/* * NVMe over Fabrics RDMA target. * Copyright (c) 2015-2016 HGST, a Western Digital Company. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nvmet.h" /* * We allow up to a page of inline data to go with the SQE */ #define NVMET_RDMA_INLINE_DATA_SIZE PAGE_SIZE struct nvmet_rdma_cmd { struct ib_sge sge[2]; struct ib_cqe cqe; struct ib_recv_wr wr; struct scatterlist inline_sg; struct page *inline_page; struct nvme_command *nvme_cmd; struct nvmet_rdma_queue *queue; }; enum { NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1), }; struct nvmet_rdma_rsp { struct ib_sge send_sge; struct ib_cqe send_cqe; struct ib_send_wr send_wr; struct nvmet_rdma_cmd *cmd; struct nvmet_rdma_queue *queue; struct ib_cqe read_cqe; struct rdma_rw_ctx rw; struct nvmet_req req; u8 n_rdma; u32 flags; u32 invalidate_rkey; struct list_head wait_list; struct list_head free_list; }; enum nvmet_rdma_queue_state { NVMET_RDMA_Q_CONNECTING, NVMET_RDMA_Q_LIVE, NVMET_RDMA_Q_DISCONNECTING, NVMET_RDMA_IN_DEVICE_REMOVAL, }; struct nvmet_rdma_queue { struct rdma_cm_id *cm_id; struct nvmet_port *port; struct ib_cq *cq; atomic_t sq_wr_avail; struct nvmet_rdma_device *dev; spinlock_t state_lock; enum nvmet_rdma_queue_state state; struct nvmet_cq nvme_cq; struct nvmet_sq nvme_sq; struct nvmet_rdma_rsp *rsps; struct list_head free_rsps; spinlock_t rsps_lock; struct nvmet_rdma_cmd *cmds; struct work_struct release_work; struct list_head rsp_wait_list; struct list_head rsp_wr_wait_list; spinlock_t rsp_wr_wait_lock; int idx; int host_qid; int recv_queue_size; int send_queue_size; struct list_head queue_list; }; struct nvmet_rdma_device { struct ib_device *device; struct ib_pd *pd; struct ib_srq *srq; struct nvmet_rdma_cmd *srq_cmds; size_t srq_size; struct kref ref; struct list_head entry; }; static bool nvmet_rdma_use_srq; module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); MODULE_PARM_DESC(use_srq, "Use shared receive queue."); static DEFINE_IDA(nvmet_rdma_queue_ida); static LIST_HEAD(nvmet_rdma_queue_list); static DEFINE_MUTEX(nvmet_rdma_queue_mutex); static LIST_HEAD(device_list); static DEFINE_MUTEX(device_list_mutex); static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); static struct nvmet_fabrics_ops nvmet_rdma_ops; /* XXX: really should move to a generic header sooner or later.. */ static inline u32 get_unaligned_le24(const u8 *p) { return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16; } static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) { return nvme_is_write(rsp->req.cmd) && rsp->req.data_len && !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); } static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) { return !nvme_is_write(rsp->req.cmd) && rsp->req.data_len && !rsp->req.rsp->status && !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); } static inline struct nvmet_rdma_rsp * nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) { struct nvmet_rdma_rsp *rsp; unsigned long flags; spin_lock_irqsave(&queue->rsps_lock, flags); rsp = list_first_entry(&queue->free_rsps, struct nvmet_rdma_rsp, free_list); list_del(&rsp->free_list); spin_unlock_irqrestore(&queue->rsps_lock, flags); return rsp; } static inline void nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) { unsigned long flags; spin_lock_irqsave(&rsp->queue->rsps_lock, flags); list_add_tail(&rsp->free_list, &rsp->queue->free_rsps); spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags); } static void nvmet_rdma_free_sgl(struct scatterlist *sgl, unsigned int nents) { struct scatterlist *sg; int count; if (!sgl || !nents) return; for_each_sg(sgl, sg, nents, count) __free_page(sg_page(sg)); kfree(sgl); } static int nvmet_rdma_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length) { struct scatterlist *sg; struct page *page; unsigned int nent; int i = 0; nent = DIV_ROUND_UP(length, PAGE_SIZE); sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL); if (!sg) goto out; sg_init_table(sg, nent); while (length) { u32 page_len = min_t(u32, length, PAGE_SIZE); page = alloc_page(GFP_KERNEL); if (!page) goto out_free_pages; sg_set_page(&sg[i], page, page_len, 0); length -= page_len; i++; } *sgl = sg; *nents = nent; return 0; out_free_pages: