO_DATA, } type; int insn_idx; int map_idx; int sym_off; } *reloc_desc; int nr_reloc; int log_level; struct { int nr; int *fds; } instances; bpf_program_prep_t preprocessor; struct bpf_object *obj; void *priv; bpf_program_clear_priv_t clear_priv; enum bpf_attach_type expected_attach_type; __u32 attach_btf_id; __u32 attach_prog_fd; void *func_info; __u32 func_info_rec_size; __u32 func_info_cnt; struct bpf_capabilities *caps; void *line_info; __u32 line_info_rec_size; __u32 line_info_cnt; __u32 prog_flags; }; enum libbpf_map_type { LIBBPF_MAP_UNSPEC, LIBBPF_MAP_DATA, LIBBPF_MAP_BSS, LIBBPF_MAP_RODATA, }; static const char * const libbpf_type_to_btf_name[] = { [LIBBPF_MAP_DATA] = ".data", [LIBBPF_MAP_BSS] = ".bss", [LIBBPF_MAP_RODATA] = ".rodata", }; struct bpf_map { int fd; char *name; int sec_idx; size_t sec_offset; int map_ifindex; int inner_map_fd; struct bpf_map_def def; __u32 btf_key_type_id; __u32 btf_value_type_id; void *priv; bpf_map_clear_priv_t clear_priv; enum libbpf_map_type libbpf_type; char *pin_path; bool pinned; bool reused; }; struct bpf_secdata { void *rodata; void *data; }; static LIST_HEAD(bpf_objects_list); struct bpf_object { char name[BPF_OBJ_NAME_LEN]; char license[64]; __u32 kern_version; struct bpf_program *programs; size_t nr_programs; struct bpf_map *maps; size_t nr_maps; size_t maps_cap; struct bpf_secdata sections; bool loaded; bool has_pseudo_calls; bool relaxed_core_relocs; /* * Information when doing elf related work. Only valid if fd * is valid. */ struct { int fd; const void *obj_buf; size_t obj_buf_sz; Elf *elf; GElf_Ehdr ehdr; Elf_Data *symbols; Elf_Data *data; Elf_Data *rodata; Elf_Data *bss; size_t strtabidx; struct { GElf_Shdr shdr; Elf_Data *data; } *reloc_sects; int nr_reloc_sects; int maps_shndx; int btf_maps_shndx; int text_shndx; int data_shndx; int rodata_shndx; int bss_shndx; } efile; /* * All loaded bpf_object is linked in a list, which is * hidden to caller. bpf_objects__ handlers deal with * all objects. */ struct list_head list; struct btf *btf; struct btf_ext *btf_ext; void *priv; bpf_object_clear_priv_t clear_priv; struct bpf_capabilities caps; char path[]; }; #define obj_elf_valid(o) ((o)->efile.elf) void bpf_program__unload(struct bpf_program *prog) { int i; if (!prog) return; /* * If the object is opened but the program was never loaded, * it is possible that prog->instances.nr == -1. */ if (prog->instances.nr > 0) { for (i = 0; i < prog->instances.nr; i++) zclose(prog->instances.fds[i]); } else if (prog->instances.nr != -1) { pr_warn("Internal error: instances.nr is %d\n", prog->instances.nr); } prog->instances.nr = -1; zfree(&prog->instances.fds); zfree(&prog->func_info); zfree(&prog->line_info); } static void bpf_program__exit(struct bpf_program *prog) { if (!prog) return; if (prog->clear_priv) prog->clear_priv(prog, prog->priv); prog->priv = NULL; prog->clear_priv = NULL; bpf_program__unload(prog); zfree(&prog->name); zfree(&prog->section_name); zfree(&prog->pin_name); zfree(&prog->insns); zfree(&prog->reloc_desc); prog->nr_reloc = 0; prog->insns_cnt = 0; prog->idx = -1; } static char *__bpf_program__pin_name(struct bpf_program *prog) { char *name, *p; name = p = strdup(prog->section_name); while ((p = strchr(p, '/'))) *p = '_'; return name; } static int bpf_program__init(void *data, size_t size, char *section_name, int idx, struct bpf_program *prog) { const size_t bpf_insn_sz = sizeof(struct bpf_insn); if (size == 0 || size % bpf_insn_sz) { pr_warn("corrupted section '%s', size: %zu\n", section_name, size); return -EINVAL; } memset(prog, 0, sizeof(*prog)); prog->section_name = strdup(section_name); if (!prog->section_name) { pr_warn("failed to alloc name for prog under section(%d) %s\n", idx, section_name); goto errout; } prog->pin_name = __bpf_program__pin_name(prog); if (!prog->pin_name) { pr_warn("failed to alloc pin name for prog under section(%d) %s\n", idx, section_name); goto errout; } prog->insns = malloc(size); if (!prog->insns) { pr_warn("failed to alloc insns for prog under section %s\n", section_name); goto errout; } prog->insns_cnt = size / bpf_insn_sz; memcpy(prog->insns, data, size); prog->idx = idx; prog->instances.fds = NULL; prog->instances.nr = -1; prog->type = BPF_PROG_TYPE_UNSPEC; return 0; errout: bpf_program__exit(prog); return -ENOMEM; } static int bpf_object__add_program(struct bpf_object *obj, void *data, size_t size, char *section_name, int idx) { struct bpf_program prog, *progs; int nr_progs, err; err = bpf_program__init(data, size, section_name, idx, &prog); if (err) return err; prog.caps = &obj->caps; progs = obj->programs; nr_progs = obj->nr_programs; progs = reallocarray(progs, nr_progs + 1, sizeof(progs[0])); if (!progs) { /* * In this case the original obj->programs * is still valid, so don't need special treat for * bpf_close_object(). */ pr_warn("failed to alloc a new program under section '%s'\n", section_name); bpf_program__exit(&prog); return -ENOMEM; } pr_debug("found program %s\n", prog.section_name); obj->programs = progs; obj->nr_programs = nr_progs + 1; prog.obj = obj; progs[nr_progs] = prog; return 0; } static int bpf_object__init_prog_names(struct bpf_object *obj) { Elf_Data *symbols = obj->efile.symbols; struct bpf_program *prog; size_t pi, si; for (pi = 0; pi < obj->nr_programs; pi++) { const char *name = NULL; prog = &obj->programs[pi]; for (si = 0; si < symbols->d_size / sizeof(GElf_Sym) && !name; si++) { GElf_Sym sym; if (!gelf_getsym(symbols, si, &sym)) continue; if (sym.st_shndx != prog->idx) continue; if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL) continue; name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, sym.st_name); if (!name) { pr_warn("failed to get sym name string for prog %s\n", prog->section_name); return -LIBBPF_ERRNO__LIBELF; } } if (!name && prog->idx == obj->efile.text_shndx) name = ".text"; if (!name) { pr_warn("failed to find sym for prog %s\n", prog->section_name); return -EINVAL; } prog->name = strdup(name); if (!prog->name) { pr_warn("failed to allocate memory for prog sym %s\n", name); return -ENOMEM; } } return 0; } static __u32 get_kernel_version(void) { __u32 major, minor, patch; struct utsname info; uname(&info); if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) return 0; return KERNEL_VERSION(major, minor, patch); } static struct bpf_object *bpf_object__new(const char *path, const void *obj_buf, size_t obj_buf_sz, const char *obj_name) { struct bpf_object *obj; char *end; obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); if (!obj) { pr_warn("alloc memory failed for %s\n", path); return ERR_PTR(-ENOMEM); } strcpy(obj->path, path); if (obj_name) { strncpy(obj->name, obj_name, sizeof(obj->name) - 1); obj->name[sizeof(obj->name) - 1] = 0; } else { /* Using basename() GNU version which doesn't modify arg. */ strncpy(obj->name, basename((void *)path), sizeof(obj->name) - 1); end = strchr(obj->name, '.'); if (end) *end = 0; } obj->efile.fd = -1; /* * Caller of this function should also call * bpf_object__elf_finish() after data collection to return * obj_buf to user. If not, we should duplicate the buffer to * avoid user freeing them before elf finish. */ obj->efile.obj_buf = obj_buf; obj->efile.obj_buf_sz = obj_buf_sz; obj->efile.maps_shndx = -1; obj->efile.btf_maps_shndx = -1; obj->efile.data_shndx = -1; obj->efile.rodata_shndx = -1; obj->efile.bss_shndx = -1; obj->kern_version = get_kernel_version(); obj->loaded = false; INIT_LIST_HEAD(&obj->list); list_add(&obj->list, &bpf_objects_list); return obj; } static void bpf_object__elf_finish(struct bpf_object *obj) { if (!obj_elf_valid(obj)) return; if (obj->efile.elf) { elf_end(obj->efile.elf); obj->efile.elf = NULL; } obj->efile.symbols = NULL; obj->efile.data = NULL; obj->efile.rodata = NULL; obj->efile.bss = NULL; zfree(&obj->efile.reloc_sects); obj->efile.nr_reloc_sects = 0; zclose(obj->efile.fd); obj->efile.obj_buf = NULL; obj->efile.obj_buf_sz = 0; } static int bpf_object__elf_init(struct bpf_object *obj) { int err = 0; GElf_Ehdr *ep; if (obj_elf_valid(obj)) { pr_warn("elf init: internal error\n"); return -LIBBPF_ERRNO__LIBELF; } if (obj->efile.obj_buf_sz > 0) { /* * obj_buf should have been validated by * bpf_object__open_buffer(). */ obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); } else { obj->efile.fd = open(obj->path, O_RDONLY); if (obj->efile.fd < 0) { char errmsg[STRERR_BUFSIZE], *cp; err = -errno; cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); pr_warn("failed to open %s: %s\n", obj->path, cp); return err; } obj->efile.elf = elf_begin(obj->efile.fd, LIBBPF_ELF_C_READ_MMAP, NULL); } if (!obj->efile.elf) { pr_warn("failed to open %s as ELF file\n", obj->path); err = -LIBBPF_ERRNO__LIBELF; goto errout; } if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { pr_warn("failed to get EHDR from %s\n", obj->path); err = -LIBBPF_ERRNO__FORMAT; goto errout; } ep = &obj->efile.ehdr; /* Old LLVM set e_machine to EM_NONE */ if (ep->e_type != ET_REL || (ep->e_machine && ep->e_machine != EM_BPF)) { pr_warn("%s is not an eBPF object file\n", obj->path); err = -LIBBPF_ERRNO__FORMAT; goto errout; } return 0; errout: bpf_object__elf_finish(obj); return err; } static int bpf_object__check_endianness(struct bpf_object *obj) { #if __BYTE_ORDER == __LITTLE_ENDIAN if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) return 0; #elif __BYTE_ORDER == __BIG_ENDIAN if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) return 0; #else # error "Unrecognized __BYTE_ORDER__" #endif pr_warn("endianness mismatch.\n"); return -LIBBPF_ERRNO__ENDIAN; } static int bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) { memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); pr_debug("license of %s is %s\n", obj->path, obj->license); return 0; } static int bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) { __u32 kver; if (size != sizeof(kver)) { pr_warn("invalid kver section in %s\n", obj->path); return -LIBBPF_ERRNO__FORMAT; } memcpy(&kver, data, sizeof(kver)); obj->kern_version = kver; pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); return 0; } static int compare_bpf_map(const void *_a, const void *_b) { const struct bpf_map *a = _a; const struct bpf_map *b = _b; if (a->sec_idx != b->sec_idx) return a->sec_idx - b->sec_idx; return a->sec_offset - b->sec_offset; } static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) { if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || type == BPF_MAP_TYPE_HASH_OF_MAPS) return true; return false; } static int bpf_object_search_section_size(const struct bpf_object *obj, const char *name, size_t *d_size) { const GElf_Ehdr *ep = &obj->efile.ehdr; Elf *elf = obj->efile.elf; Elf_Scn *scn = NULL; int idx = 0; while ((scn = elf_nextscn(elf, scn)) != NULL) { const char *sec_name; Elf_Data *data; GElf_Shdr sh; idx++; if (gelf_getshdr(scn, &sh) != &sh) { pr_warn("failed to get section(%d) header from %s\n", idx, obj->path); return -EIO; } sec_name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name); if (!sec_name) { pr_warn("failed to get section(%d) name from %s\n", idx, obj->path); return -EIO; } if (strcmp(name, sec_name)) continue; data = elf_getdata(scn, 0); if (!data) { pr_warn("failed to get section(%d) data from %s(%s)\n", idx, name, obj->path); return -EIO; } *d_size = data->d_size; return 0; } return -ENOENT; } int bpf_object__section_size(const struct bpf_object *obj, const char *name, __u32 *size) { int ret = -ENOENT; size_t d_size; *size = 0; if (!name) { return -EINVAL; } else if (!strcmp(name, ".data")) { if (obj->efile.data) *size = obj->efile.data->d_size; } else if (!strcmp(name, ".bss")) { if (obj->efile.bss) *size = obj->efile.bss->d_size; } else if (!strcmp(name, ".rodata")) { if (obj->efile.rodata) *size = obj->efile.rodata->d_size; } else { ret = bpf_object_search_section_size(obj, name, &d_size); if (!ret) *size = d_size; } return *size ? 0 : ret; } int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, __u32 *off) { Elf_Data *symbols = obj->efile.symbols; const char *sname; size_t si; if (!name || !off) return -EINVAL; for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { GElf_Sym sym; if (!gelf_getsym(symbols, si, &sym)) continue; if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || GELF_ST_TYPE(sym.st_info) != STT_OBJECT) continue; sname = elf_strptr(obj->efile.elf, obj->efile.strtabidx, sym.st_name); if (!sname) { pr_warn("failed to get sym name string for var %s\n", name); return -EIO; } if (strcmp(name, sname) == 0) { *off = sym.st_value; return 0; } } return -ENOENT; } static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) { struct bpf_map *new_maps; size_t new_cap; int i; if (obj->nr_maps < obj->maps_cap) return &obj->maps[obj->nr_maps++]; new_cap = max((size_t)4, obj->maps_cap * 3 / 2); new_maps = realloc(obj->maps, new_cap * sizeof(*obj->maps)); if (!new_maps) { pr_warn("alloc maps for object failed\n"); return ERR_PTR(-ENOMEM); } obj->maps_cap = new_cap; obj->maps = new_maps; /* zero out new maps */ memset(obj->maps + obj->nr_maps, 0, (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); /* * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) * when failure (zclose won't close negative fd)). */ for (i = obj->nr_maps; i < obj->maps_cap; i++) { obj->maps[i].fd = -1; obj->maps[i].inner_map_fd = -1; } return &obj->maps[obj->nr_maps++]; } static int bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, int sec_idx, Elf_Data *data, void **data_buff) { char map_name[BPF_OBJ_NAME_LEN]; struct bpf_map_def *def; struct bpf_map *map; map = bpf_object__add_map(obj); if (IS_ERR(map)) return PTR_ERR(map); map->libbpf_type = type; map->sec_idx = sec_idx; map->sec_offset = 0; snprintf(map_name, sizeof(map_name), "%.8s%.7s", obj->name, libbpf_type_to_btf_name[type]); map->name = strdup(map_name); if (!map->name) { pr_warn("failed to alloc map name\n"); return -ENOMEM; } def = &map->def; def->type = BPF_MAP_TYPE_ARRAY; def->key_size = sizeof(int); def->value_size = data->d_size; def->max_entries = 1; def->map_flags = type == LIBBPF_MAP_RODATA ? BPF_F_RDONLY_PROG : 0; if (obj->caps.array_mmap) def->map_flags |= BPF_F_MMAPABLE; pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", map_name, map->sec_idx, map->sec_offset, def->map_flags); if (data_buff) { *data_buff = malloc(data->d_size); if (!*data_buff) { zfree(&map->name); pr_warn("failed to alloc map content buffer\n"); return -ENOMEM; } memcpy(*data_buff, data->d_buf, data->d_size); } pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); return 0; } static int bpf_object__init_global_data_maps(struct bpf_object *obj) { int err; if (!obj->caps.global_data) return 0; /* * Populate obj->maps with libbpf internal maps. */ if (obj->efile.data_shndx >= 0) { err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, obj->efile.data_shndx, obj->efile.data, &obj->sections.data); if (err) return err; } if (obj->efile.rodata_shndx >= 0) { err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, obj->efile.rodata_shndx, obj->efile.rodata, &obj->sections.rodata); if (err) return err; } if (obj->efile.bss_shndx >= 0) { err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, obj->efile.bss_shndx, obj->efile.bss, NULL); if (err) return err; } return 0; } static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) { Elf_Data *symbols = obj->efile.symbols; int i, map_def_sz = 0, nr_maps = 0, nr_syms; Elf_Data *data = NULL; Elf_Scn *scn; if (obj->efile.maps_shndx < 0) return 0; if (!symbols) return -EINVAL; scn = elf_getscn(obj->efile.elf, obj->efile.maps_shndx); if (scn) data = elf_getdata(scn, NULL); if (!scn || !data) { pr_warn("failed to get Elf_Data from map section %d\n", obj->efile.maps_shndx); return -EINVAL; } /* * Count number of maps. Each map has a name. * Array of maps is not supported: only the first element is * considered. * * TODO: Detect array of map and report error. */ nr_syms = symbols->d_size / sizeof(GElf_Sym); for (i = 0; i < nr_syms; i++) { GElf_Sym sym; if (!gelf_getsym(symbols, i, &sym)) continue; if (sym.st_shndx != obj->efile.maps_shndx) continue; nr_maps++; } /* Assume equally sized map definitions */ pr_debug("maps in %s: %d maps in %zd bytes\n", obj->path, nr_maps, data->d_size); if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { pr_warn("unable to determine map definition size section %s, %d maps in %zd bytes\n", obj->path, nr_maps, data->d_size); return -EINVAL; } map_def_sz = data->d_size / nr_maps; /* Fill obj->maps using data in "maps" section. */ for (i = 0; i < nr_syms; i++) { GElf_Sym sym; const char *map_name; struct bpf_map_def *def; struct bpf_map *map; if (!gelf_getsym(symbols, i, &sym)) continue; if (sym.st_shndx != obj->efile.maps_shndx) continue; map = bpf_object__add_map(obj); if (IS_ERR(map)) return PTR_ERR(map); map_name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, sym.st_name); if (!map_name) { pr_warn("failed to get map #%d name sym string for obj %s\n", i, obj->path); return -LIBBPF_ERRNO__FORMAT; } map->libbpf_type = LIBBPF_MAP_UNSPEC; map->sec_idx = sym.st_shndx; map->sec_offset = sym.st_value; pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", map_name, map->sec_idx, map->sec_offset); if (sym.st_value + map_def_sz > data->d_size) { pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", obj->path, map_name); return -EINVAL; } map->name = strdup(map_name); if (!map->name) { pr_warn("failed to alloc map name\n"); return -ENOMEM; } pr_debug("map %d is \"%s\"\n", i, map->name); def = (struct bpf_map_def *)(data->d_buf + sym.st_value); /* * If the definition of the map in the object file fits in * bpf_map_def, copy it. Any extra fields in our version * of bpf_map_def will default to zero as a result of the * calloc above. */ if (map_def_sz <= sizeof(struct bpf_map_def)) { memcpy(&map->def, def, map_def_sz); } else { /* * Here the map structure being read is bigger than what * we expect, truncate if the excess bits are all zero. * If they are not zero, reject this map as * incompatible. */ char *b; for (b = ((char *)def) + sizeof(struct bpf_map_def); b < ((char *)def) + map_def_sz; b++) { if (*b != 0) { pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", obj->path, map_name); if (strict) return -EINVAL; } } memcpy(&map->def, def, sizeof(struct bpf_map_def)); } } return 0; } static const struct btf_type * skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) { const struct btf_type *t = btf__type_by_id(btf, id); if (res_id) *res_id = id; while (btf_is_mod(t) || btf_is_typedef(t)) { if (res_id) *res_id = t->type; t = btf__type_by_id(btf, t->type); } return t; } /* * Fetch integer attribute of BTF map definition. Such attributes are * represented using a pointer to an array, in which dimensionality of array * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF * type definition, while using only sizeof(void *) space in ELF data section. */ static bool get_map_field_int(const char *map_name, const struct btf *btf, const struct btf_type *def, const struct btf_member *m, __u32 *res) { const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); const char *name = btf__name_by_offset(btf, m->name_off); const struct btf_array *arr_info; const struct btf_type *arr_t; if (!btf_is_ptr(t)) { pr_warn("map '%s': attr '%s': expected PTR, got %u.