while (i > 0) { i--; __free_page(sg_page(&sg[i])); } kfree(sg); out: return NVME_SC_INTERNAL; } static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, struct nvmet_rdma_cmd *c, bool admin) { /* NVMe command / RDMA RECV */ c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); if (!c->nvme_cmd) goto out; c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) goto out_free_cmd; c->sge[0].length = sizeof(*c->nvme_cmd); c->sge[0].lkey = ndev->pd->local_dma_lkey; if (!admin) { c->inline_page = alloc_pages(GFP_KERNEL, get_order(NVMET_RDMA_INLINE_DATA_SIZE)); if (!c->inline_page) goto out_unmap_cmd; c->sge[1].addr = ib_dma_map_page(ndev->device, c->inline_page, 0, NVMET_RDMA_INLINE_DATA_SIZE, DMA_FROM_DEVICE); if (ib_dma_mapping_error(ndev->device, c->sge[1].addr)) goto out_free_inline_page; c->sge[1].length = NVMET_RDMA_INLINE_DATA_SIZE; c->sge[1].lkey = ndev->pd->local_dma_lkey; } c->cqe.done = nvmet_rdma_recv_done; c->wr.wr_cqe = &c->cqe; c->wr.sg_list = c->sge; c->wr.num_sge = admin ? 1 : 2; return 0; out_free_inline_page: if (!admin) { __free_pages(c->inline_page, get_order(NVMET_RDMA_INLINE_DATA_SIZE)); } out_unmap_cmd: ib_dma_unmap_single(ndev->device, c->sge[0].addr, sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); out_free_cmd: kfree(c->nvme_cmd); out: return -ENOMEM; } static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, struct nvmet_rdma_cmd *c, bool admin) { if (!admin) { ib_dma_unmap_page(ndev->device, c->sge[1].addr, NVMET_RDMA_INLINE_DATA_SIZE, DMA_FROM_DEVICE); __free_pages(c->inline_page, get_order(NVMET_RDMA_INLINE_DATA_SIZE)); } ib_dma_unmap_single(ndev->device, c->sge[0].addr, sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); kfree(c->nvme_cmd); } static struct nvmet_rdma_cmd * nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, int nr_cmds, bool admin) { struct nvmet_rdma_cmd *cmds; int ret = -EINVAL, i; cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); if (!cmds) goto out; for (i = 0; i < nr_cmds; i++) { ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); if (ret) goto out_free; } return cmds; out_free: while (--i >= 0) nvmet_rdma_free_cmd(ndev, cmds + i, admin); kfree(cmds); out: return ERR_PTR(ret); } static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) { int i; for (i = 0; i < nr_cmds; i++) nvmet_rdma_free_cmd(ndev, cmds + i, admin); kfree(cmds); } static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, struct nvmet_rdma_rsp *r) { /* NVMe CQE / RDMA SEND */ r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL); if (!r->req.rsp) goto out; r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp, sizeof(*r->req.rsp), DMA_TO_DEVICE); if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) goto out_free_rsp; r->send_sge.length = sizeof(*r->req.rsp); r->send_sge.lkey = ndev->pd->local_dma_lkey; r->send_cqe.done = nvmet_rdma_send_done; r->send_wr.wr_cqe = &r->send_cqe; r->send_wr.sg_list = &r->send_sge; r->send_wr.num_sge = 1; r->send_wr.send_flags = IB_SEND_SIGNALED; /* Data In / RDMA READ */ r->read_cqe.done = nvmet_rdma_read_data_done; return 0; out_free_rsp: kfree(r->req.rsp); out: return -ENOMEM; } static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, struct nvmet_rdma_rsp *r) { ib_dma_unmap_single(ndev->device, r->send_sge.addr, sizeof(*r->req.rsp), DMA_TO_DEVICE); kfree(r->req.rsp); } static int nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) { struct nvmet_rdma_device *ndev = queue->dev; int nr_rsps = queue->recv_queue_size * 2; int ret = -EINVAL, i; queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), GFP_KERNEL); if (!queue->rsps) goto out; for (i = 0; i < nr_rsps; i++) { struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; ret = nvmet_rdma_alloc_rsp(ndev, rsp); if (ret) goto out_free; list_add_tail(&rsp->free_list, &queue->free_rsps); } return 0; out_free: while (--i >= 0) { struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; list_del(&rsp->free_list); nvmet_rdma_free_rsp(ndev, rsp); } kfree(queue->rsps); out: return ret; } static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) { struct nvmet_rdma_device *ndev = queue->dev; int i, nr_rsps = queue->recv_queue_size * 2; for (i = 0; i < nr_rsps; i++) { struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; list_del(&rsp->free_list); nvmet_rdma_free_rsp(ndev, rsp); } kfree(queue->rsps); } static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, struct nvmet_rdma_cmd *cmd) { struct ib_recv_wr *bad_wr; if (ndev->srq) return ib_post_srq_recv(ndev->srq, &cmd->wr, &bad_wr); return ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, &bad_wr); } static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) { spin_lock(&queue->rsp_wr_wait_lock); while (!list_empty(&queue->rsp_wr_wait_list)) { struct nvmet_rdma_rsp *rsp; bool ret; rsp = list_entry(queue->rsp_wr_wait_list.next, struct nvmet_rdma_rsp, wait_list); list_del(&rsp->wait_list); spin_unlock(&queue->rsp_wr_wait_lock); ret = nvmet_rdma_execute_command(rsp); spin_lock(&queue->rsp_wr_wait_lock); if (!ret) { list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); break; } } spin_unlock(&queue->rsp_wr_wait_lock); } static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) { struct nvmet_rdma_queue *queue = rsp->queue; atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); if (rsp->n_rdma) { rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp, queue->cm_id->port_num, rsp->req.sg, rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); } if (rsp->req.sg != &rsp->cmd->inline_sg) nvmet_rdma_free_sgl(rsp->req.sg, rsp->req.sg_cnt); if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) nvmet_rdma_process_wr_wait_list(queue); nvmet_rdma_put_rsp(rsp); } static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) { if (queue->nvme_sq.ctrl) { nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); } else { /* * we didn't setup the controller yet in case * of admin connect error, just disconnect and * cleanup the queue */ nvmet_rdma_queue_disconnect(queue); } } static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) { struct nvmet_rdma_rsp *rsp = container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); nvmet_rdma_release_rsp(rsp); if (unlikely(wc->status != IB_WC_SUCCESS && wc->status != IB_WC_WR_FLUSH_ERR)) { pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); nvmet_rdma_error_comp(rsp->queue); } } static void nvmet_rdma_queue_response(struct nvmet_req *req) { struct nvmet_rdma_rsp *rsp = container_of(req, struct nvmet_rdma_rsp, req); struct rdma_cm_id *cm_id = rsp->queue->cm_id; struct ib_send_wr *first_wr, *bad_wr; if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) { rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; } else { rsp->send_wr.opcode = IB_WR_SEND; } if (nvmet_rdma_need_data_out(rsp)) first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, cm_id->port_num, NULL, &rsp->send_wr); else first_wr = &rsp->send_wr; nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); if (ib_post_send(cm_id->qp, first_wr, &bad_wr)) { pr_err("sending cmd response failed\n"); nvmet_rdma_release_rsp(rsp); } } static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) { struct nvmet_rdma_rsp *rsp = container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); struct nvmet_rdma_queue *queue = cq->cq_context; WARN_ON(rsp->n_rdma <= 0); atomic_add(rsp->n_rdma, &queue->sq_wr_avail); rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp, queue->cm_id->port_num, rsp->req.sg, rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); rsp->n_rdma = 0; if (unlikely(wc->status != IB_WC_SUCCESS)) { nvmet_rdma_release_rsp(rsp); if (wc->status != IB_WC_WR_FLUSH_ERR) { pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); nvmet_rdma_error_comp(queue); } return; } rsp->req.execute(&rsp->req); } static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, u64 off) { sg_init_table(&rsp->cmd->inline_sg, 1); sg_set_page(&rsp->cmd->inline_sg, rsp->cmd->inline_page, len, off); rsp->req.sg = &rsp->cmd->inline_sg; rsp->req.sg_cnt = 1; } static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) { struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; u64 off = le64_to_cpu(sgl->addr); u32 len = le32_to_cpu(sgl->length); if (!nvme_is_write(rsp->req.cmd)) return NVME_SC_INVALID_FIELD | NVME_SC_DNR; if (off + len > NVMET_RDMA_INLINE_DATA_SIZE) { pr_err("invalid inline data offset!