\n", map_name, name, btf_kind(t)); return false; } arr_t = btf__type_by_id(btf, t->type); if (!arr_t) { pr_warn("map '%s': attr '%s': type [%u] not found.\n", map_name, name, t->type); return false; } if (!btf_is_array(arr_t)) { pr_warn("map '%s': attr '%s': expected ARRAY, got %u.\n", map_name, name, btf_kind(arr_t)); return false; } arr_info = btf_array(arr_t); *res = arr_info->nelems; return true; } static int build_map_pin_path(struct bpf_map *map, const char *path) { char buf[PATH_MAX]; int err, len; if (!path) path = "/sys/fs/bpf"; len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); if (len < 0) return -EINVAL; else if (len >= PATH_MAX) return -ENAMETOOLONG; err = bpf_map__set_pin_path(map, buf); if (err) return err; return 0; } static int bpf_object__init_user_btf_map(struct bpf_object *obj, const struct btf_type *sec, int var_idx, int sec_idx, const Elf_Data *data, bool strict, const char *pin_root_path) { const struct btf_type *var, *def, *t; const struct btf_var_secinfo *vi; const struct btf_var *var_extra; const struct btf_member *m; const char *map_name; struct bpf_map *map; int vlen, i; vi = btf_var_secinfos(sec) + var_idx; var = btf__type_by_id(obj->btf, vi->type); var_extra = btf_var(var); map_name = btf__name_by_offset(obj->btf, var->name_off); vlen = btf_vlen(var); if (map_name == NULL || map_name[0] == '\0') { pr_warn("map #%d: empty name.\n", var_idx); return -EINVAL; } if ((__u64)vi->offset + vi->size > data->d_size) { pr_warn("map '%s' BTF data is corrupted.\n", map_name); return -EINVAL; } if (!btf_is_var(var)) { pr_warn("map '%s': unexpected var kind %u.\n", map_name, btf_kind(var)); return -EINVAL; } if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && var_extra->linkage != BTF_VAR_STATIC) { pr_warn("map '%s': unsupported var linkage %u.\n", map_name, var_extra->linkage); return -EOPNOTSUPP; } def = skip_mods_and_typedefs(obj->btf, var->type, NULL); if (!btf_is_struct(def)) { pr_warn("map '%s': unexpected def kind %u.\n", map_name, btf_kind(var)); return -EINVAL; } if (def->size > vi->size) { pr_warn("map '%s': invalid def size.\n", map_name); return -EINVAL; } map = bpf_object__add_map(obj); if (IS_ERR(map)) return PTR_ERR(map); map->name = strdup(map_name); if (!map->name) { pr_warn("map '%s': failed to alloc map name.\n", map_name); return -ENOMEM; } map->libbpf_type = LIBBPF_MAP_UNSPEC; map->def.type = BPF_MAP_TYPE_UNSPEC; map->sec_idx = sec_idx; map->sec_offset = vi->offset; pr_debug("map '%s': at sec_idx %d, offset %zu.\n", map_name, map->sec_idx, map->sec_offset); vlen = btf_vlen(def); m = btf_members(def); for (i = 0; i < vlen; i++, m++) { const char *name = btf__name_by_offset(obj->btf, m->name_off); if (!name) { pr_warn("map '%s': invalid field #%d.\n", map_name, i); return -EINVAL; } if (strcmp(name, "type") == 0) { if (!get_map_field_int(map_name, obj->btf, def, m, &map->def.type)) return -EINVAL; pr_debug("map '%s': found type = %u.\n", map_name, map->def.type); } else if (strcmp(name, "max_entries") == 0) { if (!get_map_field_int(map_name, obj->btf, def, m, &map->def.max_entries)) return -EINVAL; pr_debug("map '%s': found max_entries = %u.\n", map_name, map->def.max_entries); } else if (strcmp(name, "map_flags") == 0) { if (!get_map_field_int(map_name, obj->btf, def, m, &map->def.map_flags)) return -EINVAL; pr_debug("map '%s': found map_flags = %u.\n", map_name, map->def.map_flags); } else if (strcmp(name, "key_size") == 0) { __u32 sz; if (!get_map_field_int(map_name, obj->btf, def, m, &sz)) return -EINVAL; pr_debug("map '%s': found key_size = %u.\n", map_name, sz); if (map->def.key_size && map->def.key_size != sz) { pr_warn("map '%s': conflicting key size %u != %u.\n", map_name, map->def.key_size, sz); return -EINVAL; } map->def.key_size = sz; } else if (strcmp(name, "key") == 0) { __s64 sz; t = btf__type_by_id(obj->btf, m->type); if (!t) { pr_warn("map '%s': key type [%d] not found.\n", map_name, m->type); return -EINVAL; } if (!btf_is_ptr(t)) { pr_warn("map '%s': key spec is not PTR: %u.\n", map_name, btf_kind(t)); return -EINVAL; } sz = btf__resolve_size(obj->btf, t->type); if (sz < 0) { pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", map_name, t->type, (ssize_t)sz); return sz; } pr_debug("map '%s': found key [%u], sz = %zd.\n", map_name, t->type, (ssize_t)sz); if (map->def.key_size && map->def.key_size != sz) { pr_warn("map '%s': conflicting key size %u != %zd.\n", map_name, map->def.key_size, (ssize_t)sz); return -EINVAL; } map->def.key_size = sz; map->btf_key_type_id = t->type; } else if (strcmp(name, "value_size") == 0) { __u32 sz; if (!get_map_field_int(map_name, obj->btf, def, m, &sz)) return -EINVAL; pr_debug("map '%s': found value_size = %u.\n", map_name, sz); if (map->def.value_size && map->def.value_size != sz) { pr_warn("map '%s': conflicting value size %u != %u.\n", map_name, map->def.value_size, sz); return -EINVAL; } map->def.value_size = sz; } else if (strcmp(name, "value") == 0) { __s64 sz; t = btf__type_by_id(obj->btf, m->type); if (!t) { pr_warn("map '%s': value type [%d] not found.\n", map_name, m->type); return -EINVAL; } if (!btf_is_ptr(t)) { pr_warn("map '%s': value spec is not PTR: %u.\n", map_name, btf_kind(t)); return -EINVAL; } sz = btf__resolve_size(obj->btf, t->type); if (sz < 0) { pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", map_name, t->type, (ssize_t)sz); return sz; } pr_debug("map '%s': found value [%u], sz = %zd.\n", map_name, t->type, (ssize_t)sz); if (map->def.value_size && map->def.value_size != sz) { pr_warn("map '%s': conflicting value size %u != %zd.\n", map_name, map->def.value_size, (ssize_t)sz); return -EINVAL; } map->def.value_size = sz; map->btf_value_type_id = t->type; } else if (strcmp(name, "pinning") == 0) { __u32 val; int err; if (!get_map_field_int(map_name, obj->btf, def, m, &val)) return -EINVAL; pr_debug("map '%s': found pinning = %u.\n", map_name, val); if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { pr_warn("map '%s': invalid pinning value %u.\n", map_name, val); return -EINVAL; } if (val == LIBBPF_PIN_BY_NAME) { err = build_map_pin_path(map, pin_root_path); if (err) { pr_warn("map '%s': couldn't build pin path.\n", map_name); return err; } } } else { if (strict) { pr_warn("map '%s': unknown field '%s'.\n", map_name, name); return -ENOTSUP; } pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); } } if (map->def.type == BPF_MAP_TYPE_UNSPEC) { pr_warn("map '%s': map type isn't specified.\n", map_name); return -EINVAL; } return 0; } static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, const char *pin_root_path) { const struct btf_type *sec = NULL; int nr_types, i, vlen, err; const struct btf_type *t; const char *name; Elf_Data *data; Elf_Scn *scn; if (obj->efile.btf_maps_shndx < 0) return 0; scn = elf_getscn(obj->efile.elf, obj->efile.btf_maps_shndx); if (scn) data = elf_getdata(scn, NULL); if (!scn || !data) { pr_warn("failed to get Elf_Data from map section %d (%s)\n", obj->efile.maps_shndx, MAPS_ELF_SEC); return -EINVAL; } nr_types = btf__get_nr_types(obj->btf); for (i = 1; i <= nr_types; i++) { t = btf__type_by_id(obj->btf, i); if (!btf_is_datasec(t)) continue; name = btf__name_by_offset(obj->btf, t->name_off); if (strcmp(name, MAPS_ELF_SEC) == 0) { sec = t; break; } } if (!sec) { pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); return -ENOENT; } vlen = btf_vlen(sec); for (i = 0; i < vlen; i++) { err = bpf_object__init_user_btf_map(obj, sec, i, obj->efile.btf_maps_shndx, data, strict, pin_root_path); if (err) return err; } return 0; } static int bpf_object__init_maps(struct bpf_object *obj, bool relaxed_maps, const char *pin_root_path) { bool strict = !relaxed_maps; int err; err = bpf_object__init_user_maps(obj, strict); if (err) return err; err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); if (err) return err; err = bpf_object__init_global_data_maps(obj); if (err) return err; if (obj->nr_maps) { qsort(obj->maps, obj->nr_maps, sizeof(obj->maps[0]), compare_bpf_map); } return 0; } static bool section_have_execinstr(struct bpf_object *obj, int idx) { Elf_Scn *scn; GElf_Shdr sh; scn = elf_getscn(obj->efile.elf, idx); if (!scn) return false; if (gelf_getshdr(scn, &sh) != &sh) return false; if (sh.sh_flags & SHF_EXECINSTR) return true; return false; } static void bpf_object__sanitize_btf(struct bpf_object *obj) { bool has_datasec = obj->caps.btf_datasec; bool has_func = obj->caps.btf_func; struct btf *btf = obj->btf; struct btf_type *t; int i, j, vlen; if (!obj->btf || (has_func && has_datasec)) return; for (i = 1; i <= btf__get_nr_types(btf); i++) { t = (struct btf_type *)btf__type_by_id(btf, i); if (!has_datasec && btf_is_var(t)) { /* replace VAR with INT */ t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); /* * using size = 1 is the safest choice, 4 will be too * big and cause kernel BTF validation failure if * original variable took less than 4 bytes */ t->size = 1; *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); } else if (!has_datasec && btf_is_datasec(t)) { /* replace DATASEC with STRUCT */ const struct btf_var_secinfo *v = btf_var_secinfos(t); struct btf_member *m = btf_members(t); struct btf_type *vt; char *name; name = (char *)btf__name_by_offset(btf, t->name_off); while (*name) { if (*name == '.') *name = '_'; name++; } vlen = btf_vlen(t); t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); for (j = 0; j < vlen; j++, v++, m++) { /* order of field assignments is important */ m->offset = v->offset * 8; m->type = v->type; /* preserve variable name as member name */ vt = (void *)btf__type_by_id(btf, v->type); m->name_off = vt->name_off; } } else if (!has_func && btf_is_func_proto(t)) { /* replace FUNC_PROTO with ENUM */ vlen = btf_vlen(t); t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); t->size = sizeof(__u32); /* kernel enforced */ } else if (!has_func && btf_is_func(t)) { /* replace FUNC with TYPEDEF */ t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); } } } static void bpf_object__sanitize_btf_ext(struct bpf_object *obj) { if (!obj->btf_ext) return; if (!obj->caps.btf_func) { btf_ext__free(obj->btf_ext); obj->btf_ext = NULL; } } static bool bpf_object__is_btf_mandatory(const struct bpf_object *obj) { return obj->efile.btf_maps_shndx >= 0; } static int bpf_object__init_btf(struct bpf_object *obj, Elf_Data *btf_data, Elf_Data *btf_ext_data) { bool btf_required = bpf_object__is_btf_mandatory(obj); int err = 0; if (btf_data) { obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); if (IS_ERR(obj->btf)) { pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); goto out; } err = btf__finalize_data(obj, obj->btf); if (err) { pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); goto out; } } if (btf_ext_data) { if (!obj->btf) { pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", BTF_EXT_ELF_SEC, BTF_ELF_SEC); goto out; } obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); if (IS_ERR(obj->btf_ext)) { pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); obj->btf_ext = NULL; goto out; } } out: if (err || IS_ERR(obj->btf)) { if (btf_required) err = err ? : PTR_ERR(obj->btf); else err = 0; if (!IS_ERR_OR_NULL(obj->btf)) btf__free(obj->btf); obj->btf = NULL; } if (btf_required && !obj->btf) { pr_warn("BTF is required, but is missing or corrupted.\n"); return err == 0 ? -ENOENT : err; } return 0; } static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) { int err = 0; if (!obj->btf) return 0; bpf_object__sanitize_btf(obj); bpf_object__sanitize_btf_ext(obj); err = btf__load(obj->btf); if (err) { pr_warn("Error loading %s into kernel: %d.\n", BTF_ELF_SEC, err); btf__free(obj->btf); obj->btf = NULL; /* btf_ext can't exist without btf, so free it as well */ if (obj->btf_ext) { btf_ext__free(obj->btf_ext); obj->btf_ext = NULL; } if (bpf_object__is_btf_mandatory(obj)) return err; } return 0; } static int bpf_object__elf_collect(struct bpf_object *obj, bool relaxed_maps, const char *pin_root_path) { Elf *elf = obj->efile.elf; GElf_Ehdr *ep = &obj->efile.ehdr; Elf_Data *btf_ext_data = NULL; Elf_Data *btf_data = NULL; Elf_Scn *scn = NULL; int idx = 0, err = 0; /* Elf is corrupted/truncated, avoid calling elf_strptr. */ if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) { pr_warn("failed to get e_shstrndx from %s\n", obj->path); return -LIBBPF_ERRNO__FORMAT; } while ((scn = elf_nextscn(elf, scn)) != NULL) { char *name; GElf_Shdr sh; Elf_Data *data; idx++; if (gelf_getshdr(scn, &sh) != &sh) { pr_warn("failed to get section(%d) header from %s\n", idx, obj->path); return -LIBBPF_ERRNO__FORMAT; } name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name); if (!name) { pr_warn("failed to get section(%d) name from %s\n", idx, obj->path); return -LIBBPF_ERRNO__FORMAT; } data = elf_getdata(scn, 0); if (!data) { pr_warn("failed to get section(%d) data from %s(%s)\n", idx, name, obj->path); return -LIBBPF_ERRNO__FORMAT; } pr_debug("section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", idx, name, (unsigned long)data->d_size, (int)sh.sh_link, (unsigned long)sh.sh_flags, (int)sh.sh_type); if (strcmp(name, "license") == 0) { err = bpf_object__init_license(obj, data->d_buf, data->d_size); if (err) return err; } else if (strcmp(name, "version") == 0) { err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); if (err) return err; } else if (strcmp(name, "maps") == 0) { obj->efile.maps_shndx = idx; } else if (strcmp(name, MAPS_ELF_SEC) == 0) { obj->efile.btf_maps_shndx = idx; } else if (strcmp(name, BTF_ELF_SEC) == 0) { btf_data = data; } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { btf_ext_data = data; } else if (sh.sh_type == SHT_SYMTAB) { if (obj->efile.symbols) { pr_warn("bpf: multiple SYMTAB in %s\n", obj->path); return -LIBBPF_ERRNO__FORMAT; } obj->efile.symbols = data; obj->efile.strtabidx = sh.sh_link; } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { if (sh.sh_flags & SHF_EXECINSTR) { if (strcmp(name, ".text") == 0) obj->efile.text_shndx = idx; err = bpf_object__add_program(obj, data->d_buf, data->d_size, name, idx); if (err) { char errmsg[STRERR_BUFSIZE]; char *cp; cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); pr_warn("failed to alloc program %s (%s): %s", name, obj->path, cp); return err; } } else if (strcmp(name, ".data") == 0) { obj->efile.data = data; obj->efile.data_shndx = idx; } else if (strcmp(name, ".rodata") == 0) { obj->efile.rodata = data; obj->efile.rodata_shndx = idx; } else { pr_debug("skip section(%d) %s\n", idx, name); } } else if (sh.sh_type == SHT_REL) { int nr_sects = obj->efile.nr_reloc_sects; void *sects = obj->efile.reloc_sects; int sec = sh.sh_info; /* points to other section */ /* Only do relo for section with exec instructions */ if (!section_have_execinstr(obj, sec)) { pr_debug("skip relo %s(%d) for section(%d)\n", name, idx, sec); continue; } sects = reallocarray(sects, nr_sects + 1, sizeof(*obj->efile.reloc_sects)); if (!sects) { pr_warn("reloc_sects realloc failed\n"); return -ENOMEM; } obj->efile.reloc_sects = sects; obj->efile.nr_reloc_sects++; obj->efile.reloc_sects[nr_sects].shdr = sh; obj->efile.reloc_sects[nr_sects].data = data; } else if (sh.sh_type == SHT_NOBITS && strcmp(name, ".bss") == 0) { obj->efile.bss = data; obj->efile.bss_shndx = idx; } else { pr_debug("skip section(%d) %s\n", idx, name); } } if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { pr_warn("Corrupted ELF file: index of strtab invalid\n"); return -LIBBPF_ERRNO__FORMAT; } err = bpf_object__init_btf(obj, btf_data, btf_ext_data); if (!err) err = bpf_object__init_maps(obj, relaxed_maps, pin_root_path); if (!err) err = bpf_object__sanitize_and_load_btf(obj); if (!err) err = bpf_object__init_prog_names(obj); return err; } static struct bpf_program * bpf_object__find_prog_by_idx(struct bpf_object *obj, int idx) { struct bpf_program *prog; size_t i; for (i = 0; i < obj->nr_programs; i++) { prog = &obj->programs[i]; if (prog->idx == idx) return prog; } return NULL; } struct bpf_program * bpf_object__find_program_by_title(const struct bpf_object *obj, const char *title) { struct bpf_program *pos; bpf_object__for_each_program(pos, obj) { if (pos->section_name && !strcmp(pos->section_name, title)) return pos; } return NULL; } static bool bpf_object__shndx_is_data(const struct bpf_object *obj, int shndx) { return shndx == obj->efile.data_shndx || shndx == obj->efile.bss_shndx || shndx == obj->efile.rodata_shndx; } static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, int shndx) { return shndx == obj->efile.maps_shndx || shndx == obj->efile.btf_maps_shndx; } static enum libbpf_map_type bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) { if (shndx == obj->efile.data_shndx) return LIBBPF_MAP_DATA; else if (shndx == obj->efile.bss_shndx) return LIBBPF_MAP_BSS; else if (shndx == obj->efile.rodata_shndx) return LIBBPF_MAP_RODATA; else return LIBBPF_MAP_UNSPEC; } static int bpf_program__record_reloc(struct bpf_program *prog, struct reloc_desc *reloc_desc, __u32 insn_idx, const char *name, const GElf_Sym *sym, const GElf_Rel *rel) { struct bpf_insn *insn = &prog->insns[insn_idx]; size_t map_idx, nr_maps = prog->obj->nr_maps; struct bpf_object *obj = prog->obj; __u32 shdr_idx = sym->st_shndx; enum libbpf_map_type type; struct bpf_map *map; /* sub-program call relocation */ if (insn->code == (BPF_JMP | BPF_CALL)) { if (insn->src_reg != BPF_PSEUDO_CALL) { pr_warn("incorrect bpf_call opcode\n"); return -LIBBPF_ERRNO__RELOC; } /* text_shndx can be 0, if no default "main" program exists */ if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { pr_warn("bad call relo against section %u\n", shdr_idx); return -LIBBPF_ERRNO__RELOC; } if (sym->st_value % 8) { pr_warn("bad call relo offset: %zu\n", (size_t)sym->st_value); return -LIBBPF_ERRNO__RELOC; } reloc_desc->type = RELO_CALL; reloc_desc->insn_idx = insn_idx; reloc_desc->sym_off = sym->st_value; obj->has_pseudo_calls = true; return 0; } if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) { pr_warn("invalid relo for insns[%d].code 0x%x\n", insn_idx, insn->code); return -LIBBPF_ERRNO__RELOC; } if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { pr_warn("invalid relo for \'%s\' in special section 0x%x; forgot to initialize global var?..