\n"); return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; } /* no data command? */ if (!len) return 0; nvmet_rdma_use_inline_sg(rsp, len, off); rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; return 0; } static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, struct nvme_keyed_sgl_desc *sgl, bool invalidate) { struct rdma_cm_id *cm_id = rsp->queue->cm_id; u64 addr = le64_to_cpu(sgl->addr); u32 len = get_unaligned_le24(sgl->length); u32 key = get_unaligned_le32(sgl->key); int ret; u16 status; /* no data command? */ if (!len) return 0; status = nvmet_rdma_alloc_sgl(&rsp->req.sg, &rsp->req.sg_cnt, len); if (status) return status; ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, rsp->req.sg, rsp->req.sg_cnt, 0, addr, key, nvmet_data_dir(&rsp->req)); if (ret < 0) return NVME_SC_INTERNAL; rsp->n_rdma += ret; if (invalidate) { rsp->invalidate_rkey = key; rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY; } return 0; } static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) { struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; switch (sgl->type >> 4) { case NVME_SGL_FMT_DATA_DESC: switch (sgl->type & 0xf) { case NVME_SGL_FMT_OFFSET: return nvmet_rdma_map_sgl_inline(rsp); default: pr_err("invalid SGL subtype: %#x\n", sgl->type); return NVME_SC_INVALID_FIELD | NVME_SC_DNR; } case NVME_KEY_SGL_FMT_DATA_DESC: switch (sgl->type & 0xf) { case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); case NVME_SGL_FMT_ADDRESS: return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); default: pr_err("invalid SGL subtype: %#x\n", sgl->type); return NVME_SC_INVALID_FIELD | NVME_SC_DNR; } default: pr_err("invalid SGL type: %#x\n", sgl->type); return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR; } } static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) { struct nvmet_rdma_queue *queue = rsp->queue; if (unlikely(atomic_sub_return(1 + rsp->n_rdma, &queue->sq_wr_avail) < 0)) { pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 1 + rsp->n_rdma, queue->idx, queue->nvme_sq.ctrl->cntlid); atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); return false; } if (nvmet_rdma_need_data_in(rsp)) { if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp, queue->cm_id->port_num, &rsp->read_cqe, NULL)) nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); } else { rsp->req.execute(&rsp->req); } return true; } static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, struct nvmet_rdma_rsp *cmd) { u16 status; cmd->queue = queue; cmd->n_rdma = 0; cmd->req.port = queue->port; if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, &queue->nvme_sq, &nvmet_rdma_ops)) return; status = nvmet_rdma_map_sgl(cmd); if (status) goto out_err; if (unlikely(!nvmet_rdma_execute_command(cmd))) { spin_lock(&queue->rsp_wr_wait_lock); list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); spin_unlock(&queue->rsp_wr_wait_lock); } return; out_err: nvmet_req_complete(&cmd->req, status); } static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) { struct nvmet_rdma_cmd *cmd = container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); struct nvmet_rdma_queue *queue = cq->cq_context; struct nvmet_rdma_rsp *rsp; if (unlikely(wc->status != IB_WC_SUCCESS)) { if (wc->status != IB_WC_WR_FLUSH_ERR) { pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); nvmet_rdma_error_comp(queue); } return; } if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); nvmet_rdma_error_comp(queue); return; } cmd->queue = queue; rsp = nvmet_rdma_get_rsp(queue); rsp->cmd = cmd; rsp->flags = 0; rsp->req.cmd = cmd->nvme_cmd; if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { unsigned long flags; spin_lock_irqsave(&queue->state_lock, flags); if (queue->state == NVMET_RDMA_Q_CONNECTING) list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); else nvmet_rdma_put_rsp(rsp); spin_unlock_irqrestore(&queue->state_lock, flags); return; } nvmet_rdma_handle_command(queue, rsp); } static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev) { if (!ndev->srq) return; nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false); ib_destroy_srq(ndev->srq); } static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) { struct ib_srq_init_attr srq_attr = { NULL, }; struct ib_srq *srq; size_t srq_size; int ret, i; srq_size = 4095; /* XXX: tune */ srq_attr.attr.max_wr = srq_size; srq_attr.attr.max_sge = 2; srq_attr.attr.srq_limit = 0; srq_attr.srq_type = IB_SRQT_BASIC; srq = ib_create_srq(ndev->pd, &srq_attr); if (IS_ERR(srq)) { /* * If SRQs aren't supported we just go ahead and use normal * non-shared receive queues. */ pr_info("SRQ requested but not supported.\n"); return 0; } ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); if (IS_ERR(ndev->srq_cmds)) { ret = PTR_ERR(ndev->srq_cmds); goto out_destroy_srq; } ndev->srq = srq; ndev->srq_size = srq_size; for (i = 0; i < srq_size; i++) nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]); return 0; out_destroy_srq: ib_destroy_srq(srq); return ret; } static void nvmet_rdma_free_dev(struct kref *ref) { struct nvmet_rdma_device *ndev = container_of(ref, struct nvmet_rdma_device, ref); mutex_lock(&device_list_mutex); list_del(&ndev->entry); mutex_unlock(&device_list_mutex); nvmet_rdma_destroy_srq(ndev); ib_dealloc_pd(ndev->pd); kfree(ndev); } static struct nvmet_rdma_device * nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) { struct nvmet_rdma_device *ndev; int ret; mutex_lock(&device_list_mutex); list_for_each_entry(ndev, &device_list, entry) { if (ndev->device->node_guid == cm_id->device->node_guid && kref_get_unless_zero(&ndev->ref)) goto out_unlock; } ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); if (!ndev) goto out_err; ndev->device = cm_id->device; kref_init(&ndev->ref); ndev->pd = ib_alloc_pd(ndev->device, 0); if (IS_ERR(ndev->pd)) goto out_free_dev; if (nvmet_rdma_use_srq) { ret = nvmet_rdma_init_srq(ndev); if (ret) goto out_free_pd; } list_add(&ndev->entry, &device_list); out_unlock: mutex_unlock(&device_list_mutex); pr_debug("added %s.\n", ndev->device->name); return ndev; out_free_pd: ib_dealloc_pd(ndev->pd); out_free_dev: kfree(ndev); out_err: mutex_unlock(&device_list_mutex); return NULL; } static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) { struct ib_qp_init_attr qp_attr; struct nvmet_rdma_device *ndev = queue->dev; int comp_vector, nr_cqe, ret, i; /* * Spread the io queues across completion vectors, * but still keep all admin queues on vector 0. */ comp_vector = !queue->host_qid ? 0 : queue->idx % ndev->device->num_comp_vectors; /* * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. */ nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; queue->cq = ib_alloc_cq(ndev->device, queue, nr_cqe + 1, comp_vector, IB_POLL_WORKQUEUE); if (IS_ERR(queue->cq)) { ret = PTR_ERR(queue->cq); pr_err("failed to create CQ cqe= %d ret= %d\n", nr_cqe + 1, ret); goto out; } memset(&qp_attr, 0, sizeof(qp_attr)); qp_attr.qp_context = queue; qp_attr.event_handler = nvmet_rdma_qp_event; qp_attr.send_cq = queue->cq; qp_attr.recv_cq = queue->cq; qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; qp_attr.qp_type = IB_QPT_RC; /* +1 for drain */ qp_attr.cap.max_send_wr = queue->send_queue_size + 1; qp_attr.cap.max_rdma_ctxs = queue->send_queue_size; qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, ndev->device->attrs.max_sge); if (ndev->srq) { qp_attr.srq = ndev->srq; } else { /* +1 for drain */ qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; qp_attr.cap.max_recv_sge = 2; } ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); if (ret) { pr_err("failed to create_qp ret= %d\n", ret); goto err_destroy_cq; } atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, qp_attr.cap.max_send_wr, queue->cm_id); if (!ndev->srq) { for (i = 0; i < queue->recv_queue_size; i++) { queue->cmds[i].queue = queue; nvmet_rdma_post_recv(ndev, &queue->cmds[i]); } } out: return ret; err_destroy_cq: ib_free_cq(queue->cq); goto out; } static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) { rdma_destroy_qp(queue->cm_id); ib_free_cq(queue->cq); } static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) { pr_info("freeing queue %d\n", queue->idx); nvmet_sq_destroy(&queue->nvme_sq); nvmet_rdma_destroy_queue_ib(queue); if (!queue->dev->srq) { nvmet_rdma_free_cmds(queue->dev, queue->cmds, queue->recv_queue_size, !queue->host_qid); } nvmet_rdma_free_rsps(queue); ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); kfree(queue); } static void nvmet_rdma_release_queue_work(struct work_struct *w) { struct nvmet_rdma_queue *queue = container_of(w, struct nvmet_rdma_queue, release_work); struct rdma_cm_id *cm_id = queue->cm_id; struct nvmet_rdma_device *dev = queue->dev; enum nvmet_rdma_queue_state state = queue->state; nvmet_rdma_free_queue(queue); if (state != NVMET_RDMA_IN_DEVICE_REMOVAL) rdma_destroy_id(cm_id); kref_put(&dev->ref, nvmet_rdma_free_dev); } static int nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, struct nvmet_rdma_queue *queue) { struct nvme_rdma_cm_req *req; req = (struct nvme_rdma_cm_req *)conn->private_data; if (!req || conn->private_data_len == 0) return NVME_RDMA_CM_INVALID_LEN; if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) return NVME_RDMA_CM_INVALID_RECFMT; queue->host_qid = le16_to_cpu(req->qid); /* * req->hsqsize corresponds to our recv queue size plus 1 * req->hrqsize corresponds to our send queue size */ queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; queue->send_queue_size = le16_to_cpu(req->hrqsize); if (!queue->host_qid && queue->recv_queue_size > NVMF_AQ_DEPTH) return NVME_RDMA_CM_INVALID_HSQSIZE; /* XXX: Should we enforce some kind of max for IO queues? */ return 0; } static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, enum nvme_rdma_cm_status status) { struct nvme_rdma_cm_rej rej; rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); rej.sts = cpu_to_le16(status); return rdma_reject(cm_id, (void *)&rej, sizeof(rej)); } static struct nvmet_rdma_queue * nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, struct rdma_cm_id *cm_id, struct rdma_cm_event *event) { struct nvmet_rdma_queue *queue; int ret; queue = kzalloc(sizeof(*queue), GFP_KERNEL); if (!queue) { ret = NVME_RDMA_CM_NO_RSC; goto out_reject; } ret = nvmet_sq_init(&queue->nvme_sq); if (ret) { ret = NVME_RDMA_CM_NO_RSC; goto out_free_queue; } ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); if (ret) goto out_destroy_sq; /* * Schedules the actual release because calling rdma_destroy_id from * inside a CM callback would trigger a deadlock. (great API design..) */ INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); queue->dev = ndev; queue->cm_id = cm_id; spin_lock_init(&queue->state_lock); queue->state = NVMET_RDMA_Q_CONNECTING; INIT_LIST_HEAD(&queue->rsp_wait_list); INIT_LIST_HEAD(&queue->rsp_wr_wait_list); spin_lock_init(&queue->rsp_wr_wait_lock); INIT_LIST_HEAD(&queue->free_rsps); spin_lock_init(&queue->rsps_lock); queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL); if (queue->idx < 0) { ret = NVME_RDMA_CM_NO_RSC; goto out_free_queue; } ret = nvmet_rdma_alloc_rsps(queue); if (ret) { ret = NVME_RDMA_CM_NO_RSC; goto out_ida_remove; } if (!ndev->srq) { queue->cmds = nvmet_rdma_alloc_cmds(ndev, queue->recv_queue_size, !queue->host_qid); if (IS_ERR(queue->cmds)) { ret = NVME_RDMA_CM_NO_RSC; goto out_free_responses; } } ret = nvmet_rdma_create_queue_ib(queue); if (ret) { pr_err("%s: creating RDMA queue failed (%d).\n", __func__, ret); ret = NVME_RDMA_CM_NO_RSC; goto out_free_cmds; } return queue; out_free_cmds: if (!ndev->srq) { nvmet_rdma_free_cmds(queue->dev, queue->cmds, queue->recv_queue_size, !queue->host_qid); } out_free_responses: nvmet_rdma_free_rsps(queue); out_ida_remove: ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); out_destroy_sq: nvmet_sq_destroy(&queue->nvme_sq); out_free_queue: kfree(queue); out_reject: pr_debug("rejecting connect request with status code %d\n", ret); nvmet_rdma_cm_reject(cm_id, ret); return NULL; } static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) { struct nvmet_rdma_queue *queue = priv; switch (event->event) { case IB_EVENT_COMM_EST: rdma_notify(queue->cm_id, event->event); break; default: pr_err("received unrecognized IB QP event %d\n", event->event); break; } } static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, struct nvmet_rdma_queue *queue, struct rdma_conn_param *p) { struct rdma_conn_param param = { }; struct nvme_rdma_cm_rep priv = { }; int ret = -ENOMEM; param.rnr_retry_count = 7; param.flow_control = 1; param.initiator_depth = min_t(u8, p->initiator_depth, queue->dev->device->attrs.max_qp_init_rd_atom); param.private_data = &priv; param.private_data_len = sizeof(priv); priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); priv.crqsize = cpu_to_le16(queue->recv_queue_size); ret = rdma_accept(cm_id, ¶m); if (ret) pr_err("rdma_accept failed (error code = %d)\n", ret); return ret; } static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, struct rdma_cm_event *event) { struct nvmet_rdma_device *ndev; struct nvmet_rdma_queue *queue; int ret = -EINVAL; ndev = nvmet_rdma_find_get_device(cm_id); if (!ndev) { pr_err("no client data!