\n", name, shdr_idx); return -LIBBPF_ERRNO__RELOC; } type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); /* generic map reference relocation */ if (type == LIBBPF_MAP_UNSPEC) { if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { pr_warn("bad map relo against section %u\n", shdr_idx); return -LIBBPF_ERRNO__RELOC; } for (map_idx = 0; map_idx < nr_maps; map_idx++) { map = &obj->maps[map_idx]; if (map->libbpf_type != type || map->sec_idx != sym->st_shndx || map->sec_offset != sym->st_value) continue; pr_debug("found map %zd (%s, sec %d, off %zu) for insn %u\n", map_idx, map->name, map->sec_idx, map->sec_offset, insn_idx); break; } if (map_idx >= nr_maps) { pr_warn("map relo failed to find map for sec %u, off %zu\n", shdr_idx, (size_t)sym->st_value); return -LIBBPF_ERRNO__RELOC; } reloc_desc->type = RELO_LD64; reloc_desc->insn_idx = insn_idx; reloc_desc->map_idx = map_idx; reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ return 0; } /* global data map relocation */ if (!bpf_object__shndx_is_data(obj, shdr_idx)) { pr_warn("bad data relo against section %u\n", shdr_idx); return -LIBBPF_ERRNO__RELOC; } if (!obj->caps.global_data) { pr_warn("relocation: kernel does not support global \'%s\' variable access in insns[%d]\n", name, insn_idx); return -LIBBPF_ERRNO__RELOC; } for (map_idx = 0; map_idx < nr_maps; map_idx++) { map = &obj->maps[map_idx]; if (map->libbpf_type != type) continue; pr_debug("found data map %zd (%s, sec %d, off %zu) for insn %u\n", map_idx, map->name, map->sec_idx, map->sec_offset, insn_idx); break; } if (map_idx >= nr_maps) { pr_warn("data relo failed to find map for sec %u\n", shdr_idx); return -LIBBPF_ERRNO__RELOC; } reloc_desc->type = RELO_DATA; reloc_desc->insn_idx = insn_idx; reloc_desc->map_idx = map_idx; reloc_desc->sym_off = sym->st_value; return 0; } static int bpf_program__collect_reloc(struct bpf_program *prog, GElf_Shdr *shdr, Elf_Data *data, struct bpf_object *obj) { Elf_Data *symbols = obj->efile.symbols; int err, i, nrels; pr_debug("collecting relocating info for: '%s'\n", prog->section_name); nrels = shdr->sh_size / shdr->sh_entsize; prog->reloc_desc = malloc(sizeof(*prog->reloc_desc) * nrels); if (!prog->reloc_desc) { pr_warn("failed to alloc memory in relocation\n"); return -ENOMEM; } prog->nr_reloc = nrels; for (i = 0; i < nrels; i++) { const char *name; __u32 insn_idx; GElf_Sym sym; GElf_Rel rel; if (!gelf_getrel(data, i, &rel)) { pr_warn("relocation: failed to get %d reloc\n", i); return -LIBBPF_ERRNO__FORMAT; } if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { pr_warn("relocation: symbol %"PRIx64" not found\n", GELF_R_SYM(rel.r_info)); return -LIBBPF_ERRNO__FORMAT; } if (rel.r_offset % sizeof(struct bpf_insn)) return -LIBBPF_ERRNO__FORMAT; insn_idx = rel.r_offset / sizeof(struct bpf_insn); name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, sym.st_name) ? : ""; pr_debug("relo for shdr %u, symb %zu, value %zu, type %d, bind %d, name %d (\'%s\'), insn %u\n", (__u32)sym.st_shndx, (size_t)GELF_R_SYM(rel.r_info), (size_t)sym.st_value, GELF_ST_TYPE(sym.st_info), GELF_ST_BIND(sym.st_info), sym.st_name, name, insn_idx); err = bpf_program__record_reloc(prog, &prog->reloc_desc[i], insn_idx, name, &sym, &rel); if (err) return err; } return 0; } static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) { struct bpf_map_def *def = &map->def; __u32 key_type_id = 0, value_type_id = 0; int ret; /* if it's BTF-defined map, we don't need to search for type IDs */ if (map->sec_idx == obj->efile.btf_maps_shndx) return 0; if (!bpf_map__is_internal(map)) { ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, def->value_size, &key_type_id, &value_type_id); } else { /* * LLVM annotates global data differently in BTF, that is, * only as '.data', '.bss' or '.rodata'. */ ret = btf__find_by_name(obj->btf, libbpf_type_to_btf_name[map->libbpf_type]); } if (ret < 0) return ret; map->btf_key_type_id = key_type_id; map->btf_value_type_id = bpf_map__is_internal(map) ? ret : value_type_id; return 0; } int bpf_map__reuse_fd(struct bpf_map *map, int fd) { struct bpf_map_info info = {}; __u32 len = sizeof(info); int new_fd, err; char *new_name; err = bpf_obj_get_info_by_fd(fd, &info, &len); if (err) return err; new_name = strdup(info.name); if (!new_name) return -errno; new_fd = open("/", O_RDONLY | O_CLOEXEC); if (new_fd < 0) { err = -errno; goto err_free_new_name; } new_fd = dup3(fd, new_fd, O_CLOEXEC); if (new_fd < 0) { err = -errno; goto err_close_new_fd; } err = zclose(map->fd); if (err) { err = -errno; goto err_close_new_fd; } free(map->name); map->fd = new_fd; map->name = new_name; map->def.type = info.type; map->def.key_size = info.key_size; map->def.value_size = info.value_size; map->def.max_entries = info.max_entries; map->def.map_flags = info.map_flags; map->btf_key_type_id = info.btf_key_type_id; map->btf_value_type_id = info.btf_value_type_id; map->reused = true; return 0; err_close_new_fd: close(new_fd); err_free_new_name: free(new_name); return err; } int bpf_map__resize(struct bpf_map *map, __u32 max_entries) { if (!map || !max_entries) return -EINVAL; /* If map already created, its attributes can't be changed. */ if (map->fd >= 0) return -EBUSY; map->def.max_entries = max_entries; return 0; } static int bpf_object__probe_name(struct bpf_object *obj) { struct bpf_load_program_attr attr; char *cp, errmsg[STRERR_BUFSIZE]; struct bpf_insn insns[] = { BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }; int ret; /* make sure basic loading works */ memset(&attr, 0, sizeof(attr)); attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; attr.insns = insns; attr.insns_cnt = ARRAY_SIZE(insns); attr.license = "GPL"; ret = bpf_load_program_xattr(&attr, NULL, 0); if (ret < 0) { cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); pr_warn("Error in %s():%s(%d). Couldn't load basic 'r0 = 0' BPF program.\n", __func__, cp, errno); return -errno; } close(ret); /* now try the same program, but with the name */ attr.name = "test"; ret = bpf_load_program_xattr(&attr, NULL, 0); if (ret >= 0) { obj->caps.name = 1; close(ret); } return 0; } static int bpf_object__probe_global_data(struct bpf_object *obj) { struct bpf_load_program_attr prg_attr; struct bpf_create_map_attr map_attr; char *cp, errmsg[STRERR_BUFSIZE]; struct bpf_insn insns[] = { BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }; int ret, map; memset(&map_attr, 0, sizeof(map_attr)); map_attr.map_type = BPF_MAP_TYPE_ARRAY; map_attr.key_size = sizeof(int); map_attr.value_size = 32; map_attr.max_entries = 1; map = bpf_create_map_xattr(&map_attr); if (map < 0) { cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", __func__, cp, errno); return -errno; } insns[0].imm = map; memset(&prg_attr, 0, sizeof(prg_attr)); prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; prg_attr.insns = insns; prg_attr.insns_cnt = ARRAY_SIZE(insns); prg_attr.license = "GPL"; ret = bpf_load_program_xattr(&prg_attr, NULL, 0); if (ret >= 0) { obj->caps.global_data = 1; close(ret); } close(map); return 0; } static int bpf_object__probe_btf_func(struct bpf_object *obj) { static const char strs[] = "\0int\0x\0a"; /* void x(int a) {} */ __u32 types[] = { /* int */ BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ /* FUNC_PROTO */ /* [2] */ BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), BTF_PARAM_ENC(7, 1), /* FUNC x */ /* [3] */ BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), }; int btf_fd; btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); if (btf_fd >= 0) { obj->caps.btf_func = 1; close(btf_fd); return 1; } return 0; } static int bpf_object__probe_btf_datasec(struct bpf_object *obj) { static const char strs[] = "\0x\0.data"; /* static int a; */ __u32 types[] = { /* int */ BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ /* VAR x */ /* [2] */ BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), BTF_VAR_STATIC, /* DATASEC val */ /* [3] */ BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), BTF_VAR_SECINFO_ENC(2, 0, 4), }; int btf_fd; btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); if (btf_fd >= 0) { obj->caps.btf_datasec = 1; close(btf_fd); return 1; } return 0; } static int bpf_object__probe_array_mmap(struct bpf_object *obj) { struct bpf_create_map_attr attr = { .map_type = BPF_MAP_TYPE_ARRAY, .map_flags = BPF_F_MMAPABLE, .key_size = sizeof(int), .value_size = sizeof(int), .max_entries = 1, }; int fd; fd = bpf_create_map_xattr(&attr); if (fd >= 0) { obj->caps.array_mmap = 1; close(fd); return 1; } return 0; } static int bpf_object__probe_caps(struct bpf_object *obj) { int (*probe_fn[])(struct bpf_object *obj) = { bpf_object__probe_name, bpf_object__probe_global_data, bpf_object__probe_btf_func, bpf_object__probe_btf_datasec, bpf_object__probe_array_mmap, }; int i, ret; for (i = 0; i < ARRAY_SIZE(probe_fn); i++) { ret = probe_fn[i](obj); if (ret < 0) pr_debug("Probe #%d failed with %d.\n", i, ret); } return 0; } static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) { struct bpf_map_info map_info = {}; char msg[STRERR_BUFSIZE]; __u32 map_info_len; map_info_len = sizeof(map_info); if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { pr_warn("failed to get map info for map FD %d: %s\n", map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); return false; } return (map_info.type == map->def.type && map_info.key_size == map->def.key_size && map_info.value_size == map->def.value_size && map_info.max_entries == map->def.max_entries && map_info.map_flags == map->def.map_flags); } static int bpf_object__reuse_map(struct bpf_map *map) { char *cp, errmsg[STRERR_BUFSIZE]; int err, pin_fd; pin_fd = bpf_obj_get(map->pin_path); if (pin_fd < 0) { err = -errno; if (err == -ENOENT) { pr_debug("found no pinned map to reuse at '%s'\n", map->pin_path); return 0; } cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); pr_warn("couldn't retrieve pinned map '%s': %s\n", map->pin_path, cp); return err; } if (!map_is_reuse_compat(map, pin_fd)) { pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", map->pin_path); close(pin_fd); return -EINVAL; } err = bpf_map__reuse_fd(map, pin_fd); if (err) { close(pin_fd); return err; } map->pinned = true; pr_debug("reused pinned map at '%s'\n", map->pin_path); return 0; } static int bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) { char *cp, errmsg[STRERR_BUFSIZE]; int err, zero = 0; __u8 *data; /* Nothing to do here since kernel already zero-initializes .bss map. */ if (map->libbpf_type == LIBBPF_MAP_BSS) return 0; data = map->libbpf_type == LIBBPF_MAP_DATA ? obj->sections.data : obj->sections.rodata; err = bpf_map_update_elem(map->fd, &zero, data, 0); /* Freeze .rodata map as read-only from syscall side. */ if (!err && map->libbpf_type == LIBBPF_MAP_RODATA) { err = bpf_map_freeze(map->fd); if (err) { cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); pr_warn("Error freezing map(%s) as read-only: %s\n", map->name, cp); err = 0; } } return err; } static int bpf_object__create_maps(struct bpf_object *obj) { struct bpf_create_map_attr create_attr = {}; int nr_cpus = 0; unsigned int i; int err; for (i = 0; i < obj->nr_maps; i++) { struct bpf_map *map = &obj->maps[i]; struct bpf_map_def *def = &map->def; char *cp, errmsg[STRERR_BUFSIZE]; int *pfd = &map->fd; if (map->pin_path) { err = bpf_object__reuse_map(map); if (err) { pr_warn("error reusing pinned map %s\n", map->name); return err; } } if (map->fd >= 0) { pr_debug("skip map create (preset) %s: fd=%d\n", map->name, map->fd); continue; } if (obj->caps.name) create_attr.name = map->name; create_attr.map_ifindex = map->map_ifindex; create_attr.map_type = def->type; create_attr.map_flags = def->map_flags; create_attr.key_size = def->key_size; create_attr.value_size = def->value_size; if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { if (!nr_cpus) nr_cpus = libbpf_num_possible_cpus(); if (nr_cpus < 0) { pr_warn("failed to determine number of system CPUs: %d\n", nr_cpus); err = nr_cpus; goto err_out; } pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); create_attr.max_entries = nr_cpus; } else { create_attr.max_entries = def->max_entries; } create_attr.btf_fd = 0; create_attr.btf_key_type_id = 0; create_attr.btf_value_type_id = 0; if (bpf_map_type__is_map_in_map(def->type) && map->inner_map_fd >= 0) create_attr.inner_map_fd = map->inner_map_fd; if (obj->btf && !bpf_map_find_btf_info(obj, map)) { create_attr.btf_fd = btf__fd(obj->btf); create_attr.btf_key_type_id = map->btf_key_type_id; create_attr.btf_value_type_id = map->btf_value_type_id; } *pfd = bpf_create_map_xattr(&create_attr); if (*pfd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { err = -errno; cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", map->name, cp, err); create_attr.btf_fd = 0; create_attr.btf_key_type_id = 0; create_attr.btf_value_type_id = 0; map->btf_key_type_id = 0; map->btf_value_type_id = 0; *pfd = bpf_create_map_xattr(&create_attr); } if (*pfd < 0) { size_t j; err = -errno; err_out: cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); pr_warn("failed to create map (name: '%s'): %s(%d)\n", map->name, cp, err); for (j = 0; j < i; j++) zclose(obj->maps[j].fd); return err; } if (bpf_map__is_internal(map)) { err = bpf_object__populate_internal_map(obj, map); if (err < 0) { zclose(*pfd); goto err_out; } } if (map->pin_path && !map->pinned) { err = bpf_map__pin(map, NULL); if (err) { pr_warn("failed to auto-pin map name '%s' at '%s'\n", map->name, map->pin_path); return err; } } pr_debug("created map %s: fd=%d\n", map->name, *pfd); } return 0; } static int check_btf_ext_reloc_err(struct bpf_program *prog, int err, void *btf_prog_info, const char *info_name) { if (err != -ENOENT) { pr_warn("Error in loading %s for sec %s.\n", info_name, prog->section_name); return err; } /* err == -ENOENT (i.e. prog->section_name not found in btf_ext) */ if (btf_prog_info) { /* * Some info has already been found but has problem * in the last btf_ext reloc. Must have to error out. */ pr_warn("Error in relocating %s for sec %s.\n", info_name, prog->section_name); return err; } /* Have problem loading the very first info. Ignore the rest. */ pr_warn("Cannot find %s for main program sec %s. Ignore all %s.\n", info_name, prog->section_name, info_name); return 0; } static int bpf_program_reloc_btf_ext(struct bpf_program *prog, struct bpf_object *obj, const char *section_name, __u32 insn_offset) { int err; if (!insn_offset || prog->func_info) { /* * !insn_offset => main program * * For sub prog, the main program's func_info has to * be loaded first (i.e. prog->func_info != NULL) */ err = btf_ext__reloc_func_info(obj->btf, obj->btf_ext, section_name, insn_offset, &prog->func_info, &prog->func_info_cnt); if (err) return check_btf_ext_reloc_err(prog, err, prog->func_info, "bpf_func_info"); prog->func_info_rec_size = btf_ext__func_info_rec_size(obj->btf_ext); } if (!insn_offset || prog->line_info) { err = btf_ext__reloc_line_info(obj->btf, obj->btf_ext, section_name, insn_offset, &prog->line_info, &prog->line_info_cnt); if (err) return check_btf_ext_reloc_err(prog, err, prog->line_info, "bpf_line_info"); prog->line_info_rec_size = btf_ext__line_info_rec_size(obj->btf_ext); } return 0; } #define BPF_CORE_SPEC_MAX_LEN 64 /* represents BPF CO-RE field or array element accessor */ struct bpf_core_accessor { __u32 type_id; /* struct/union type or array element type */ __u32 idx; /* field index or array index */ const char *name; /* field name or NULL for array accessor */ }; struct bpf_core_spec { const struct btf *btf; /* high-level spec: named fields and array indices only */ struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; /* high-level spec length */ int len; /* raw, low-level spec: 1-to-1 with accessor spec string */ int raw_spec[BPF_CORE_SPEC_MAX_LEN]; /* raw spec length */ int raw_len; /* field bit offset represented by spec */ __u32 bit_offset; }; static bool str_is_empty(const char *s) { return !s || !s[0]; } /* * Turn bpf_field_reloc into a low- and high-level spec representation, * validating correctness along the way, as well as calculating resulting * field bit offset, specified by accessor string. Low-level spec captures * every single level of nestedness, including traversing anonymous * struct/union members. High-level one only captures semantically meaningful * "turning points": named fields and array indicies. * E.g., for this case: * * struct sample { * int __unimportant; * struct { * int __1; * int __2; * int a[7]; * }; * }; * * struct sample *s = ...; * * int x = &s->a[3]; // access string = '0:1:2:3' * * Low-level spec has 1:1 mapping with each element of access string (it's * just a parsed access string representation): [0, 1, 2, 3]. * * High-level spec will capture only 3 points: * - intial zero-index access by pointer (&s->... is the same as &s[0]...); * - field 'a' access (corresponds to '2' in low-level spec); * - array element #3 access (corresponds to '3' in low-level spec). * */ static int bpf_core_spec_parse(const struct btf *btf, __u32 type_id, const char *spec_str, struct bpf_core_spec *spec) { int access_idx, parsed_len, i; const struct btf_type *t; const char *name; __u32 id; __s64 sz; if (str_is_empty(spec_str) || *spec_str == ':') return -EINVAL; memset(spec, 0, sizeof(*spec)); spec->btf = btf; /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ while (*spec_str) { if (*spec_str == ':') ++spec_str; if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) return -EINVAL; if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) return -E2BIG; spec_str += parsed_len; spec->raw_spec[spec->raw_len++] = access_idx; } if (spec->raw_len == 0) return -EINVAL; /* first spec value is always reloc type array index */ t = skip_mods_and_typedefs(btf, type_id, &id); if (!t) return -EINVAL; access_idx = spec->raw_spec[0]; spec->spec[0].type_id = id; spec->spec[0].idx = access_idx; spec->len++; sz = btf__resolve_size(btf, id); if (sz < 0) return sz; spec->bit_offset = access_idx * sz * 8; for (i = 1; i < spec->raw_len; i++) { t = skip_mods_and_typedefs(btf, id, &id); if (!t) return -EINVAL; access_idx = spec->raw_spec[i]; if (btf_is_composite(t)) { const struct btf_member *m; __u32 bit_offset; if (access_idx >= btf_vlen(t)) return -EINVAL; bit_offset = btf_member_bit_offset(t, access_idx); spec->bit_offset += bit_offset; m = btf_members(t) + access_idx; if (m->name_off) { name = btf__name_by_offset(btf, m->name_off); if (str_is_empty(name)) return -EINVAL; spec->spec[spec->len].type_id = id; spec->spec[spec->len].idx = access_idx; spec->spec[spec->len].name = name; spec->len++; } id = m->type; } else if (btf_is_array(t)) { const struct btf_array *a = btf_array(t); t = skip_mods_and_typedefs(btf, a->type, &id); if (!t || access_idx >= a->nelems) return -EINVAL; spec->spec[spec->len].type_id = id; spec->spec[spec->len].idx = access_idx; spec->len++; sz = btf__resolve_size(btf, id); if (sz < 0) return sz; spec->bit_offset += access_idx * sz * 8; } else { pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %d\n", type_id, spec_str, i, id, btf_kind(t)); return -EINVAL; } } return 0; } static bool bpf_core_is_flavor_sep(const char *s) { /* check X___Y name pattern, where X and Y are not underscores */ return s[0] != '_' && /* X */ s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ s[4] != '_'; /* Y */ } /* Given 'some_struct_name___with_flavor' return the length of a name prefix * before last triple underscore. Struct name part after last triple * underscore is ignored by BPF CO-RE relocation during relocation matching. */ static size_t bpf_core_essential_name_len(const char *name) { size_t n = strlen(name); int i; for (i = n - 5; i >= 0; i--) { if (bpf_core_is_flavor_sep(name + i)) return i + 1; } return n; } /* dynamically sized list of type IDs */ struct ids_vec { __u32 *data; int len; }; static void bpf_core_free_cands(struct ids_vec *cand_ids) { free(cand_ids->data); free(cand_ids); } static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf, __u32 local_type_id, const struct btf *targ_btf) { size_t local_essent_len, targ_essent_len; const char *local_name, *targ_name; const struct btf_type *t; struct ids_vec *cand_ids; __u32 *new_ids; int i, err, n; t = btf__type_by_id(local_btf, local_type_id); if (!t) return ERR_PTR(-EINVAL); local_name = btf__name_by_offset(local_btf, t->name_off); if (str_is_empty(local_name)) return ERR_PTR(-EINVAL); local_essent_len = bpf_core_essential_name_len(local_name); cand_ids = calloc(1, sizeof(*cand_ids)); if (!cand_ids) return ERR_PTR(-ENOMEM); n = btf__get_nr_types(targ_btf); for (i = 1; i <= n; i++) { t = btf__type_by_id(targ_btf, i); targ_name = btf__name_by_offset(targ_btf, t->name_off); if (str_is_empty(targ_name)) continue; targ_essent_len = bpf_core_essential_name_len(targ_name); if (targ_essent_len != local_essent_len) continue; if (strncmp(local_name, targ_name, local_essent_len) == 0) { pr_debug("[%d] %s: found candidate [%d] %s\n", local_type_id, local_name, i, targ_name); new_ids = realloc(cand_ids->data, cand_ids->len + 1); if (!new_ids) { err = -ENOMEM; goto err_out; } cand_ids->data = new_ids; cand_ids->data[cand_ids->len++] = i; } } return cand_ids; err_out: bpf_core_free_cands(cand_ids); return ERR_PTR(err); } /* Check two types for compatibility, skipping const/volatile/restrict and * typedefs, to ensure we are relocating compatible entities: * - any two STRUCTs/UNIONs are compatible and can be mixed; * - any two FWDs are compatible, if their names match (modulo flavor suffix); * - any two PTRs are always compatible; * - for ENUMs, names should be the same (ignoring flavor suffix) or at * least one of enums should be anonymous; * - for ENUMs, check sizes, names are ignored; * - for INT, size and signedness are ignored; * - for ARRAY, dimensionality is ignored, element types are checked for * compatibility recursively; * - everything else shouldn't be ever a target of relocation. * These rules are not set in stone and probably will be adjusted as we get * more experience with using BPF CO-RE relocations. */ static int bpf_core_fields_are_compat(const struct btf *local_btf, __u32 local_id, const struct btf *targ_btf, __u32 targ_id) { const struct btf_type *local_type, *targ_type; recur: local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); if (!local_type || !targ_type) return -EINVAL; if (btf_is_composite(local_type) && btf_is_composite(targ_type)) return 1; if (btf_kind(local_type) != btf_kind(targ_type)) return 0; switch (btf_kind(local_type)) { case BTF_KIND_PTR: return 1; case BTF_KIND_FWD: case BTF_KIND_ENUM: { const char *local_name, *targ_name; size_t local_len, targ_len; local_name = btf__name_by_offset(local_btf, local_type->name_off); targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); local_len = bpf_core_essential_name_len(local_name); targ_len = bpf_core_essential_name_len(targ_name); /* one of them is anonymous or both w/ same flavor-less names */ return local_len == 0 || targ_len == 0 || (local_len == targ_len && strncmp(local_name, targ_name, local_len) == 0); } case BTF_KIND_INT: /* just reject deprecated bitfield-like integers; all other * integers are by default compatible between each other */ return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; case BTF_KIND_ARRAY: local_id = btf_array(local_type)->type; targ_id = btf_array(targ_type)->type; goto recur; default: pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", btf_kind(local_type), local_id, targ_id); return 0; } } /* * Given single high-level named field accessor in local type, find * corresponding high-level accessor for a target type. Along the way, * maintain low-level spec for target as well. Also keep updating target * bit offset. * * Searching is performed through recursive exhaustive enumeration of all * fields of a struct/union. If there are any anonymous (embedded) * structs/unions, they are recursively searched as well. If field with * desired name is found, check compatibility between local and target types, * before returning result. * * 1 is returned, if field is found. * 0 is returned if no compatible field is found. * <0 is returned on error. */ static int bpf_core_match_member(const struct btf *local_btf, const struct bpf_core_accessor *local_acc, const struct btf *targ_btf, __u32 targ_id, struct bpf_core_spec *spec, __u32 *next_targ_id) { const struct btf_type *local_type, *targ_type; const struct btf_member *local_member, *m; const char *local_name, *targ_name; __u32 local_id; int i, n, found; targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); if (!targ_type) return -EINVAL; if (!btf_is_composite(targ_type)) return 0; local_id = local_acc->type_id; local_type = btf__type_by_id(local_btf, local_id); local_member = btf_members(local_type) + local_acc->idx; local_name = btf__name_by_offset(local_btf, local_member->name_off); n = btf_vlen(targ_type); m = btf_members(targ_type); for (i = 0; i < n; i++, m++) { __u32 bit_offset; bit_offset = btf_member_bit_offset(targ_type, i); /* too deep struct/union/array nesting */ if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) return -E2BIG; /* speculate this member will be the good one */ spec->bit_offset += bit_offset; spec->raw_spec[spec->raw_len++] = i; targ_name = btf__name_by_offset(targ_btf, m->name_off); if (str_is_empty(targ_name)) { /* embedded struct/union, we need to go deeper */ found = bpf_core_match_member(local_btf, local_acc, targ_btf, m->type, spec, next_targ_id); if (found) /* either found or error */ return found; } else if (strcmp(local_name, targ_name) == 0) { /* matching named field */ struct bpf_core_accessor *targ_acc; targ_acc = &spec->spec[spec->len++]; targ_acc->type_id = targ_id; targ_acc->idx = i; targ_acc->name = targ_name; *next_targ_id = m->type; found = bpf_core_fields_are_compat(local_btf, local_member->type, targ_btf, m->type); if (!found) spec->len--; /* pop accessor */ return found; } /* member turned out not to be what we looked for */ spec->bit_offset -= bit_offset; spec->raw_len--; } return 0; } /* * Try to match local spec to a target type and, if successful, produce full * target spec (high-level, low-level + bit offset). */ static int bpf_core_spec_match(struct bpf_core_spec *local_spec, const struct btf *targ_btf, __u32 targ_id, struct bpf_core_spec *targ_spec) { const struct btf_type *targ_type; const struct bpf_core_accessor *local_acc; struct bpf_core_accessor *targ_acc; int i, sz, matched; memset(targ_spec, 0, sizeof(*targ_spec)); targ_spec->btf = targ_btf; local_acc = &local_spec->spec[0]; targ_acc = &targ_spec->spec[0]; for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); if (!targ_type) return -EINVAL; if (local_acc->name) { matched = bpf_core_match_member(local_spec->btf, local_acc, targ_btf, targ_id, targ_spec, &targ_id); if (matched <= 0) return matched; } else { /* for i=0, targ_id is already treated as array element * type (because it's the original struct), for others * we should find array element type first */ if (i > 0) { const struct btf_array *a; if (!btf_is_array(targ_type)) return 0; a = btf_array(targ_type); if (local_acc->idx >= a->nelems) return 0; if (!skip_mods_and_typedefs(targ_btf, a->type, &targ_id)) return -EINVAL; } /* too deep struct/union/array nesting */ if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) return -E2BIG; targ_acc->type_id = targ_id; targ_acc->idx = local_acc->idx; targ_acc->name = NULL; targ_spec->len++; targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; targ_spec->raw_len++; sz = btf__resolve_size(targ_btf, targ_id); if (sz < 0) return sz; targ_spec->bit_offset += local_acc->idx * sz * 8; } } return 1; } static int bpf_core_calc_field_relo(const struct bpf_program *prog, const struct bpf_field_reloc *relo, const struct bpf_core_spec *spec, __u32 *val, bool *validate) { const struct bpf_core_accessor *acc = &spec->spec[spec->len - 1]; const struct btf_type *t = btf__type_by_id(spec->btf, acc->type_id); __u32 byte_off, byte_sz, bit_off, bit_sz; const struct btf_member *m; const struct btf_type *mt; bool bitfield; __s64 sz; /* a[n] accessor needs special handling */ if (!acc->name) { if (relo->kind == BPF_FIELD_BYTE_OFFSET) { *val = spec->bit_offset / 8; } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { sz = btf__resolve_size(spec->btf, acc->type_id); if (sz < 0) return -EINVAL; *val = sz; } else { pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", bpf_program__title(prog, false), relo->kind, relo->insn_off / 8); return -EINVAL; } if (validate) *validate = true; return 0; } m = btf_members(t) + acc->idx; mt = skip_mods_and_typedefs(spec->btf, m->type, NULL); bit_off = spec->bit_offset; bit_sz = btf_member_bitfield_size(t, acc->idx); bitfield = bit_sz > 0; if (bitfield) { byte_sz = mt->size; byte_off = bit_off / 8 / byte_sz * byte_sz; /* figure out smallest int size necessary for bitfield load */ while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { if (byte_sz >= 8) { /* bitfield can't be read with 64-bit read */ pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", bpf_program__title(prog, false), relo->kind, relo->insn_off / 8); return -E2BIG; } byte_sz *= 2; byte_off = bit_off / 8 / byte_sz * byte_sz; } } else { sz = btf__resolve_size(spec->btf, m->type); if (sz < 0) return -EINVAL; byte_sz = sz; byte_off = spec->bit_offset / 8; bit_sz = byte_sz * 8; } /* for bitfields, all the relocatable aspects are ambiguous and we * might disagree with compiler, so turn off validation of expected * value, except for signedness */ if (validate) *validate = !bitfield; switch (relo->kind) { case BPF_FIELD_BYTE_OFFSET: *val = byte_off; break; case BPF_FIELD_BYTE_SIZE: *val = byte_sz; break; case BPF_FIELD_SIGNED: /* enums will be assumed unsigned */ *val = btf_is_enum(mt) || (btf_int_encoding(mt) & BTF_INT_SIGNED); if (validate) *validate = true; /* signedness is never ambiguous */ break; case BPF_FIELD_LSHIFT_U64: #if __BYTE_ORDER == __LITTLE_ENDIAN *val = 64 - (bit_off + bit_sz - byte_off * 8); #else *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); #endif break; case BPF_FIELD_RSHIFT_U64: *val = 64 - bit_sz; if (validate) *validate = true; /* right shift is never ambiguous */ break; case BPF_FIELD_EXISTS: default: pr_warn("prog '%s': unknown relo %d at insn #%d\n", bpf_program__title(prog, false), relo->kind, relo->insn_off / 8); return -EINVAL; } return 0; } /* * Patch relocatable BPF instruction. * * Patched value is determined by relocation kind and target specification. * For field existence relocation target spec will be NULL if field is not * found. * Expected insn->imm value is determined using relocation kind and local * spec, and is checked before patching instruction. If actual insn->imm value * is wrong, bail out with error. * * Currently three kinds of BPF instructions are supported: * 1. rX = (assignment with immediate operand); * 2. rX += (arithmetic operations with immediate operand); */ static int bpf_core_reloc_insn(struct bpf_program *prog, const struct bpf_field_reloc *relo, const struct bpf_core_spec *local_spec, const struct bpf_core_spec *targ_spec) { bool failed = false, validate = true; __u32 orig_val, new_val; struct bpf_insn *insn; int insn_idx, err; __u8 class; if (relo->insn_off % sizeof(struct bpf_insn)) return -EINVAL; insn_idx = relo->insn_off / sizeof(struct bpf_insn); if (relo->kind == BPF_FIELD_EXISTS) { orig_val = 1; /* can't generate EXISTS relo w/o local field */ new_val = targ_spec ? 1 : 0; } else if (!targ_spec) { failed = true; new_val = (__u32)-1; } else { err = bpf_core_calc_field_relo(prog, relo, local_spec, &orig_val, &validate); if (err) return err; err = bpf_core_calc_field_relo(prog, relo, targ_spec, &new_val, NULL); if (err) return err; } insn = &prog->insns[insn_idx]; class = BPF_CLASS(insn->code); if (class == BPF_ALU || class == BPF_ALU64) { if (BPF_SRC(insn->code) != BPF_K) return -EINVAL; if (!failed && validate && insn->imm != orig_val) { pr_warn("prog '%s': unexpected insn #%d value: got %u, exp %u -> %u\n", bpf_program__title(prog, false), insn_idx, insn->imm, orig_val, new_val); return -EINVAL; } orig_val = insn->imm; insn->imm = new_val; pr_debug("prog '%s': patched insn #%d (ALU/ALU64)%s imm %u -> %u\n", bpf_program__title(prog, false), insn_idx, failed ? " w/ failed reloc" : "", orig_val, new_val); } else { pr_warn("prog '%s': trying to relocate unrecognized insn #%d, code:%x, src:%x, dst:%x, off:%x, imm:%x\n", bpf_program__title(prog, false), insn_idx, insn->code, insn->src_reg, insn->dst_reg, insn->off, insn->imm); return -EINVAL; } return 0; } static struct btf *btf_load_raw(const char *path) { struct btf *btf; size_t read_cnt; struct stat st; void *data; FILE *f; if (stat(path, &st)) return ERR_PTR(-errno); data = malloc(st.st_size); if (!data) return ERR_PTR(-ENOMEM); f = fopen(path, "rb"); if (!f) { btf = ERR_PTR(-errno); goto cleanup; } read_cnt = fread(data, 1, st.st_size, f); fclose(f); if (read_cnt < st.st_size) { btf = ERR_PTR(-EBADF); goto cleanup; } btf = btf__new(data, read_cnt); cleanup: free(data); return btf; } /* * Probe few well-known locations for vmlinux kernel image and try to load BTF * data out of it to use for target BTF. */ static struct btf *bpf_core_find_kernel_btf(void) { struct { const char *path_fmt; bool raw_btf; } locations[] = { /* try canonical vmlinux BTF through sysfs first */ { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, /* fall back to trying to find vmlinux ELF on disk otherwise */ { "/boot/vmlinux-%1$s" }, { "/lib/modules/%1$s/vmlinux-%1$s" }, { "/lib/modules/%1$s/build/vmlinux" }, { "/usr/lib/modules/%1$s/kernel/vmlinux" }, { "/usr/lib/debug/boot/vmlinux-%1$s" }, { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, }; char path[PATH_MAX + 1]; struct utsname buf; struct btf *btf; int i; uname(&buf); for (i = 0; i < ARRAY_SIZE(locations); i++) { snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); if (access(path, R_OK)) continue; if (locations[i].raw_btf) btf = btf_load_raw(path); else btf = btf__parse_elf(path, NULL); pr_debug("loading kernel BTF '%s': %ld\n", path, IS_ERR(btf) ? PTR_ERR(btf) : 0); if (IS_ERR(btf)) continue; return btf; } pr_warn("failed to find valid kernel BTF\n"); return ERR_PTR(-ESRCH); } /* Output spec definition in the format: * [] () + => @, * where is a C-syntax view of recorded field access, e.g.: x.a[3].b */ static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) { const struct btf_type *t; const char *s; __u32 type_id; int i; type_id = spec->spec[0].type_id; t = btf__type_by_id(spec->btf, type_id); s = btf__name_by_offset(spec->btf, t->name_off); libbpf_print(level, "[%u] %s + ", type_id, s); for (i = 0; i < spec->raw_len; i++) libbpf_print(level, "%d%s", spec->raw_spec[i], i == spec->raw_len - 1 ? " => " : ":"); libbpf_print(level, "%u.%u @ &x", spec->bit_offset / 8, spec->bit_offset % 8); for (i = 0; i < spec->len; i++) { if (spec->spec[i].name) libbpf_print(level, ".%s", spec->spec[i].name); else libbpf_print(level, "[%u]", spec->spec[i].idx); } } static size_t bpf_core_hash_fn(const void *key, void *ctx) { return (size_t)key; } static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) { return k1 == k2; } static void *u32_as_hash_key(__u32 x) { return (void *)(uintptr_t)x; } /* * CO-RE relocate single instruction. * * The outline and important points of the algorithm: * 1. For given local type, find corresponding candidate target types. * Candidate type is a type with the same "essential" name, ignoring * everything after last triple underscore (___). E.g., `sample`, * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates * for each other. Names with triple underscore are referred to as * "flavors" and are useful, among other things, to allow to * specify/support incompatible variations of the same kernel struct, which * might differ between different kernel versions and/or build * configurations. * * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C * converter, when deduplicated BTF of a kernel still contains more than * one different types with the same name. In that case, ___2, ___3, etc * are appended starting from second name conflict. But start flavors are * also useful to be defined "locally", in BPF program, to extract same * data from incompatible changes between different kernel * versions/configurations. For instance, to handle field renames between * kernel versions, one can use two flavors of the struct name with the * same common name and use conditional relocations to extract that field, * depending on target kernel version. * 2. For each candidate type, try to match local specification to this * candidate target type. Matching involves finding corresponding * high-level spec accessors, meaning that all named fields should match, * as well as all array accesses should be within the actual bounds. Also, * types should be compatible (see bpf_core_fields_are_compat for details). * 3. It is supported and expected that there might be multiple flavors * matching the spec. As long as all the specs resolve to the same set of * offsets across all candidates, there is no error. If there is any * ambiguity, CO-RE relocation will fail. This is necessary to accomodate * imprefection of BTF deduplication, which can cause slight duplication of * the same BTF type, if some directly or indirectly referenced (by * pointer) type gets resolved to different actual types in different * object files. If such situation occurs, deduplicated BTF will end up * with two (or more) structurally identical types, which differ only in * types they refer to through pointer. This should be OK in most cases and * is not an error. * 4. Candidate types search is performed by linearly scanning through all * types in target BTF. It is anticipated that this is overall more * efficient memory-wise and not significantly worse (if not better) * CPU-wise compared to prebuilding a map from all local type names to * a list of candidate type names. It's also sped up by caching resolved * list of matching candidates per each local "root" type ID, that has at * least one bpf_field_reloc associated with it. This list is shared * between multiple relocations for the same type ID and is updated as some * of the candidates are pruned due to structural incompatibility. */ static int bpf_core_reloc_field(struct bpf_program *prog, const struct bpf_field_reloc *relo, int relo_idx, const struct btf *local_btf, const struct btf *targ_btf, struct hashmap *cand_cache) { const char *prog_name = bpf_program__title(prog, false); struct bpf_core_spec local_spec, cand_spec, targ_spec; const void *type_key = u32_as_hash_key(relo->type_id); const struct btf_type *local_type, *cand_type; const char *local_name, *cand_name; struct ids_vec *cand_ids; __u32 local_id, cand_id; const char *spec_str; int i, j, err; local_id = relo->type_id; local_type = btf__type_by_id(local_btf, local_id); if (!local_type) return -EINVAL; local_name = btf__name_by_offset(local_btf, local_type->name_off); if (str_is_empty(local_name)) return -EINVAL; spec_str = btf__name_by_offset(local_btf, relo->access_str_off); if (str_is_empty(spec_str)) return -EINVAL; err = bpf_core_spec_parse(local_btf, local_id, spec_str, &local_spec); if (err) { pr_warn("prog '%s': relo #%d: parsing [%d] %s + %s failed: %d\n", prog_name, relo_idx, local_id, local_name, spec_str, err); return -EINVAL; } pr_debug("prog '%s': relo #%d: kind %d, spec is ", prog_name, relo_idx, relo->kind); bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); libbpf_print(LIBBPF_DEBUG, "\n"); if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) { cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf); if (IS_ERR(cand_ids)) { pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s: %ld", prog_name, relo_idx, local_id, local_name, PTR_ERR(cand_ids)); return PTR_ERR(cand_ids); } err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL); if (err) { bpf_core_free_cands(cand_ids); return err; } } for (i = 0, j = 0; i < cand_ids->len; i++) { cand_id = cand_ids->data[i]; cand_type = btf__type_by_id(targ_btf, cand_id); cand_name = btf__name_by_offset(targ_btf, cand_type->name_off); err = bpf_core_spec_match(&local_spec, targ_btf, cand_id, &cand_spec); pr_debug("prog '%s': relo #%d: matching candidate #%d %s against spec ", prog_name, relo_idx, i, cand_name); bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); libbpf_print(LIBBPF_DEBUG, ": %d\n", err); if (err < 0) { pr_warn("prog '%s': relo #%d: matching error: %d\n", prog_name, relo_idx, err); return err; } if (err == 0) continue; if (j == 0) { targ_spec = cand_spec; } else if (cand_spec.bit_offset != targ_spec.bit_offset) { /* if there are many candidates, they should all * resolve to the same bit offset */ pr_warn("prog '%s': relo #%d: offset ambiguity: %u != %u\n", prog_name, relo_idx, cand_spec.bit_offset, targ_spec.bit_offset); return -EINVAL; } cand_ids->data[j++] = cand_spec.spec[0].type_id; } /* * For BPF_FIELD_EXISTS relo or when relaxed CO-RE reloc mode is * requested, it's expected that we might not find any candidates. * In this case, if field wasn't found in any candidate, the list of * candidates shouldn't change at all, we'll just handle relocating * appropriately, depending on relo's kind. */ if (j > 0) cand_ids->len = j; if (j == 0 && !prog->obj->relaxed_core_relocs && relo->kind != BPF_FIELD_EXISTS) { pr_warn("prog '%s': relo #%d: no matching targets found for [%d] %s + %s\n", prog_name, relo_idx, local_id, local_name, spec_str); return -ESRCH; } /* bpf_core_reloc_insn should know how to handle missing targ_spec */ err = bpf_core_reloc_insn(prog, relo, &local_spec, j ? &targ_spec : NULL); if (err) { pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", prog_name, relo_idx, relo->insn_off, err); return -EINVAL; } return 0; } static int bpf_core_reloc_fields(struct bpf_object *obj, const char *targ_btf_path) { const struct btf_ext_info_sec *sec; const struct bpf_field_reloc *rec; const struct btf_ext_info *seg; struct hashmap_entry *entry; struct hashmap *cand_cache = NULL; struct bpf_program *prog; struct btf *targ_btf; const char *sec_name; int i, err = 0; if (targ_btf_path) targ_btf = btf__parse_elf(targ_btf_path, NULL); else targ_btf = bpf_core_find_kernel_btf(); if (IS_ERR(targ_btf)) { pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf)); return PTR_ERR(targ_btf); } cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); if (IS_ERR(cand_cache)) { err = PTR_ERR(cand_cache); goto out; } seg = &obj->btf_ext->field_reloc_info; for_each_btf_ext_sec(seg, sec) { sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); if (str_is_empty(sec_name)) { err = -EINVAL; goto out; } prog = bpf_object__find_program_by_title(obj, sec_name); if (!prog) { pr_warn("failed to find program '%s' for CO-RE offset relocation\n", sec_name); err = -EINVAL; goto out; } pr_debug("prog '%s': performing %d CO-RE offset relocs\n", sec_name, sec->num_info); for_each_btf_ext_rec(seg, sec, i, rec) { err = bpf_core_reloc_field(prog, rec, i, obj->btf, targ_btf, cand_cache); if (err) { pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", sec_name, i, err); goto out; } } } out: btf__free(targ_btf); if (!IS_ERR_OR_NULL(cand_cache)) { hashmap__for_each_entry(cand_cache, entry, i) { bpf_core_free_cands(entry->value); } hashmap__free(cand_cache); } return err; } static int bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) { int err = 0; if (obj->btf_ext->field_reloc_info.len) err = bpf_core_reloc_fields(obj, targ_btf_path); return err; } static int bpf_program__reloc_text(struct bpf_program *prog, struct bpf_object *obj, struct reloc_desc *relo) { struct bpf_insn *insn, *new_insn; struct bpf_program *text; size_t new_cnt; int err; if (relo->type != RELO_CALL) return -LIBBPF_ERRNO__RELOC; if (prog->idx == obj->efile.text_shndx) { pr_warn("relo in .text insn %d into off %d (insn #%d)\n", relo->insn_idx, relo->sym_off, relo->sym_off / 8); return -LIBBPF_ERRNO__RELOC; } if (prog->main_prog_cnt == 0) { text = bpf_object__find_prog_by_idx(obj, obj->efile.text_shndx); if (!text) { pr_warn("no .text section found yet relo into text exist\n"); return -LIBBPF_ERRNO__RELOC; } new_cnt = prog->insns_cnt + text->insns_cnt; new_insn = reallocarray(prog->insns, new_cnt, sizeof(*insn)); if (!new_insn) { pr_warn("oom in prog realloc\n"); return -ENOMEM; } prog->insns = new_insn; if (obj->btf_ext) { err = bpf_program_reloc_btf_ext(prog, obj, text->section_name, prog->insns_cnt); if (err) return err; } memcpy(new_insn + prog->insns_cnt, text->insns, text->insns_cnt * sizeof(*insn)); prog->main_prog_cnt = prog->insns_cnt; prog->insns_cnt = new_cnt; pr_debug("added %zd insn from %s to prog %s\n", text->insns_cnt, text->section_name, prog->section_name); } insn = &prog->insns[relo->insn_idx]; insn->imm += relo->sym_off / 8 + prog->main_prog_cnt - relo->insn_idx; return 0; } static int bpf_program__relocate(struct bpf_program *prog, struct bpf_object *obj) { int i, err; if (!prog) return 0; if (obj->btf_ext) { err = bpf_program_reloc_btf_ext(prog, obj, prog->section_name, 0); if (err) return err; } if (!prog->reloc_desc) return 0; for (i = 0; i < prog->nr_reloc; i++) { struct reloc_desc *relo = &prog->reloc_desc[i]; if (relo->type == RELO_LD64 || relo->type == RELO_DATA) { struct bpf_insn *insn = &prog->insns[relo->insn_idx]; if (relo->insn_idx + 1 >= (int)prog->insns_cnt) { pr_warn("relocation out of range: '%s'\n", prog->section_name); return -LIBBPF_ERRNO__RELOC; } if (relo->type != RELO_DATA) { insn[0].src_reg = BPF_PSEUDO_MAP_FD; } else { insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; insn[1].imm = insn[0].imm + relo->sym_off; } insn[0].imm = obj->maps[relo->map_idx].fd; } else if (relo->type == RELO_CALL) { err = bpf_program__reloc_text(prog, obj, relo); if (err) return err; } } zfree(&prog->reloc_desc); prog->nr_reloc = 0; return 0; } static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) { struct bpf_program *prog; size_t i; int err; if (obj->btf_ext) { err = bpf_object__relocate_core(obj, targ_btf_path); if (err) { pr_warn("failed to perform CO-RE relocations: %d\n", err); return err; } } for (i = 0; i < obj->nr_programs; i++) { prog = &obj->programs[i]; err = bpf_program__relocate(prog, obj); if (err) { pr_warn("failed to relocate '%s'\n", prog->section_name); return err; } } return 0; } static int bpf_object__collect_reloc(struct bpf_object *obj) { int i, err; if (!obj_elf_valid(obj)) { pr_warn("Internal error: elf object is closed\n"); return -LIBBPF_ERRNO__INTERNAL; } for (i = 0; i < obj->efile.nr_reloc_sects; i++) { GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; Elf_Data *data = obj->efile.reloc_sects[i].data; int idx = shdr->sh_info; struct bpf_program *prog; if (shdr->sh_type != SHT_REL) { pr_warn("internal error at %d\n", __LINE__); return -LIBBPF_ERRNO__INTERNAL; } prog = bpf_object__find_prog_by_idx(obj, idx); if (!prog) { pr_warn("relocation failed: no section(%d)\n", idx); return -LIBBPF_ERRNO__RELOC; } err = bpf_program__collect_reloc(prog, shdr, data, obj); if (err) return err; } return 0; } static int load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, char *license, __u32 kern_version, int *pfd) { struct bpf_load_program_attr load_attr; char *cp, errmsg[STRERR_BUFSIZE]; int log_buf_size = BPF_LOG_BUF_SIZE; char *log_buf; int btf_fd, ret; if (!insns || !insns_cnt) return -EINVAL; memset(&load_attr, 0, sizeof(struct bpf_load_program_attr)); load_attr.prog_type = prog->type; load_attr.expected_attach_type = prog->expected_attach_type; if (prog->caps->name) load_attr.name = prog->name; load_attr.insns = insns; load_attr.insns_cnt = insns_cnt; load_attr.license = license; if (prog->type == BPF_PROG_TYPE_TRACING) { load_attr.attach_prog_fd = prog->attach_prog_fd; load_attr.attach_btf_id = prog->attach_btf_id; } else { load_attr.kern_version = kern_version; load_attr.prog_ifindex = prog->prog_ifindex; } /* if .BTF.ext was loaded, kernel supports associated BTF for prog */ if (prog->obj->btf_ext) btf_fd = bpf_object__btf_fd(prog->obj); else btf_fd = -1; load_attr.prog_btf_fd = btf_fd >= 0 ? btf_fd : 0; load_attr.func_info = prog->func_info; load_attr.func_info_rec_size = prog->func_info_rec_size; load_attr.func_info_cnt = prog->func_info_cnt; load_attr.line_info = prog->line_info; load_attr.line_info_rec_size = prog->line_info_rec_size; load_attr.line_info_cnt = prog->line_info_cnt; load_attr.log_level = prog->log_level; load_attr.prog_flags = prog->prog_flags; retry_load: log_buf = malloc(log_buf_size); if (!log_buf) pr_warn("Alloc log buffer for bpf loader error, continue without log\n"); ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size); if (ret >= 0) { if (load_attr.log_level) pr_debug("verifier log:\n%s", log_buf); *pfd = ret; ret = 0; goto out; } if (errno == ENOSPC) { log_buf_size <<= 1; free(log_buf); goto retry_load; } ret = -errno; cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); pr_warn("load bpf program failed: %s\n", cp); if (log_buf && log_buf[0] != '\0') { ret = -LIBBPF_ERRNO__VERIFY; pr_warn("-- BEGIN DUMP LOG ---\n"); pr_warn("\n%s\n", log_buf); pr_warn("-- END LOG --\n"); } else if (load_attr.insns_cnt >= BPF_MAXINSNS) { pr_warn("Program too large (%zu insns), at most %d insns\n", load_attr.insns_cnt, BPF_MAXINSNS); ret = -LIBBPF_ERRNO__PROG2BIG; } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { /* Wrong program type? */ int fd; load_attr.prog_type = BPF_PROG_TYPE_KPROBE; load_attr.expected_attach_type = 0; fd = bpf_load_program_xattr(&load_attr, NULL, 0); if (fd >= 0) { close(fd); ret = -LIBBPF_ERRNO__PROGTYPE; goto out; } } out: free(log_buf); return ret; } int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_version) { int err = 0, fd, i; if (prog->instances.nr < 0 || !prog->instances.fds) { if (prog->preprocessor) { pr_warn("Internal error: can't load program '%s'\n", prog->section_name); return -LIBBPF_ERRNO__INTERNAL; } prog->instances.fds = malloc(sizeof(int)); if (!prog->instances.fds) { pr_warn("Not enough memory for BPF fds\n"); return -ENOMEM; } prog->instances.nr = 1; prog->instances.fds[0] = -1; } if (!prog->preprocessor) { if (prog->instances.nr != 1) { pr_warn("Program '%s' is inconsistent: nr(%d) != 1\n", prog->section_name, prog->instances.nr); } err = load_program(prog, prog->insns, prog->insns_cnt, license, kern_version, &fd); if (!err) prog->instances.fds[0] = fd; goto out; } for (i = 0; i < prog->instances.nr; i++) { struct bpf_prog_prep_result result; bpf_program_prep_t preprocessor = prog->preprocessor; memset(&result, 0, sizeof(result)); err = preprocessor(prog, i, prog->insns, prog->insns_cnt, &result); if (err) { pr_warn("Preprocessing the %dth instance of program '%s' failed\n", i, prog->section_name); goto out; } if (!result.new_insn_ptr || !result.new_insn_cnt) { pr_debug("Skip loading the %dth instance of program '%s'\n", i, prog->section_name); prog->instances.fds[i] = -1; if (result.pfd) *result.pfd = -1; continue; } err = load_program(prog, result.new_insn_ptr, result.new_insn_cnt, license, kern_version, &fd); if (err) { pr_warn("Loading the %dth instance of program '%s' failed\n", i, prog->section_name); goto out; } if (result.pfd) *result.pfd = fd; prog->instances.fds[i] = fd; } out: if (err) pr_warn("failed to load program '%s'\n", prog->section_name); zfree(&prog->insns); prog->insns_cnt = 0; return err; } static bool bpf_program__is_function_storage(const struct bpf_program *prog, const struct bpf_object *obj) { return prog->idx == obj->efile.text_shndx && obj->has_pseudo_calls; } static int bpf_object__load_progs(struct bpf_object *obj, int log_level) { size_t i; int err; for (i = 0; i < obj->nr_programs; i++) { if (bpf_program__is_function_storage(&obj->programs[i], obj)) continue; obj->programs[i].log_level |= log_level; err = bpf_program__load(&obj->programs[i], obj->license, obj->kern_version); if (err) return err; } return 0; } static int libbpf_find_attach_btf_id(const char *name, enum bpf_attach_type attach_type, __u32 attach_prog_fd); static struct bpf_object * __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, struct bpf_object_open_opts *opts) { const char *pin_root_path; struct bpf_program *prog; struct bpf_object *obj; const char *obj_name; char tmp_name[64]; bool relaxed_maps; __u32 attach_prog_fd; int err; if (elf_version(EV_CURRENT) == EV_NONE) { pr_warn("failed to init libelf for %s\n", path ? : "(mem buf)"); return ERR_PTR(-LIBBPF_ERRNO__LIBELF); } if (!OPTS_VALID(opts, bpf_object_open_opts)) return ERR_PTR(-EINVAL); obj_name = OPTS_GET(opts, object_name, NULL); if (obj_buf) { if (!obj_name) { snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", (unsigned long)obj_buf, (unsigned long)obj_buf_sz); obj_name = tmp_name; } path = obj_name; pr_debug("loading object '%s' from buffer\n", obj_name); } obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); if (IS_ERR(obj)) return obj; obj->relaxed_core_relocs = OPTS_GET(opts, relaxed_core_relocs, false); relaxed_maps = OPTS_GET(opts, relaxed_maps, false); pin_root_path = OPTS_GET(opts, pin_root_path, NULL); attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); CHECK_ERR(bpf_object__elf_init(obj), err, out); CHECK_ERR(bpf_object__check_endianness(obj), err, out); CHECK_ERR(bpf_object__probe_caps(obj), err, out); CHECK_ERR(bpf_object__elf_collect(obj, relaxed_maps, pin_root_path), err, out); CHECK_ERR(bpf_object__collect_reloc(obj), err, out); bpf_object__elf_finish(obj); bpf_object__for_each_program(prog, obj) { enum bpf_prog_type prog_type; enum bpf_attach_type attach_type; err = libbpf_prog_type_by_name(prog->section_name, &prog_type, &attach_type); if (err == -ESRCH) /* couldn't guess, but user might manually specify */ continue; if (err) goto out; bpf_program__set_type(prog, prog_type); bpf_program__set_expected_attach_type(prog, attach_type); if (prog_type == BPF_PROG_TYPE_TRACING) { err = libbpf_find_attach_btf_id(prog->section_name, attach_type, attach_prog_fd); if (err <= 0) goto out; prog->attach_btf_id = err; prog->attach_prog_fd = attach_prog_fd; } } return obj; out: bpf_object__close(obj); return ERR_PTR(err); } static struct bpf_object * __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) { DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, .relaxed_maps = flags & MAPS_RELAX_COMPAT, ); /* param validation */ if (!attr->file) return NULL; pr_debug("loading %s\n", attr->file); return __bpf_object__open(attr->file, NULL, 0, &opts); } struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) { return __bpf_object__open_xattr(attr, 0); } struct bpf_object *bpf_object__open(const char *path) { struct bpf_object_open_attr attr = { .file = path, .prog_type = BPF_PROG_TYPE_UNSPEC, }; return bpf_object__open_xattr(&attr); } struct bpf_object * bpf_object__open_file(const char *path, struct bpf_object_open_opts *opts) { if (!path) return ERR_PTR(-EINVAL); pr_debug("loading %s\n", path); return __bpf_object__open(path, NULL, 0, opts); } struct bpf_object * bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, struct bpf_object_open_opts *opts) { if (!obj_buf || obj_buf_sz == 0) return ERR_PTR(-EINVAL); return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); } struct bpf_object * bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, const char *name) { DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, .object_name = name, /* wrong default, but backwards-compatible */ .relaxed_maps = true, ); /* returning NULL is wrong, but backwards-compatible */ if (!obj_buf || obj_buf_sz == 0) return NULL; return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); } int bpf_object__unload(struct bpf_object *obj) { size_t i; if (!obj) return -EINVAL; for (i = 0; i < obj->nr_maps; i++) zclose(obj->maps[i].fd); for (i = 0; i < obj->nr_programs; i++) bpf_program__unload(&obj->programs[i]); return 0; } int bpf_object__load_xattr(struct bpf_object_load_attr *attr) { struct bpf_object *obj; int err, i; if (!attr) return -EINVAL; obj = attr->obj; if (!obj) return -EINVAL; if (obj->loaded) { pr_warn("object should not be loaded twice\n"); return -EINVAL; } obj->loaded = true; CHECK_ERR(bpf_object__create_maps(obj), err, out); CHECK_ERR(bpf_object__relocate(obj, attr->target_btf_path), err, out); CHECK_ERR(bpf_object__load_progs(obj, attr->log_level), err, out); return 0; out: /* unpin any maps that were auto-pinned during load */ for (i = 0; i < obj->nr_maps; i++) if (obj->maps[i].pinned && !obj->maps[i].reused) bpf_map__unpin(&obj->maps[i], NULL); bpf_object__unload(obj); pr_warn("failed to load object '%s'\n", obj->path); return err; } int bpf_object__load(struct bpf_object *obj) { struct bpf_object_load_attr attr = { .obj = obj, }; return bpf_object__load_xattr(&attr); } static int make_parent_dir(const char *path) { char *cp, errmsg[STRERR_BUFSIZE]; char *dname, *dir; int err = 0; dname = strdup(path); if (dname == NULL) return -ENOMEM; dir = dirname(dname); if (mkdir(dir, 0700) && errno != EEXIST) err = -errno; free(dname); if (err) { cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); pr_warn("failed to mkdir %s: %s\n", path, cp); } return err; } static int check_path(const char *path) { char *cp, errmsg[STRERR_BUFSIZE]; struct statfs st_fs; char *dname, *dir; int err = 0; if (path == NULL) return -EINVAL; dname = strdup(path); if (dname == NULL) return -ENOMEM; dir = dirname(dname); if (statfs(dir, &st_fs)) { cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); pr_warn("failed to statfs %s: %s\n", dir, cp); err = -errno; } free(dname); if (!err && st_fs.f_type != BPF_FS_MAGIC) { pr_warn("specified path %s is not on BPF FS\n", path); err = -EINVAL; } return err; } int bpf_program__pin_instance(struct bpf_program *prog, const char *path, int instance) { char *cp, errmsg[STRERR_BUFSIZE]; int err; err = make_parent_dir(path); if (err) return err; err = check_path(path); if (err) return err; if (prog == NULL) { pr_warn("invalid program pointer\n"); return -EINVAL; } if (instance < 0 || instance >= prog->instances.nr) { pr_warn("invalid prog instance %d of prog %s (max %d)\n", instance, prog->section_name, prog->instances.nr); return -EINVAL; } if (bpf_obj_pin(prog->instances.fds[instance], path)) { cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); pr_warn("failed to pin program: %s\n", cp); return -errno; } pr_debug("pinned program '%s'\n", path); return 0; } int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance) { int err; err = check_path(path); if (err) return err; if (prog == NULL) { pr_warn("invalid program pointer\n"); return -EINVAL; } if (instance < 0 || instance >= prog->instances.nr) { pr_warn("invalid prog instance %d of prog %s (max %d)\n", instance, prog->section_name, prog->instances.nr); return -EINVAL; } err = unlink(path); if (err != 0) return -errno; pr_debug("unpinned program '%s'\n", path); return 0; } int bpf_program__pin(struct bpf_program *prog, const char *path) { int i, err; err = make_parent_dir(path); if (err) return err; err = check_path(path); if (err) return err; if (prog == NULL) { pr_warn("invalid program pointer\n"); return -EINVAL; } if (prog->instances.nr <= 0) { pr_warn("no instances of prog %s to pin\n", prog->section_name); return -EINVAL; } if (prog->instances.nr == 1) { /* don't create subdirs when pinning single instance */ return bpf_program__pin_instance(prog, path, 0); } for (i = 0; i < prog->instances.nr; i++) { char buf[PATH_MAX]; int len; len = snprintf(buf, PATH_MAX, "%s/%d", path, i); if (len < 0) { err = -EINVAL; goto err_unpin; } else if (len >= PATH_MAX) { err = -ENAMETOOLONG; goto err_unpin; } err = bpf_program__pin_instance(prog, buf, i); if (err) goto err_unpin; } return 0; err_unpin: for (i = i - 1; i >= 0; i--) { char buf[PATH_MAX]; int len; len = snprintf(buf, PATH_MAX, "%s/%d", path, i); if (len < 0) continue; else if (len >= PATH_MAX) continue; bpf_program__unpin_instance(prog, buf, i); } rmdir(path); return err; } int bpf_program__unpin(struct bpf_program *prog, const char *path) { int i, err; err = check_path(path); if (err) return err; if (prog == NULL) { pr_warn("invalid program pointer\n"); return -EINVAL; } if (prog->instances.nr <= 0) { pr_warn("no instances of prog %s to pin\n", prog->section_name); return -EINVAL; } if (prog->instances.nr == 1) { /* don't create subdirs when pinning single instance */ return bpf_program__unpin_instance(prog, path, 0); } for (i = 0; i < prog->instances.nr; i++) { char buf[PATH_MAX]; int len; len = snprintf(buf, PATH_MAX, "%s/%d", path, i); if (len < 0) return -EINVAL; else if (len >= PATH_MAX) return -ENAMETOOLONG; err = bpf_program__unpin_instance(prog, buf, i); if (err) return err; } err = rmdir(path); if (err) return -errno; return 0; } int bpf_map__pin(struct bpf_map *map, const char *path) { char *cp, errmsg[STRERR_BUFSIZE]; int err; if (map == NULL) { pr_warn("invalid map pointer\n"); return -EINVAL; } if (map->pin_path) { if (path && strcmp(path, map->pin_path)) { pr_warn("map '%s' already has pin path '%s' different from '%s'\n", bpf_map__name(map), map->pin_path, path); return -EINVAL; } else if (map->pinned) { pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", bpf_map__name(map), map->pin_path); return 0; } } else { if (!path) { pr_warn("missing a path to pin map '%s' at\n", bpf_map__name(map)); return -EINVAL; } else if (map->pinned) { pr_warn("map '%s' already pinned\n", bpf_map__name(map)); return -EEXIST; } map->pin_path = strdup(path); if (!map->pin_path) { err = -errno; goto out_err; } } err = make_parent_dir(map->pin_path); if (err) return err; err = check_path(map->pin_path); if (err) return err; if (bpf_obj_pin(map->fd, map->pin_path)) { err = -errno; goto out_err; } map->pinned = true; pr_debug("pinned map '%s'\n", map->pin_path); return 0; out_err: cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); pr_warn("failed to pin map: %s\n", cp); return err; } int bpf_map__unpin(struct bpf_map *map, const char *path) { int err; if (map == NULL) { pr_warn("invalid map pointer\n"); return -EINVAL; } if (map->pin_path) { if (path && strcmp(path, map->pin_path)) { pr_warn("map '%s' already has pin path '%s' different from '%s'\n", bpf_map__name(map), map->pin_path, path); return -EINVAL; } path = map->pin_path; } else if (!path) { pr_warn("no path to unpin map '%s' from\n", bpf_map__name(map)); return -EINVAL; } err = check_path(path); if (err) return err; err = unlink(path); if (err != 0) return -errno; map->pinned = false; pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); return 0; } int bpf_map__set_pin_path(struct bpf_map *map, const char *path) { char *new = NULL; if (path) { new = strdup(path); if (!new) return -errno; } free(map->pin_path); map->pin_path = new; return 0; } const char *bpf_map__get_pin_path(const struct bpf_map *map) { return map->pin_path; } bool bpf_map__is_pinned(const struct bpf_map *map) { return map->pinned; } int bpf_object__pin_maps(struct bpf_object *obj, const char *path) { struct bpf_map *map; int err; if (!obj) return -ENOENT; if (!obj->loaded) { pr_warn("object not yet loaded; load it first\n"); return -ENOENT; } bpf_object__for_each_map(map, obj) { char *pin_path = NULL; char buf[PATH_MAX]; if (path) { int len; len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); if (len < 0) { err = -EINVAL; goto err_unpin_maps; } else if (len >= PATH_MAX) { err = -ENAMETOOLONG; goto err_unpin_maps; } pin_path = buf; } else if (!map->pin_path) { continue; } err = bpf_map__pin(map, pin_path); if (err) goto err_unpin_maps; } return 0; err_unpin_maps: while ((map = bpf_map__prev(map, obj))) { if (!map->pin_path) continue; bpf_map__unpin(map, NULL); } return err; } int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) { struct bpf_map *map; int err; if (!obj) return -ENOENT; bpf_object__for_each_map(map, obj) { char *pin_path = NULL; char buf[PATH_MAX]; if (path) { int len; len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); if (len < 0) return -EINVAL; else if (len >= PATH_MAX) return -ENAMETOOLONG; pin_path = buf; } else if (!map->pin_path) { continue; } err = bpf_map__unpin(map, pin_path); if (err) return err; } return 0; } int bpf_object__pin_programs(struct bpf_object *obj, const char *path) { struct bpf_program *prog; int err; if (!obj) return -ENOENT; if (!obj->loaded) { pr_warn("object not yet loaded; load it first\n"); return -ENOENT; } bpf_object__for_each_program(prog, obj) { char buf[PATH_MAX]; int len; len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->pin_name); if (len < 0) { err = -EINVAL; goto err_unpin_programs; } else if (len >= PATH_MAX) { err = -ENAMETOOLONG; goto err_unpin_programs; } err = bpf_program__pin(prog, buf); if (err) goto err_unpin_programs; } return 0; err_unpin_programs: while ((prog = bpf_program__prev(prog, obj))) { char buf[PATH_MAX]; int len; len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->pin_name); if (len < 0) continue; else if (len >= PATH_MAX) continue; bpf_program__unpin(prog, buf); } return err; } int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) { struct bpf_program *prog; int err; if (!obj) return -ENOENT; bpf_object__for_each_program(prog, obj) { char buf[PATH_MAX]; int len; len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->pin_name); if (len < 0) return -EINVAL; else if (len >= PATH_MAX) return -ENAMETOOLONG; err = bpf_program__unpin(prog, buf); if (err) return err; } return 0; } int bpf_object__pin(struct bpf_object *obj, const char *path) { int err; err = bpf_object__pin_maps(obj, path); if (err) return err; err = bpf_object__pin_programs(obj, path); if (err) { bpf_object__unpin_maps(obj, path); return err; } return 0; } void bpf_object__close(struct bpf_object *obj) { size_t i; if (!obj) return; if (obj->clear_priv) obj->clear_priv(obj, obj->priv); bpf_object__elf_finish(obj); bpf_object__unload(obj); btf__free(obj->btf); btf_ext__free(obj->btf_ext); for (i = 0; i < obj->nr_maps; i++) { zfree(&obj->maps[i].name); zfree(&obj->maps[i].pin_path); if (obj->maps[i].clear_priv) obj->maps[i].clear_priv(&obj->maps[i], obj->maps[i].priv); obj->maps[i].priv = NULL; obj->maps[i].clear_priv = NULL; } zfree(&obj->sections.rodata); zfree(&obj->sections.data); zfree(&obj->maps); obj->nr_maps = 0; if (obj->programs && obj->nr_programs) { for (i = 0; i < obj->nr_programs; i++) bpf_program__exit(&obj->programs[i]); } zfree(&obj->programs); list_del(&obj->list); free(obj); } struct bpf_object * bpf_object__next(struct bpf_object *prev) { struct bpf_object *next; if (!prev) next = list_first_entry(&bpf_objects_list, struct bpf_object, list); else next = list_next_entry(prev, list); /* Empty list is noticed here so don't need checking on entry. */ if (&next->list == &bpf_objects_list) return NULL; return next; } const char *bpf_object__name(const struct bpf_object *obj) { return obj ? obj->name : ERR_PTR(-EINVAL); } unsigned int bpf_object__kversion(const struct bpf_object *obj) { return obj ? obj->kern_version : 0; } struct btf *bpf_object__btf(const struct bpf_object *obj) { return obj ? obj->btf : NULL; } int bpf_object__btf_fd(const struct bpf_object *obj) { return obj->btf ? btf__fd(obj->btf) : -1; } int bpf_object__set_priv(struct bpf_object *obj, void *priv, bpf_object_clear_priv_t clear_priv) { if (obj->priv && obj->clear_priv) obj->clear_priv(obj, obj->priv); obj->priv = priv; obj->clear_priv = clear_priv; return 0; } void *bpf_object__priv(const struct bpf_object *obj) { return obj ? obj->priv : ERR_PTR(-EINVAL); } static struct bpf_program * __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, bool forward) { size_t nr_programs = obj->nr_programs; ssize_t idx; if (!nr_programs) return NULL; if (!p) /* Iter from the beginning */ return forward ? &obj->programs[0] : &obj->programs[nr_programs - 1]; if (p->obj != obj) { pr_warn("error: program handler doesn't match object\n"); return NULL; } idx = (p - obj->programs) + (forward ? 1 : -1); if (idx >= obj->nr_programs || idx < 0) return NULL; return &obj->programs[idx]; } struct bpf_program * bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) { struct bpf_program *prog = prev; do { prog = __bpf_program__iter(prog, obj, true); } while (prog && bpf_program__is_function_storage(prog, obj)); return prog; } struct bpf_program * bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) { struct bpf_program *prog = next; do { prog = __bpf_program__iter(prog, obj, false); } while (prog && bpf_program__is_function_storage(prog, obj)); return prog; } int bpf_program__set_priv(struct bpf_program *prog, void *priv, bpf_program_clear_priv_t clear_priv) { if (prog->priv && prog->clear_priv) prog->clear_priv(prog, prog->priv); prog->priv = priv; prog->clear_priv = clear_priv; return 0; } void *bpf_program__priv(const struct bpf_program *prog) { return prog ? prog->priv : ERR_PTR(-EINVAL); } void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) { prog->prog_ifindex = ifindex; } const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) { const char *title; title = prog->section_name; if (needs_copy) { title = strdup(title); if (!title) { pr_warn("failed to strdup program title\n"); return ERR_PTR(-ENOMEM); } } return title; } int bpf_program__fd(const struct bpf_program *prog) { return bpf_program__nth_fd(prog, 0); } size_t bpf_program__size(const struct bpf_program *prog) { return prog->insns_cnt * sizeof(struct bpf_insn); } int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, bpf_program_prep_t prep) { int *instances_fds; if (nr_instances <= 0 || !prep) return -EINVAL; if (prog->instances.nr > 0 || prog->instances.fds) { pr_warn("Can't set pre-processor after loading\n"); return -EINVAL; } instances_fds = malloc(sizeof(int) * nr_instances); if (!instances_fds) { pr_warn("alloc memory failed for fds\n"); return -ENOMEM; } /* fill all fd with -1 */ memset(instances_fds, -1, sizeof(int) * nr_instances); prog->instances.nr = nr_instances; prog->instances.fds = instances_fds; prog->preprocessor = prep; return 0; } int bpf_program__nth_fd(const struct bpf_program *prog, int n) { int fd; if (!prog) return -EINVAL; if (n >= prog->instances.nr || n < 0) { pr_warn("Can't get the %dth fd from program %s: only %d instances\n", n, prog->section_name, prog->instances.nr); return -EINVAL; } fd = prog->instances.fds[n]; if (fd < 0) { pr_warn("%dth instance of program '%s' is invalid\n", n, prog->section_name); return -ENOENT; } return fd; } enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog) { return prog->type; } void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) { prog->type = type; } static bool bpf_program__is_type(const struct bpf_program *prog, enum bpf_prog_type type) { return prog ? (prog->type == type) : false; } #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ int bpf_program__set_##NAME(struct bpf_program *prog) \ { \ if (!prog) \ return -EINVAL; \ bpf_program__set_type(prog, TYPE); \ return 0; \ } \ \ bool bpf_program__is_##NAME(const struct bpf_program *prog) \ { \ return bpf_program__is_type(prog, TYPE); \ } \ BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); enum bpf_attach_type bpf_program__get_expected_attach_type(struct bpf_program *prog) { return prog->expected_attach_type; } void bpf_program__set_expected_attach_type(struct bpf_program *prog, enum bpf_attach_type type) { prog->expected_attach_type = type; } #define BPF_PROG_SEC_IMPL(string, ptype, eatype, is_attachable, btf, atype) \ { string, sizeof(string) - 1, ptype, eatype, is_attachable, btf, atype } /* Programs that can NOT be attached. */ #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) /* Programs that can be attached. */ #define BPF_APROG_SEC(string, ptype, atype) \ BPF_PROG_SEC_IMPL(string, ptype, 0, 1, 0, atype) /* Programs that must specify expected attach type at load time. */ #define BPF_EAPROG_SEC(string, ptype, eatype) \ BPF_PROG_SEC_IMPL(string, ptype, eatype, 1, 0, eatype) /* Programs that use BTF to identify attach point */ #define BPF_PROG_BTF(string, ptype, eatype) \ BPF_PROG_SEC_IMPL(string, ptype, eatype, 0, 1, 0) /* Programs that can be attached but attach type can't be identified by section * name. Kept for backward compatibility. */ #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) static const struct { const char *sec; size_t len; enum bpf_prog_type prog_type; enum bpf_attach_type expected_attach_type; bool is_attachable; bool is_attach_btf; enum bpf_attach_type attach_type; } section_names[] = { BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), BPF_PROG_SEC("kprobe/", BPF_PROG_TYPE_KPROBE), BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), BPF_PROG_SEC("kretprobe/", BPF_PROG_TYPE_KPROBE), BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), BPF_PROG_SEC("tracepoint/", BPF_PROG_TYPE_TRACEPOINT), BPF_PROG_SEC("tp/", BPF_PROG_TYPE_TRACEPOINT), BPF_PROG_SEC("raw_tracepoint/", BPF_PROG_TYPE_RAW_TRACEPOINT), BPF_PROG_SEC("raw_tp/", BPF_PROG_TYPE_RAW_TRACEPOINT), BPF_PROG_BTF("tp_btf/", BPF_PROG_TYPE_TRACING, BPF_TRACE_RAW_TP), BPF_PROG_BTF("fentry/", BPF_PROG_TYPE_TRACING, BPF_TRACE_FENTRY), BPF_PROG_BTF("fexit/", BPF_PROG_TYPE_TRACING, BPF_TRACE_FEXIT), BPF_PROG_SEC("xdp", BPF_PROG_TYPE_XDP), BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, BPF_CGROUP_INET_INGRESS), BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, BPF_CGROUP_INET_EGRESS), BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE), BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND), BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND), BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, BPF_CGROUP_DEVICE), BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, BPF_CGROUP_SOCK_OPS), BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, BPF_SK_SKB_STREAM_PARSER), BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, BPF_SK_SKB_STREAM_VERDICT), BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, BPF_SK_MSG_VERDICT), BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, BPF_LIRC_MODE2), BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, BPF_FLOW_DISSECTOR), BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND), BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND), BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT), BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT), BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG), BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG), BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG), BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG), BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, BPF_CGROUP_SYSCTL), BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT), BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT), }; #undef BPF_PROG_SEC_IMPL #undef BPF_PROG_SEC #undef BPF_APROG_SEC #undef BPF_EAPROG_SEC #undef BPF_APROG_COMPAT #define MAX_TYPE_NAME_SIZE 32 static char *libbpf_get_type_names(bool attach_type) { int i, len = ARRAY_SIZE(section_names) * MAX_TYPE_NAME_SIZE; char *buf; buf = malloc(len); if (!buf) return NULL; buf[0] = '\0'; /* Forge string buf with all available names */ for (i = 0; i < ARRAY_SIZE(section_names); i++) { if (attach_type && !section_names[i].is_attachable) continue; if (strlen(buf) + strlen(section_names[i].sec) + 2 > len) { free(buf); return NULL; } strcat(buf, " "); strcat(buf, section_names[i].sec); } return buf; } int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, enum bpf_attach_type *expected_attach_type) { char *type_names; int i; if (!name) return -EINVAL; for (i = 0; i < ARRAY_SIZE(section_names); i++) { if (strncmp(name, section_names[i].sec, section_names[i].len)) continue; *prog_type = section_names[i].prog_type; *expected_attach_type = section_names[i].expected_attach_type; return 0; } pr_warn("failed to guess program type from ELF section '%s'\n", name); type_names = libbpf_get_type_names(false); if (type_names != NULL) { pr_info("supported section(type) names are:%s\n", type_names); free(type_names); } return -ESRCH; } #define BTF_PREFIX "btf_trace_" int libbpf_find_vmlinux_btf_id(const char *name, enum bpf_attach_type attach_type) { struct btf *btf = bpf_core_find_kernel_btf(); char raw_tp_btf[128] = BTF_PREFIX; char *dst = raw_tp_btf + sizeof(BTF_PREFIX) - 1; const char *btf_name; int err = -EINVAL; __u32 kind; if (IS_ERR(btf)) { pr_warn("vmlinux BTF is not found\n"); return -EINVAL; } if (attach_type == BPF_TRACE_RAW_TP) { /* prepend "btf_trace_" prefix per kernel convention */ strncat(dst, name, sizeof(raw_tp_btf) - sizeof(BTF_PREFIX)); btf_name = raw_tp_btf; kind = BTF_KIND_TYPEDEF; } else { btf_name = name; kind = BTF_KIND_FUNC; } err = btf__find_by_name_kind(btf, btf_name, kind); btf__free(btf); return err; } static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) { struct bpf_prog_info_linear *info_linear; struct bpf_prog_info *info; struct btf *btf = NULL; int err = -EINVAL; info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); if (IS_ERR_OR_NULL(info_linear)) { pr_warn("failed get_prog_info_linear for FD %d\n", attach_prog_fd); return -EINVAL; } info = &info_linear->info; if (!info->btf_id) { pr_warn("The target program doesn't have BTF\n"); goto out; } if (btf__get_from_id(info->btf_id, &btf)) { pr_warn("Failed to get BTF of the program\n"); goto out; } err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); btf__free(btf); if (err <= 0) { pr_warn("%s is not found in prog's BTF\n", name); goto out; } out: free(info_linear); return err; } static int libbpf_find_attach_btf_id(const char *name, enum bpf_attach_type attach_type, __u32 attach_prog_fd) { int i, err; if (!name) return -EINVAL; for (i = 0; i < ARRAY_SIZE(section_names); i++) { if (!section_names[i].is_attach_btf) continue; if (strncmp(name, section_names[i].sec, section_names[i].len)) continue; if (attach_prog_fd) err = libbpf_find_prog_btf_id(name + section_names[i].len, attach_prog_fd); else err = libbpf_find_vmlinux_btf_id(name + section_names[i].len, attach_type); if (err <= 0) pr_warn("%s is not found in vmlinux BTF\n", name); return err; } pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name); return -ESRCH; } int libbpf_attach_type_by_name(const char *name, enum bpf_attach_type *attach_type) { char *type_names; int i; if (!name) return -EINVAL; for (i = 0; i < ARRAY_SIZE(section_names); i++) { if (strncmp(name, section_names[i].sec, section_names[i].len)) continue; if (!section_names[i].is_attachable) return -EINVAL; *attach_type = section_names[i].attach_type; return 0; } pr_warn("failed to guess attach type based on ELF section name '%s'\n", name); type_names = libbpf_get_type_names(true); if (type_names != NULL) { pr_info("attachable section(type) names are:%s\n", type_names); free(type_names); } return -EINVAL; } int bpf_map__fd(const struct bpf_map *map) { return map ? map->fd : -EINVAL; } const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) { return map ? &map->def : ERR_PTR(-EINVAL); } const char *bpf_map__name(const struct bpf_map *map) { return map ? map->name : NULL; } __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) { return map ? map->btf_key_type_id : 0; } __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) { return map ? map->btf_value_type_id : 0; } int bpf_map__set_priv(struct bpf_map *map, void *priv, bpf_map_clear_priv_t clear_priv) { if (!map) return -EINVAL; if (map->priv) { if (map->clear_priv) map->clear_priv(map, map->priv); } map->priv = priv; map->clear_priv = clear_priv; return 0; } void *bpf_map__priv(const struct bpf_map *map) { return map ? map->priv : ERR_PTR(-EINVAL); } bool bpf_map__is_offload_neutral(const struct bpf_map *map) { return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; } bool bpf_map__is_internal(const struct bpf_map *map) { return map->libbpf_type != LIBBPF_MAP_UNSPEC; } void bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) { map->map_ifindex = ifindex; } int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) { if (!bpf_map_type__is_map_in_map(map->def.type)) { pr_warn("error: unsupported map type\n"); return -EINVAL; } if (map->inner_map_fd != -1) { pr_warn("error: inner_map_fd already specified\n"); return -EINVAL; } map->inner_map_fd = fd; return 0; } static struct bpf_map * __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) { ssize_t idx; struct bpf_map *s, *e; if (!obj || !obj->maps) return NULL; s = obj->maps; e = obj->maps + obj->nr_maps; if ((m < s) || (m >= e)) { pr_warn("error in %s: map handler doesn't belong to object\n", __func__); return NULL; } idx = (m - obj->maps) + i; if (idx >= obj->nr_maps || idx < 0) return NULL; return &obj->maps[idx]; } struct bpf_map * bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) { if (prev == NULL) return obj->maps; return __bpf_map__iter(prev, obj, 1); } struct bpf_map * bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) { if (next == NULL) { if (!obj->nr_maps) return NULL; return obj->maps + obj->nr_maps - 1; } return __bpf_map__iter(next, obj, -1); } struct bpf_map * bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) { struct bpf_map *pos; bpf_object__for_each_map(pos, obj) { if (pos->name && !strcmp(pos->name, name)) return pos; } return NULL; } int bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) { return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); } struct bpf_map * bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) { return ERR_PTR(-ENOTSUP); } long libbpf_get_error(const void *ptr) { return PTR_ERR_OR_ZERO(ptr); } int bpf_prog_load(const char *file, enum bpf_prog_type type, struct bpf_object **pobj, int *prog_fd) { struct bpf_prog_load_attr attr; memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); attr.file = file; attr.prog_type = type; attr.expected_attach_type = 0; return bpf_prog_load_xattr(&attr, pobj, prog_fd); } int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, struct bpf_object **pobj, int *prog_fd) { struct bpf_object_open_attr open_attr = {}; struct bpf_program *prog, *first_prog = NULL; struct bpf_object *obj; struct bpf_map *map; int err; if (!attr) return -EINVAL; if (!attr->file) return -EINVAL; open_attr.file = attr->file; open_attr.prog_type = attr->prog_type; obj = bpf_object__open_xattr(&open_attr); if (IS_ERR_OR_NULL(obj)) return -ENOENT; bpf_object__for_each_program(prog, obj) { enum bpf_attach_type attach_type = attr->expected_attach_type; /* * to preserve backwards compatibility, bpf_prog_load treats * attr->prog_type, if specified, as an override to whatever * bpf_object__open guessed */ if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { bpf_program__set_type(prog, attr->prog_type); bpf_program__set_expected_attach_type(prog, attach_type); } if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { /* * we haven't guessed from section name and user * didn't provide a fallback type, too bad... */ bpf_object__close(obj); return -EINVAL; } prog->prog_ifindex = attr->ifindex; prog->log_level = attr->log_level; prog->prog_flags = attr->prog_flags; if (!first_prog) first_prog = prog; } bpf_object__for_each_map(map, obj) { if (!bpf_map__is_offload_neutral(map)) map->map_ifindex = attr->ifindex; } if (!first_prog) { pr_warn("object file doesn't contain bpf program\n"); bpf_object__close(obj); return -ENOENT; } err = bpf_object__load(obj); if (err) { bpf_object__close(obj); return -EINVAL; } *pobj = obj; *prog_fd = bpf_program__fd(first_prog); return 0; } struct bpf_link { int (*destroy)(struct bpf_link *link); }; int bpf_link__destroy(struct bpf_link *link) { int err; if (!link) return 0; err = link->destroy(link); free(link); return err; } struct bpf_link_fd { struct bpf_link link; /* has to be at the top of struct */ int fd; /* hook FD */ }; static int bpf_link__destroy_perf_event(struct bpf_link *link) { struct bpf_link_fd *l = (void *)link; int err; err = ioctl(l->fd, PERF_EVENT_IOC_DISABLE, 0); if (err) err = -errno; close(l->fd); return err; } struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, int pfd) { char errmsg[STRERR_BUFSIZE]; struct bpf_link_fd *link; int prog_fd, err; if (pfd < 0) { pr_warn("program '%s': invalid perf event FD %d\n", bpf_program__title(prog, false), pfd); return ERR_PTR(-EINVAL); } prog_fd = bpf_program__fd(prog); if (prog_fd < 0) { pr_warn("program '%s': can't attach BPF program w/o FD (did you load it?)\n", bpf_program__title(prog, false)); return ERR_PTR(-EINVAL); } link = malloc(sizeof(*link)); if (!link) return ERR_PTR(-ENOMEM); link->link.destroy = &bpf_link__destroy_perf_event; link->fd = pfd; if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { err = -errno; free(link); pr_warn("program '%s': failed to attach to pfd %d: %s\n", bpf_program__title(prog, false), pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); return ERR_PTR(err); } if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { err = -errno; free(link); pr_warn("program '%s': failed to enable pfd %d: %s\n", bpf_program__title(prog, false), pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); return ERR_PTR(err); } return (struct bpf_link *)link; } /* * this function is expected to parse integer in the range of [0, 2^31-1] from * given file using scanf format string fmt. If actual parsed value is * negative, the result might be indistinguishable from error */ static int parse_uint_from_file(const char *file, const char *fmt) { char buf[STRERR_BUFSIZE]; int err, ret; FILE *f; f = fopen(file, "r"); if (!f) { err = -errno; pr_debug("failed to open '%s': %s\n", file, libbpf_strerror_r(err, buf, sizeof(buf))); return err; } err = fscanf(f, fmt, &ret); if (err != 1) { err = err == EOF ? -EIO : -errno; pr_debug("failed to parse '%s': %s\n", file, libbpf_strerror_r(err, buf, sizeof(buf))); fclose(f); return err; } fclose(f); return ret; } static int determine_kprobe_perf_type(void) { const char *file = "/sys/bus/event_source/devices/kprobe/type"; return parse_uint_from_file(file, "%d\n"); } static int determine_uprobe_perf_type(void) { const char *file = "/sys/bus/event_source/devices/uprobe/type"; return parse_uint_from_file(file, "%d\n"); } static int determine_kprobe_retprobe_bit(void) { const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; return parse_uint_from_file(file, "config:%d\n"); } static int determine_uprobe_retprobe_bit(void) { const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; return parse_uint_from_file(file, "config:%d\n"); } static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, uint64_t offset, int pid) { struct perf_event_attr attr = {}; char errmsg[STRERR_BUFSIZE]; int type, pfd, err; type = uprobe ? determine_uprobe_perf_type() : determine_kprobe_perf_type(); if (type < 0) { pr_warn("failed to determine %s perf type: %s\n", uprobe ? "uprobe" : "kprobe", libbpf_strerror_r(type, errmsg, sizeof(errmsg))); return type; } if (retprobe) { int bit = uprobe ? determine_uprobe_retprobe_bit() : determine_kprobe_retprobe_bit(); if (bit < 0) { pr_warn("failed to determine %s retprobe bit: %s\n", uprobe ? "uprobe" : "kprobe", libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); return bit; } attr.config |= 1 << bit; } attr.size = sizeof(attr); attr.type = type; attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ attr.config2 = offset; /* kprobe_addr or probe_offset */ /* pid filter is meaningful only for uprobes */ pfd = syscall(__NR_perf_event_open, &attr, pid < 0 ? -1 : pid /* pid */, pid == -1 ? 0 : -1 /* cpu */, -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); if (pfd < 0) { err = -errno; pr_warn("%s perf_event_open() failed: %s\n", uprobe ? "uprobe" : "kprobe", libbpf_strerror_r(err, errmsg, sizeof(errmsg))); return err; } return pfd; } struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, bool retprobe, const char *func_name) { char errmsg[STRERR_BUFSIZE]; struct bpf_link *link; int pfd, err; pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 0 /* offset */, -1 /* pid */); if (pfd < 0) { pr_warn("program '%s': failed to create %s '%s' perf event: %s\n", bpf_program__title(prog, false), retprobe ? "kretprobe" : "kprobe", func_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); return ERR_PTR(pfd); } link = bpf_program__attach_perf_event(prog, pfd); if (IS_ERR(link)) { close(pfd); err = PTR_ERR(link); pr_warn("program '%s': failed to attach to %s '%s': %s\n", bpf_program__title(prog, false), retprobe ? "kretprobe" : "kprobe", func_name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); return link; } return link; } struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, bool retprobe, pid_t pid, const char *binary_path, size_t func_offset) { char errmsg[STRERR_BUFSIZE]; struct bpf_link *link; int pfd, err; pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, func_offset, pid); if (pfd < 0) { pr_warn("program '%s': failed to create %s '%s:0x%zx' perf event: %s\n", bpf_program__title(prog, false), retprobe ? "uretprobe" : "uprobe", binary_path, func_offset, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); return ERR_PTR(pfd); } link = bpf_program__attach_perf_event(prog, pfd); if (IS_ERR(link)) { close(pfd); err = PTR_ERR(link); pr_warn("program '%s': failed to attach to %s '%s:0x%zx': %s\n", bpf_program__title(prog, false), retprobe ? "uretprobe" : "uprobe", binary_path, func_offset, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); return link; } return link; } static int determine_tracepoint_id(const char *tp_category, const char *tp_name) { char file[PATH_MAX]; int ret; ret = snprintf(file, sizeof(file), "/sys/kernel/debug/tracing/events/%s/%s/id", tp_category, tp_name); if (ret < 0) return -errno; if (ret >= sizeof(file)) { pr_debug("tracepoint %s/%s path is too long\n", tp_category, tp_name); return -E2BIG; } return parse_uint_from_file(file, "%d\n"); } static int perf_event_open_tracepoint(const char *tp_category, const char *tp_name) { struct perf_event_attr attr = {}; char errmsg[STRERR_BUFSIZE]; int tp_id, pfd, err; tp_id = determine_tracepoint_id(tp_category, tp_name); if (tp_id < 0) { pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", tp_category, tp_name, libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); return tp_id; } attr.type = PERF_TYPE_TRACEPOINT; attr.size = sizeof(attr); attr.config = tp_id; pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); if (pfd < 0) { err = -errno; pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", tp_category, tp_name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); return err; } return pfd; } struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, const char *tp_category, const char *tp_name) { char errmsg[STRERR_BUFSIZE]; struct bpf_link *link; int pfd, err; pfd = perf_event_open_tracepoint(tp_category, tp_name); if (pfd < 0) { pr_warn("program '%s': failed to create tracepoint '%s/%s' perf event: %s\n", bpf_program__title(prog, false), tp_category, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); return ERR_PTR(pfd); } link = bpf_program__attach_perf_event(prog, pfd); if (IS_ERR(link)) { close(pfd); err = PTR_ERR(link); pr_warn("program '%s': failed to attach to tracepoint '%s/%s': %s\n", bpf_program__title(prog, false), tp_category, tp_name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); return link; } return link; } static int bpf_link__destroy_fd(struct bpf_link *link) { struct bpf_link_fd *l = (void *)link; return close(l->fd); } struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, const char *tp_name) { char errmsg[STRERR_BUFSIZE]; struct bpf_link_fd *link; int prog_fd, pfd; prog_fd = bpf_program__fd(prog); if (prog_fd < 0) { pr_warn("program '%s': can't attach before loaded\n", bpf_program__title(prog, false)); return ERR_PTR(-EINVAL); } link = malloc(sizeof(*link)); if (!link) return ERR_PTR(-ENOMEM); link->link.destroy = &bpf_link__destroy_fd; pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); if (pfd < 0) { pfd = -errno; free(link); pr_warn("program '%s': failed to attach to raw tracepoint '%s': %s\n", bpf_program__title(prog, false), tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); return ERR_PTR(pfd); } link->fd = pfd; return (struct bpf_link *)link; } struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) { char errmsg[STRERR_BUFSIZE]; struct bpf_link_fd *link; int prog_fd, pfd; prog_fd = bpf_program__fd(prog); if (prog_fd < 0) { pr_warn("program '%s': can't attach before loaded\n", bpf_program__title(prog, false)); return ERR_PTR(-EINVAL); } link = malloc(sizeof(*link)); if (!link) return ERR_PTR(-ENOMEM); link->link.destroy = &bpf_link__destroy_fd; pfd = bpf_raw_tracepoint_open(NULL, prog_fd); if (pfd < 0) { pfd = -errno; free(link); pr_warn("program '%s': failed to attach to trace: %s\n", bpf_program__title(prog, false), libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); return ERR_PTR(pfd); } link->fd = pfd; return (struct bpf_link *)link; } enum bpf_perf_event_ret bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, void **copy_mem, size_t *copy_size, bpf_perf_event_print_t fn, void *private_data) { struct perf_event_mmap_page *header = mmap_mem; __u64 data_head = ring_buffer_read_head(header); __u64 data_tail = header->data_tail; void *base = ((__u8 *)header) + page_size; int ret = LIBBPF_PERF_EVENT_CONT; struct perf_event_header *ehdr; size_t ehdr_size; while (data_head != data_tail) { ehdr = base + (data_tail & (mmap_size - 1)); ehdr_size = ehdr->size; if (((void *)ehdr) + ehdr_size > base + mmap_size) { void *copy_start = ehdr; size_t len_first = base + mmap_size - copy_start; size_t len_secnd = ehdr_size - len_first; if (*copy_size < ehdr_size) { free(*copy_mem); *copy_mem = malloc(ehdr_size); if (!*copy_mem) { *copy_size = 0; ret = LIBBPF_PERF_EVENT_ERROR; break; } *copy_size = ehdr_size; } memcpy(*copy_mem, copy_start, len_first); memcpy(*copy_mem + len_first, base, len_secnd); ehdr = *copy_mem; } ret = fn(ehdr, private_data); data_tail += ehdr_size; if (ret != LIBBPF_PERF_EVENT_CONT) break; } ring_buffer_write_tail(header, data_tail); return ret; } struct perf_buffer; struct perf_buffer_params { struct perf_event_attr *attr; /* if event_cb is specified, it takes precendence */ perf_buffer_event_fn event_cb; /* sample_cb and lost_cb are higher-level common-case callbacks */ perf_buffer_sample_fn sample_cb; perf_buffer_lost_fn lost_cb; void *ctx; int cpu_cnt; int *cpus; int *map_keys; }; struct perf_cpu_buf { struct perf_buffer *pb; void *base; /* mmap()'ed memory */ void *buf; /* for reconstructing segmented data */ size_t buf_size; int fd; int cpu; int map_key; }; struct perf_buffer { perf_buffer_event_fn event_cb; perf_buffer_sample_fn sample_cb; perf_buffer_lost_fn lost_cb; void *ctx; /* passed into callbacks */ size_t page_size; size_t mmap_size; struct perf_cpu_buf **cpu_bufs; struct epoll_event *events; int cpu_cnt; /* number of allocated CPU buffers */ int epoll_fd; /* perf event FD */ int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ }; static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, struct perf_cpu_buf *cpu_buf) { if (!cpu_buf) return; if (cpu_buf->base && munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); if (cpu_buf->fd >= 0) { ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); close(cpu_buf->fd); } free(cpu_buf->buf); free(cpu_buf); } void perf_buffer__free(struct perf_buffer *pb) { int i; if (!pb) return; if (pb->cpu_bufs) { for (i = 0; i < pb->cpu_cnt && pb->cpu_bufs[i]; i++) { struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); perf_buffer__free_cpu_buf(pb, cpu_buf); } free(pb->cpu_bufs); } if (pb->epoll_fd >= 0) close(pb->epoll_fd); free(pb->events); free(pb); } static struct perf_cpu_buf * perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, int cpu, int map_key) { struct perf_cpu_buf *cpu_buf; char msg[STRERR_BUFSIZE]; int err; cpu_buf = calloc(1, sizeof(*cpu_buf)); if (!cpu_buf) return ERR_PTR(-ENOMEM); cpu_buf->pb = pb; cpu_buf->cpu = cpu; cpu_buf->map_key = map_key; cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, -1, PERF_FLAG_FD_CLOEXEC); if (cpu_buf->fd < 0) { err = -errno; pr_warn("failed to open perf buffer event on cpu #%d: %s\n", cpu, libbpf_strerror_r(err, msg, sizeof(msg))); goto error; } cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, PROT_READ | PROT_WRITE, MAP_SHARED, cpu_buf->fd, 0); if (cpu_buf->base == MAP_FAILED) { cpu_buf->base = NULL; err = -errno; pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", cpu, libbpf_strerror_r(err, msg, sizeof(msg))); goto error; } if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { err = -errno; pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", cpu, libbpf_strerror_r(err, msg, sizeof(msg))); goto error; } return cpu_buf; error: perf_buffer__free_cpu_buf(pb, cpu_buf); return (struct perf_cpu_buf *)ERR_PTR(err); } static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, struct perf_buffer_params *p); struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, const struct perf_buffer_opts *opts) { struct perf_buffer_params p = {}; struct perf_event_attr attr = { 0, }; attr.config = PERF_COUNT_SW_BPF_OUTPUT, attr.type = PERF_TYPE_SOFTWARE; attr.sample_type = PERF_SAMPLE_RAW; attr.sample_period = 1; attr.wakeup_events = 1; p.attr = &attr; p.sample_cb = opts ? opts->sample_cb : NULL; p.lost_cb = opts ? opts->lost_cb : NULL; p.ctx = opts ? opts->ctx : NULL; return __perf_buffer__new(map_fd, page_cnt, &p); } struct perf_buffer * perf_buffer__new_raw(int map_fd, size_t page_cnt, const struct perf_buffer_raw_opts *opts) { struct perf_buffer_params p = {}; p.attr = opts->attr; p.event_cb = opts->event_cb; p.ctx = opts->ctx; p.cpu_cnt = opts->cpu_cnt; p.cpus = opts->cpus; p.map_keys = opts->map_keys; return __perf_buffer__new(map_fd, page_cnt, &p); } static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, struct perf_buffer_params *p) { const char *online_cpus_file = "/sys/devices/system/cpu/online"; struct bpf_map_info map = {}; char msg[STRERR_BUFSIZE]; struct perf_buffer *pb; bool *online = NULL; __u32 map_info_len; int err, i, j, n; if (page_cnt & (page_cnt - 1)) { pr_warn("page count should be power of two, but is %zu\n", page_cnt); return ERR_PTR(-EINVAL); } map_info_len = sizeof(map); err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); if (err) { err = -errno; pr_warn("failed to get map info for map FD %d: %s\n", map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); return ERR_PTR(err); } if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", map.name); return ERR_PTR(-EINVAL); } pb = calloc(1, sizeof(*pb)); if (!pb) return ERR_PTR(-ENOMEM); pb->event_cb = p->event_cb; pb->sample_cb = p->sample_cb; pb->lost_cb = p->lost_cb; pb->ctx = p->ctx; pb->page_size = getpagesize(); pb->mmap_size = pb->page_size * page_cnt; pb->map_fd = map_fd; pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); if (pb->epoll_fd < 0) { err = -errno; pr_warn("failed to create epoll instance: %s\n", libbpf_strerror_r(err, msg, sizeof(msg))); goto error; } if (p->cpu_cnt > 0) { pb->cpu_cnt = p->cpu_cnt; } else { pb->cpu_cnt = libbpf_num_possible_cpus(); if (pb->cpu_cnt < 0) { err = pb->cpu_cnt; goto error; } if (map.max_entries < pb->cpu_cnt) pb->cpu_cnt = map.max_entries; } pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); if (!pb->events) { err = -ENOMEM; pr_warn("failed to allocate events: out of memory\n"); goto error; } pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); if (!pb->cpu_bufs) { err = -ENOMEM; pr_warn("failed to allocate buffers: out of memory\n"); goto error; } err = parse_cpu_mask_file(online_cpus_file, &online, &n); if (err) { pr_warn("failed to get online CPU mask: %d\n", err); goto error; } for (i = 0, j = 0; i < pb->cpu_cnt; i++) { struct perf_cpu_buf *cpu_buf; int cpu, map_key; cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; /* in case user didn't explicitly requested particular CPUs to * be attached to, skip offline/not present CPUs */ if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) continue; cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); if (IS_ERR(cpu_buf)) { err = PTR_ERR(cpu_buf); goto error; } pb->cpu_bufs[j] = cpu_buf; err = bpf_map_update_elem(pb->map_fd, &map_key, &cpu_buf->fd, 0); if (err) { err = -errno; pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", cpu, map_key, cpu_buf->fd, libbpf_strerror_r(err, msg, sizeof(msg))); goto error; } pb->events[j].events = EPOLLIN; pb->events[j].data.ptr = cpu_buf; if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, &pb->events[j]) < 0) { err = -errno; pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", cpu, cpu_buf->fd, libbpf_strerror_r(err, msg, sizeof(msg))); goto error; } j++; } pb->cpu_cnt = j; free(online); return pb; error: free(online); if (pb) perf_buffer__free(pb); return ERR_PTR(err); } struct perf_sample_raw { struct perf_event_header header; uint32_t size; char data[0]; }; struct perf_sample_lost { struct perf_event_header header; uint64_t id; uint64_t lost; uint64_t sample_id; }; static enum bpf_perf_event_ret perf_buffer__process_record(struct perf_event_header *e, void *ctx) { struct perf_cpu_buf *cpu_buf = ctx; struct perf_buffer *pb = cpu_buf->pb; void *data = e; /* user wants full control over parsing perf event */ if (pb->event_cb) return pb->event_cb(pb->ctx, cpu_buf->cpu, e); switch (e->type) { case PERF_RECORD_SAMPLE: { struct perf_sample_raw *s = data; if (pb->sample_cb) pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); break; } case PERF_RECORD_LOST: { struct perf_sample_lost *s = data; if (pb->lost_cb) pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); break; } default: pr_warn("unknown perf sample type %d\n", e->type); return LIBBPF_PERF_EVENT_ERROR; } return LIBBPF_PERF_EVENT_CONT; } static int perf_buffer__process_records(struct perf_buffer *pb, struct perf_cpu_buf *cpu_buf) { enum bpf_perf_event_ret ret; ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, pb->page_size, &cpu_buf->buf, &cpu_buf->buf_size, perf_buffer__process_record, cpu_buf); if (ret != LIBBPF_PERF_EVENT_CONT) return ret; return 0; } int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) { int i, cnt, err; cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); for (i = 0; i < cnt; i++) { struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; err = perf_buffer__process_records(pb, cpu_buf); if (err) { pr_warn("error while processing records: %d\n", err); return err; } } return cnt < 0 ? -errno : cnt; } struct bpf_prog_info_array_desc { int array_offset; /* e.g. offset of jited_prog_insns */ int count_offset; /* e.g. offset of jited_prog_len */ int size_offset; /* > 0: offset of rec size, * < 0: fix size of -size_offset */ }; static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { [BPF_PROG_INFO_JITED_INSNS] = { offsetof(struct bpf_prog_info, jited_prog_insns), offsetof(struct bpf_prog_info, jited_prog_len), -1, }, [BPF_PROG_INFO_XLATED_INSNS] = { offsetof(struct bpf_prog_info, xlated_prog_insns), offsetof(struct bpf_prog_info, xlated_prog_len), -1, }, [BPF_PROG_INFO_MAP_IDS] = { offsetof(struct bpf_prog_info, map_ids), offsetof(struct bpf_prog_info, nr_map_ids), -(int)sizeof(__u32), }, [BPF_PROG_INFO_JITED_KSYMS] = { offsetof(struct bpf_prog_info, jited_ksyms), offsetof(struct bpf_prog_info, nr_jited_ksyms), -(int)sizeof(__u64), }, [BPF_PROG_INFO_JITED_FUNC_LENS] = { offsetof(struct bpf_prog_info, jited_func_lens), offsetof(struct bpf_prog_info, nr_jited_func_lens), -(int)sizeof(__u32), }, [BPF_PROG_INFO_FUNC_INFO] = { offsetof(struct bpf_prog_info, func_info), offsetof(struct bpf_prog_info, nr_func_info), offsetof(struct bpf_prog_info, func_info_rec_size), }, [BPF_PROG_INFO_LINE_INFO] = { offsetof(struct bpf_prog_info, line_info), offsetof(struct bpf_prog_info, nr_line_info), offsetof(struct bpf_prog_info, line_info_rec_size), }, [BPF_PROG_INFO_JITED_LINE_INFO] = { offsetof(struct bpf_prog_info, jited_line_info), offsetof(struct bpf_prog_info, nr_jited_line_info), offsetof(struct bpf_prog_info, jited_line_info_rec_size), }, [BPF_PROG_INFO_PROG_TAGS] = { offsetof(struct bpf_prog_info, prog_tags), offsetof(struct bpf_prog_info, nr_prog_tags), -(int)sizeof(__u8) * BPF_TAG_SIZE, }, }; static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, int offset) { __u32 *array = (__u32 *)info; if (offset >= 0) return array[offset / sizeof(__u32)]; return -(int)offset; } static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, int offset) { __u64 *array = (__u64 *)info; if (offset >= 0) return array[offset / sizeof(__u64)]; return -(int)offset; } static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, __u32 val) { __u32 *array = (__u32 *)info; if (offset >= 0) array[offset / sizeof(__u32)] = val; } static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, __u64 val) { __u64 *array = (__u64 *)info; if (offset >= 0) array[offset / sizeof(__u64)] = val; } struct bpf_prog_info_linear * bpf_program__get_prog_info_linear(int fd, __u64 arrays) { struct bpf_prog_info_linear *info_linear; struct bpf_prog_info info = {}; __u32 info_len = sizeof(info); __u32 data_len = 0; int i, err; void *ptr; if (arrays >> BPF_PROG_INFO_LAST_ARRAY) return ERR_PTR(-EINVAL); /* step 1: get array dimensions */ err = bpf_obj_get_info_by_fd(fd, &info, &info_len); if (err) { pr_debug("can't get prog info: %s", strerror(errno)); return ERR_PTR(-EFAULT); } /* step 2: calculate total size of all arrays */ for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { bool include_array = (arrays & (1UL << i)) > 0; struct bpf_prog_info_array_desc *desc; __u32 count, size; desc = bpf_prog_info_array_desc + i; /* kernel is too old to support this field */ if (info_len < desc->array_offset + sizeof(__u32) || info_len < desc->count_offset + sizeof(__u32) || (desc->size_offset > 0 && info_len < desc->size_offset)) include_array = false; if (!include_array) { arrays &= ~(1UL << i); /* clear the bit */ continue; } count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); data_len += count * size; } /* step 3: allocate continuous memory */ data_len = roundup(data_len, sizeof(__u64)); info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); if (!info_linear) return ERR_PTR(-ENOMEM); /* step 4: fill data to info_linear->info */ info_linear->arrays = arrays; memset(&info_linear->info, 0, sizeof(info)); ptr = info_linear->data; for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { struct bpf_prog_info_array_desc *desc; __u32 count, size; if ((arrays & (1UL << i)) == 0) continue; desc = bpf_prog_info_array_desc + i; count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); bpf_prog_info_set_offset_u32(&info_linear->info, desc->count_offset, count); bpf_prog_info_set_offset_u32(&info_linear->info, desc->size_offset, size); bpf_prog_info_set_offset_u64(&info_linear->info, desc->array_offset, ptr_to_u64(ptr)); ptr += count * size; } /* step 5: call syscall again to get required arrays */ err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); if (err) { pr_debug("can't get prog info: %s", strerror(errno)); free(info_linear); return ERR_PTR(-EFAULT); } /* step 6: verify the data */ for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { struct bpf_prog_info_array_desc *desc; __u32 v1, v2; if ((arrays & (1UL << i)) == 0) continue; desc = bpf_prog_info_array_desc + i; v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); v2 = bpf_prog_info_read_offset_u32(&info_linear->info, desc->count_offset); if (v1 != v2) pr_warn("%s: mismatch in element count\n", __func__); v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); v2 = bpf_prog_info_read_offset_u32(&info_linear->info, desc->size_offset); if (v1 != v2) pr_warn("%s: mismatch in rec size\n", __func__); } /* step 7: update info_len and data_len */ info_linear->info_len = sizeof(struct bpf_prog_info); info_linear->data_len = data_len; return info_linear; } void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) { int i; for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { struct bpf_prog_info_array_desc *desc; __u64 addr, offs; if ((info_linear->arrays & (1UL << i)) == 0) continue; desc = bpf_prog_info_array_desc + i; addr = bpf_prog_info_read_offset_u64(&info_linear->info, desc->array_offset); offs = addr - ptr_to_u64(info_linear->data); bpf_prog_info_set_offset_u64(&info_linear->info, desc->array_offset, offs); } } void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) { int i; for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { struct bpf_prog_info_array_desc *desc; __u64 addr, offs; if ((info_linear->arrays & (1UL << i)) == 0) continue; desc = bpf_prog_info_array_desc + i; offs = bpf_prog_info_read_offset_u64(&info_linear->info, desc->array_offset); addr = offs + ptr_to_u64(info_linear->data); bpf_prog_info_set_offset_u64(&info_linear->info, desc->array_offset, addr); } } int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) { int err = 0, n, len, start, end = -1; bool *tmp; *mask = NULL; *mask_sz = 0; /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ while (*s) { if (*s == ',' || *s == '\n') { s++; continue; } n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); if (n <= 0 || n > 2) { pr_warn("Failed to get CPU range %s: %d\n", s, n); err = -EINVAL; goto cleanup; } else if (n == 1) { end = start; } if (start < 0 || start > end) { pr_warn("Invalid CPU range [%d,%d] in %s\n", start, end, s); err = -EINVAL; goto cleanup; } tmp = realloc(*mask, end + 1); if (!tmp) { err = -ENOMEM; goto cleanup; } *mask = tmp; memset(tmp + *mask_sz, 0, start - *mask_sz); memset(tmp + start, 1, end - start + 1); *mask_sz = end + 1; s += len; } if (!*mask_sz) { pr_warn("Empty CPU range\n"); return -EINVAL; } return 0; cleanup: free(*mask); *mask = NULL; return err; } int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) { int fd, err = 0, len; char buf[128]; fd = open(fcpu, O_RDONLY); if (fd < 0) { err = -errno; pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); return err; } len = read(fd, buf, sizeof(buf)); close(fd); if (len <= 0) { err = len ? -errno : -EINVAL; pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); return err; } if (len >= sizeof(buf)) { pr_warn("CPU mask is too big in file %s\n", fcpu); return -E2BIG; } buf[len] = '\0'; return parse_cpu_mask_str(buf, mask, mask_sz); } int libbpf_num_possible_cpus(void) { static const char *fcpu = "/sys/devices/system/cpu/possible"; static int cpus; int err, n, i, tmp_cpus; bool *mask; tmp_cpus = READ_ONCE(cpus); if (tmp_cpus > 0) return tmp_cpus; err = parse_cpu_mask_file(fcpu, &mask, &n); if (err) return err; tmp_cpus = 0; for (i = 0; i < n; i++) { if (mask[i]) tmp_cpus++; } free(mask); WRITE_ONCE(cpus, tmp_cpus); return tmp_cpus; }