\n"); nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); return -ECONNREFUSED; } queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); if (!queue) { ret = -ENOMEM; goto put_device; } queue->port = cm_id->context; ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); if (ret) goto release_queue; mutex_lock(&nvmet_rdma_queue_mutex); list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); mutex_unlock(&nvmet_rdma_queue_mutex); return 0; release_queue: nvmet_rdma_free_queue(queue); put_device: kref_put(&ndev->ref, nvmet_rdma_free_dev); return ret; } static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) { unsigned long flags; spin_lock_irqsave(&queue->state_lock, flags); if (queue->state != NVMET_RDMA_Q_CONNECTING) { pr_warn("trying to establish a connected queue\n"); goto out_unlock; } queue->state = NVMET_RDMA_Q_LIVE; while (!list_empty(&queue->rsp_wait_list)) { struct nvmet_rdma_rsp *cmd; cmd = list_first_entry(&queue->rsp_wait_list, struct nvmet_rdma_rsp, wait_list); list_del(&cmd->wait_list); spin_unlock_irqrestore(&queue->state_lock, flags); nvmet_rdma_handle_command(queue, cmd); spin_lock_irqsave(&queue->state_lock, flags); } out_unlock: spin_unlock_irqrestore(&queue->state_lock, flags); } static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) { bool disconnect = false; unsigned long flags; pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); spin_lock_irqsave(&queue->state_lock, flags); switch (queue->state) { case NVMET_RDMA_Q_CONNECTING: case NVMET_RDMA_Q_LIVE: queue->state = NVMET_RDMA_Q_DISCONNECTING; case NVMET_RDMA_IN_DEVICE_REMOVAL: disconnect = true; break; case NVMET_RDMA_Q_DISCONNECTING: break; } spin_unlock_irqrestore(&queue->state_lock, flags); if (disconnect) { rdma_disconnect(queue->cm_id); ib_drain_qp(queue->cm_id->qp); schedule_work(&queue->release_work); } } static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) { bool disconnect = false; mutex_lock(&nvmet_rdma_queue_mutex); if (!list_empty(&queue->queue_list)) { list_del_init(&queue->queue_list); disconnect = true; } mutex_unlock(&nvmet_rdma_queue_mutex); if (disconnect) __nvmet_rdma_queue_disconnect(queue); } static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, struct nvmet_rdma_queue *queue) { WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); pr_err("failed to connect queue\n"); schedule_work(&queue->release_work); } /** * nvme_rdma_device_removal() - Handle RDMA device removal * @queue: nvmet rdma queue (cm id qp_context) * @addr: nvmet address (cm_id context) * * DEVICE_REMOVAL event notifies us that the RDMA device is about * to unplug so we should take care of destroying our RDMA resources. * This event will be generated for each allocated cm_id. * * Note that this event can be generated on a normal queue cm_id * and/or a device bound listener cm_id (where in this case * queue will be null). * * we claim ownership on destroying the cm_id. For queues we move * the queue state to NVMET_RDMA_IN_DEVICE_REMOVAL and for port * we nullify the priv to prevent double cm_id destruction and destroying * the cm_id implicitely by returning a non-zero rc to the callout. */ static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, struct nvmet_rdma_queue *queue) { unsigned long flags; if (!queue) { struct nvmet_port *port = cm_id->context; /* * This is a listener cm_id. Make sure that * future remove_port won't invoke a double * cm_id destroy. use atomic xchg to make sure * we don't compete with remove_port. */ if (xchg(&port->priv, NULL) != cm_id) return 0; } else { /* * This is a queue cm_id. Make sure that * release queue will not destroy the cm_id * and schedule all ctrl queues removal (only * if the queue is not disconnecting already). */ spin_lock_irqsave(&queue->state_lock, flags); if (queue->state != NVMET_RDMA_Q_DISCONNECTING) queue->state = NVMET_RDMA_IN_DEVICE_REMOVAL; spin_unlock_irqrestore(&queue->state_lock, flags); nvmet_rdma_queue_disconnect(queue); flush_scheduled_work(); } /* * We need to return 1 so that the core will destroy * it's own ID. What a great API design.. */ return 1; } static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, struct rdma_cm_event *event) { struct nvmet_rdma_queue *queue = NULL; int ret = 0; if (cm_id->qp) queue = cm_id->qp->qp_context; pr_debug("%s (%d): status %d id %p\n", rdma_event_msg(event->event), event->event, event->status, cm_id); switch (event->event) { case RDMA_CM_EVENT_CONNECT_REQUEST: ret = nvmet_rdma_queue_connect(cm_id, event); break; case RDMA_CM_EVENT_ESTABLISHED: nvmet_rdma_queue_established(queue); break; case RDMA_CM_EVENT_ADDR_CHANGE: case RDMA_CM_EVENT_DISCONNECTED: case RDMA_CM_EVENT_TIMEWAIT_EXIT: nvmet_rdma_queue_disconnect(queue); break; case RDMA_CM_EVENT_DEVICE_REMOVAL: ret = nvmet_rdma_device_removal(cm_id, queue); break; case RDMA_CM_EVENT_REJECTED: case RDMA_CM_EVENT_UNREACHABLE: case RDMA_CM_EVENT_CONNECT_ERROR: nvmet_rdma_queue_connect_fail(cm_id, queue); break; default: pr_err("received unrecognized RDMA CM event %d\n", event->event); break; } return ret; } static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) { struct nvmet_rdma_queue *queue; restart: mutex_lock(&nvmet_rdma_queue_mutex); list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) { if (queue->nvme_sq.ctrl == ctrl) { list_del_init(&queue->queue_list); mutex_unlock(&nvmet_rdma_queue_mutex); __nvmet_rdma_queue_disconnect(queue); goto restart; } } mutex_unlock(&nvmet_rdma_queue_mutex); } static int nvmet_rdma_add_port(struct nvmet_port *port) { struct rdma_cm_id *cm_id; struct sockaddr_in addr_in; u16 port_in; int ret; switch (port->disc_addr.adrfam) { case NVMF_ADDR_FAMILY_IP4: break; default: pr_err("address family %d not supported\n", port->disc_addr.adrfam); return -EINVAL; } ret = kstrtou16(port->disc_addr.trsvcid, 0, &port_in); if (ret) return ret; addr_in.sin_family = AF_INET; addr_in.sin_addr.s_addr = in_aton(port->disc_addr.traddr); addr_in.sin_port = htons(port_in); cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(cm_id)) { pr_err("CM ID creation failed\n"); return PTR_ERR(cm_id); } ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr_in); if (ret) { pr_err("binding CM ID to %pISpc failed (%d)\n", &addr_in, ret); goto out_destroy_id; } ret = rdma_listen(cm_id, 128); if (ret) { pr_err("listening to %pISpc failed (%d)\n", &addr_in, ret); goto out_destroy_id; } pr_info("enabling port %d (%pISpc)\n", le16_to_cpu(port->disc_addr.portid), &addr_in); port->priv = cm_id; return 0; out_destroy_id: rdma_destroy_id(cm_id); return ret; } static void nvmet_rdma_remove_port(struct nvmet_port *port) { struct rdma_cm_id *cm_id = xchg(&port->priv, NULL); if (cm_id) rdma_destroy_id(cm_id); } static struct nvmet_fabrics_ops nvmet_rdma_ops = { .owner = THIS_MODULE, .type = NVMF_TRTYPE_RDMA, .sqe_inline_size = NVMET_RDMA_INLINE_DATA_SIZE, .msdbd = 1, .has_keyed_sgls = 1, .add_port = nvmet_rdma_add_port, .remove_port = nvmet_rdma_remove_port, .queue_response = nvmet_rdma_queue_response, .delete_ctrl = nvmet_rdma_delete_ctrl, }; static int __init nvmet_rdma_init(void) { return nvmet_register_transport(&nvmet_rdma_ops); } static void __exit nvmet_rdma_exit(void) { struct nvmet_rdma_queue *queue; nvmet_unregister_transport(&nvmet_rdma_ops); flush_scheduled_work(); mutex_lock(&nvmet_rdma_queue_mutex); while ((queue = list_first_entry_or_null(&nvmet_rdma_queue_list, struct nvmet_rdma_queue, queue_list))) { list_del_init(&queue->queue_list); mutex_unlock(&nvmet_rdma_queue_mutex); __nvmet_rdma_queue_disconnect(queue); mutex_lock(&nvmet_rdma_queue_mutex); } mutex_unlock(&nvmet_rdma_queue_mutex); flush_scheduled_work(); ida_destroy(&nvmet_rdma_queue_ida); } module_init(nvmet_rdma_init); module_exit(nvmet_rdma_exit); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */