/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * Keith Packard * */ #include #include #include #include #include #include #include #include #include #include "intel_drv.h" #include "intel_ringbuffer.h" #include #include "i915_drv.h" enum { ACTIVE_LIST, INACTIVE_LIST, PINNED_LIST, }; /* As the drm_debugfs_init() routines are called before dev->dev_private is * allocated we need to hook into the minor for release. */ static int drm_add_fake_info_node(struct drm_minor *minor, struct dentry *ent, const void *key) { struct drm_info_node *node; node = kmalloc(sizeof(*node), GFP_KERNEL); if (node == NULL) { debugfs_remove(ent); return -ENOMEM; } node->minor = minor; node->dent = ent; node->info_ent = (void *) key; mutex_lock(&minor->debugfs_lock); list_add(&node->list, &minor->debugfs_list); mutex_unlock(&minor->debugfs_lock); return 0; } static int i915_capabilities(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; const struct intel_device_info *info = INTEL_INFO(dev); seq_printf(m, "gen: %d\n", info->gen); seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev)); #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x)) #define SEP_SEMICOLON ; DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON); #undef PRINT_FLAG #undef SEP_SEMICOLON return 0; } static char get_active_flag(struct drm_i915_gem_object *obj) { return obj->active ? '*' : ' '; } static char get_pin_flag(struct drm_i915_gem_object *obj) { return obj->pin_display ? 'p' : ' '; } static char get_tiling_flag(struct drm_i915_gem_object *obj) { switch (obj->tiling_mode) { default: case I915_TILING_NONE: return ' '; case I915_TILING_X: return 'X'; case I915_TILING_Y: return 'Y'; } } static char get_global_flag(struct drm_i915_gem_object *obj) { return i915_gem_obj_to_ggtt(obj) ? 'g' : ' '; } static char get_pin_mapped_flag(struct drm_i915_gem_object *obj) { return obj->mapping ? 'M' : ' '; } static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj) { u64 size = 0; struct i915_vma *vma; list_for_each_entry(vma, &obj->vma_list, obj_link) { if (vma->is_ggtt && drm_mm_node_allocated(&vma->node)) size += vma->node.size; } return size; } static void describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); struct intel_engine_cs *engine; struct i915_vma *vma; int pin_count = 0; enum intel_engine_id id; lockdep_assert_held(&obj->base.dev->struct_mutex); seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ", &obj->base, get_active_flag(obj), get_pin_flag(obj), get_tiling_flag(obj), get_global_flag(obj), get_pin_mapped_flag(obj), obj->base.size / 1024, obj->base.read_domains, obj->base.write_domain); for_each_engine_id(engine, dev_priv, id) seq_printf(m, "%x ", i915_gem_request_get_seqno(obj->last_read_req[id])); seq_printf(m, "] %x %x%s%s%s", i915_gem_request_get_seqno(obj->last_write_req), i915_gem_request_get_seqno(obj->last_fenced_req), i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level), obj->dirty ? " dirty" : "", obj->madv == I915_MADV_DONTNEED ? " purgeable" : ""); if (obj->base.name) seq_printf(m, " (name: %d)", obj->base.name); list_for_each_entry(vma, &obj->vma_list, obj_link) { if (vma->pin_count > 0) pin_count++; } seq_printf(m, " (pinned x %d)", pin_count); if (obj->pin_display) seq_printf(m, " (display)"); if (obj->fence_reg != I915_FENCE_REG_NONE) seq_printf(m, " (fence: %d)", obj->fence_reg); list_for_each_entry(vma, &obj->vma_list, obj_link) { seq_printf(m, " (%sgtt offset: %08llx, size: %08llx", vma->is_ggtt ? "g" : "pp", vma->node.start, vma->node.size); if (vma->is_ggtt) seq_printf(m, ", type: %u", vma->ggtt_view.type); seq_puts(m, ")"); } if (obj->stolen) seq_printf(m, " (stolen: %08llx)", obj->stolen->start); if (obj->pin_display || obj->fault_mappable) { char s[3], *t = s; if (obj->pin_display) *t++ = 'p'; if (obj->fault_mappable) *t++ = 'f'; *t = '\0'; seq_printf(m, " (%s mappable)", s); } if (obj->last_write_req != NULL) seq_printf(m, " (%s)", i915_gem_request_get_engine(obj->last_write_req)->name); if (obj->frontbuffer_bits) seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits); } static int i915_gem_object_list_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; uintptr_t list = (uintptr_t) node->info_ent->data; struct list_head *head; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct i915_ggtt *ggtt = &dev_priv->ggtt; struct i915_vma *vma; u64 total_obj_size, total_gtt_size; int count, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; /* FIXME: the user of this interface might want more than just GGTT */ switch (list) { case ACTIVE_LIST: seq_puts(m, "Active:\n"); head = &ggtt->base.active_list; break; case INACTIVE_LIST: seq_puts(m, "Inactive:\n"); head = &ggtt->base.inactive_list; break; default: mutex_unlock(&dev->struct_mutex); return -EINVAL; } total_obj_size = total_gtt_size = count = 0; list_for_each_entry(vma, head, vm_link) { seq_printf(m, " "); describe_obj(m, vma->obj); seq_printf(m, "\n"); total_obj_size += vma->obj->base.size; total_gtt_size += vma->node.size; count++; } mutex_unlock(&dev->struct_mutex); seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n", count, total_obj_size, total_gtt_size); return 0; } static int obj_rank_by_stolen(void *priv, struct list_head *A, struct list_head *B) { struct drm_i915_gem_object *a = container_of(A, struct drm_i915_gem_object, obj_exec_link); struct drm_i915_gem_object *b = container_of(B, struct drm_i915_gem_object, obj_exec_link); if (a->stolen->start < b->stolen->start) return -1; if (a->stolen->start > b->stolen->start) return 1; return 0; } static int i915_gem_stolen_list_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; u64 total_obj_size, total_gtt_size; LIST_HEAD(stolen); int count, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; total_obj_size = total_gtt_size = count = 0; list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { if (obj->stolen == NULL) continue; list_add(&obj->obj_exec_link, &stolen); total_obj_size += obj->base.size; total_gtt_size += i915_gem_obj_total_ggtt_size(obj); count++; } list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) { if (obj->stolen == NULL) continue; list_add(&obj->obj_exec_link, &stolen); total_obj_size += obj->base.size; count++; } list_sort(NULL, &stolen, obj_rank_by_stolen); seq_puts(m, "Stolen:\n"); while (!list_empty(&stolen)) { obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link); seq_puts(m, " "); describe_obj(m, obj); seq_putc(m, '\n'); list_del_init(&obj->obj_exec_link); } mutex_unlock(&dev->struct_mutex); seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n", count, total_obj_size, total_gtt_size); return 0; } #define count_objects(list, member) do { \ list_for_each_entry(obj, list, member) { \ size += i915_gem_obj_total_ggtt_size(obj); \ ++count; \ if (obj->map_and_fenceable) { \ mappable_size += i915_gem_obj_ggtt_size(obj); \ ++mappable_count; \ } \ } \ } while (0) struct file_stats { struct drm_i915_file_private *file_priv; unsigned long count; u64 total, unbound; u64 global, shared; u64 active, inactive; }; static int per_file_stats(int id, void *ptr, void *data) { struct drm_i915_gem_object *obj = ptr; struct file_stats *stats = data; struct i915_vma *vma; stats->count++; stats->total += obj->base.size; if (obj->base.name || obj->base.dma_buf) stats->shared += obj->base.size; if (USES_FULL_PPGTT(obj->base.dev)) { list_for_each_entry(vma, &obj->vma_list, obj_link) { struct i915_hw_ppgtt *ppgtt; if (!drm_mm_node_allocated(&vma->node)) continue; if (vma->is_ggtt) { stats->global += obj->base.size; continue; } ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base); if (ppgtt->file_priv != stats->file_priv) continue; if (obj->active) /* XXX per-vma statistic */ stats->active += obj->base.size; else stats->inactive += obj->base.size; return 0; } } else { if (i915_gem_obj_ggtt_bound(obj)) { stats->global += obj->base.size; if (obj->active) stats->active += obj->base.size; else stats->inactive += obj->base.size; return 0; } } if (!list_empty(&obj->global_list)) stats->unbound += obj->base.size; return 0; } #define print_file_stats(m, name, stats) do { \ if (stats.count) \ seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \ name, \ stats.count, \ stats.total, \ stats.active, \ stats.inactive, \ stats.global, \ stats.shared, \ stats.unbound); \ } while (0) static void print_batch_pool_stats(struct seq_file *m, struct drm_i915_private *dev_priv) { struct drm_i915_gem_object *obj; struct file_stats stats; struct intel_engine_cs *engine; int j; memset(&stats, 0, sizeof(stats)); for_each_engine(engine, dev_priv) { for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) { list_for_each_entry(obj, &engine->batch_pool.cache_list[j], batch_pool_link) per_file_stats(0, obj, &stats); } } print_file_stats(m, "[k]batch pool", stats); } static int per_file_ctx_stats(int id, void *ptr, void *data) { struct i915_gem_context *ctx = ptr; int n; for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) { if (ctx->engine[n].state) per_file_stats(0, ctx->engine[n].state, data); if (ctx->engine[n].ringbuf) per_file_stats(0, ctx->engine[n].ringbuf->obj, data); } return 0; } static void print_context_stats(struct seq_file *m, struct drm_i915_private *dev_priv) { struct file_stats stats; struct drm_file *file; memset(&stats, 0, sizeof(stats)); mutex_lock(&dev_priv->dev->struct_mutex); if (dev_priv->kernel_context) per_file_ctx_stats(0, dev_priv->kernel_context, &stats); list_for_each_entry(file, &dev_priv->dev->filelist, lhead) { struct drm_i915_file_private *fpriv = file->driver_priv; idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats); } mutex_unlock(&dev_priv->dev->struct_mutex); print_file_stats(m, "[k]contexts", stats); } #define count_vmas(list, member) do { \ list_for_each_entry(vma, list, member) { \ size += i915_gem_obj_total_ggtt_size(vma->obj); \ ++count; \ if (vma->obj->map_and_fenceable) { \ mappable_size += i915_gem_obj_ggtt_size(vma->obj); \ ++mappable_count; \ } \ } \ } while (0) static int i915_gem_object_info(struct seq_file *m, void* data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct i915_ggtt *ggtt = &dev_priv->ggtt; u32 count, mappable_count, purgeable_count; u64 size, mappable_size, purgeable_size; unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0; u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0; struct drm_i915_gem_object *obj; struct drm_file *file; struct i915_vma *vma; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; seq_printf(m, "%u objects, %zu bytes\n", dev_priv->mm.object_count, dev_priv->mm.object_memory); size = count = mappable_size = mappable_count = 0; count_objects(&dev_priv->mm.bound_list, global_list); seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; count_vmas(&ggtt->base.active_list, vm_link); seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; count_vmas(&ggtt->base.inactive_list, vm_link); seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n", count, mappable_count, size, mappable_size); size = count = purgeable_size = purgeable_count = 0; list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) { size += obj->base.size, ++count; if (obj->madv == I915_MADV_DONTNEED) purgeable_size += obj->base.size, ++purgeable_count; if (obj->mapping) { pin_mapped_count++; pin_mapped_size += obj->base.size; if (obj->pages_pin_count == 0) { pin_mapped_purgeable_count++; pin_mapped_purgeable_size += obj->base.size; } } } seq_printf(m, "%u unbound objects, %llu bytes\n", count, size); size = count = mappable_size = mappable_count = 0; list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { if (obj->fault_mappable) { size += i915_gem_obj_ggtt_size(obj); ++count; } if (obj->pin_display) { mappable_size += i915_gem_obj_ggtt_size(obj); ++mappable_count; } if (obj->madv == I915_MADV_DONTNEED) { purgeable_size += obj->base.size; ++purgeable_count; } if (obj->mapping) { pin_mapped_count++; pin_mapped_size += obj->base.size; if (obj->pages_pin_count == 0) { pin_mapped_purgeable_count++; pin_mapped_purgeable_size += obj->base.size; } } } seq_printf(m, "%u purgeable objects, %llu bytes\n", purgeable_count, purgeable_size); seq_printf(m, "%u pinned mappable objects, %llu bytes\n", mappable_count, mappable_size); seq_printf(m, "%u fault mappable objects, %llu bytes\n", count, size); seq_printf(m, "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n", pin_mapped_count, pin_mapped_purgeable_count, pin_mapped_size, pin_mapped_purgeable_size); seq_printf(m, "%llu [%llu] gtt total\n", ggtt->base.total, ggtt->mappable_end - ggtt->base.start); seq_putc(m, '\n'); print_batch_pool_stats(m, dev_priv); mutex_unlock(&dev->struct_mutex); mutex_lock(&dev->filelist_mutex); print_context_stats(m, dev_priv); list_for_each_entry_reverse(file, &dev->filelist, lhead) { struct file_stats stats; struct task_struct *task; memset(&stats, 0, sizeof(stats)); stats.file_priv = file->driver_priv; spin_lock(&file->table_lock); idr_for_each(&file->object_idr, per_file_stats, &stats); spin_unlock(&file->table_lock); /* * Although we have a valid reference on file->pid, that does * not guarantee that the task_struct who called get_pid() is * still alive (e.g. get_pid(current) => fork() => exit()). * Therefore, we need to protect this ->comm access using RCU. */ rcu_read_lock(); task = pid_task(file->pid, PIDTYPE_PID); print_file_stats(m, task ? task->comm : "", stats); rcu_read_unlock(); } mutex_unlock(&dev->filelist_mutex); return 0; } static int i915_gem_gtt_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; uintptr_t list = (uintptr_t) node->info_ent->data; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; u64 total_obj_size, total_gtt_size; int count, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; total_obj_size = total_gtt_size = count = 0; list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj)) continue; seq_puts(m, " "); describe_obj(m, obj); seq_putc(m, '\n'); total_obj_size += obj->base.size; total_gtt_size += i915_gem_obj_total_ggtt_size(obj); count++; } mutex_unlock(&dev->struct_mutex); seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n", count, total_obj_size, total_gtt_size); return 0; } static int i915_gem_pageflip_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *crtc; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; for_each_intel_crtc(dev, crtc) { const char pipe = pipe_name(crtc->pipe); const char plane = plane_name(crtc->plane); struct intel_flip_work *work; spin_lock_irq(&dev->event_lock); work = crtc->flip_work; if (work == NULL) { seq_printf(m, "No flip due on pipe %c (plane %c)\n", pipe, plane); } else { u32 pending; u32 addr; pending = atomic_read(&work->pending); if (pending) { seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n", pipe, plane); } else { seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n", pipe, plane); } if (work->flip_queued_req) { struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req); seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n", engine->name, i915_gem_request_get_seqno(work->flip_queued_req), dev_priv->next_seqno, engine->get_seqno(engine), i915_gem_request_completed(work->flip_queued_req, true)); } else seq_printf(m, "Flip not associated with any ring\n"); seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n", work->flip_queued_vblank, work->flip_ready_vblank, intel_crtc_get_vblank_counter(crtc)); seq_printf(m, "%d prepares\n", atomic_read(&work->pending)); if (INTEL_INFO(dev)->gen >= 4) addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane))); else addr = I915_READ(DSPADDR(crtc->plane)); seq_printf(m, "Current scanout address 0x%08x\n", addr); if (work->pending_flip_obj) { seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset); seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset); } } spin_unlock_irq(&dev->event_lock); } mutex_unlock(&dev->struct_mutex); return 0; } static int i915_gem_batch_pool_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; struct intel_engine_cs *engine; int total = 0; int ret, j; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; for_each_engine(engine, dev_priv) { for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) { int count; count = 0; list_for_each_entry(obj, &engine->batch_pool.cache_list[j], batch_pool_link) count++; seq_printf(m, "%s cache[%d]: %d objects\n", engine->name, j, count); list_for_each_entry(obj, &engine->batch_pool.cache_list[j], batch_pool_link) { seq_puts(m, " "); describe_obj(m, obj); seq_putc(m, '\n'); } total += count; } } seq_printf(m, "total: %d\n", total); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_gem_request_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine; struct drm_i915_gem_request *req; int ret, any; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; any = 0; for_each_engine(engine, dev_priv) { int count; count = 0; list_for_each_entry(req, &engine->request_list, list) count++; if (count == 0) continue; seq_printf(m, "%s requests: %d\n", engine->name, count); list_for_each_entry(req, &engine->request_list, list) { struct task_struct *task; rcu_read_lock(); task = NULL; if (req->pid) task = pid_task(req->pid, PIDTYPE_PID); seq_printf(m, " %x @ %d: %s [%d]\n", req->seqno, (int) (jiffies - req->emitted_jiffies), task ? task->comm : "", task ? task->pid : -1); rcu_read_unlock(); } any++; } mutex_unlock(&dev->struct_mutex); if (any == 0) seq_puts(m, "No requests\n"); return 0; } static void i915_ring_seqno_info(struct seq_file *m, struct intel_engine_cs *engine) { seq_printf(m, "Current sequence (%s): %x\n", engine->name, engine->get_seqno(engine)); seq_printf(m, "Current user interrupts (%s): %x\n", engine->name, READ_ONCE(engine->user_interrupts)); } static int i915_gem_seqno_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); for_each_engine(engine, dev_priv) i915_ring_seqno_info(m, engine); intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_interrupt_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine; int ret, i, pipe; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); if (IS_CHERRYVIEW(dev)) { seq_printf(m, "Master Interrupt Control:\t%08x\n", I915_READ(GEN8_MASTER_IRQ)); seq_printf(m, "Display IER:\t%08x\n", I915_READ(VLV_IER)); seq_printf(m, "Display IIR:\t%08x\n", I915_READ(VLV_IIR)); seq_printf(m, "Display IIR_RW:\t%08x\n", I915_READ(VLV_IIR_RW)); seq_printf(m, "Display IMR:\t%08x\n", I915_READ(VLV_IMR)); for_each_pipe(dev_priv, pipe) seq_printf(m, "Pipe %c stat:\t%08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); seq_printf(m, "Port hotplug:\t%08x\n", I915_READ(PORT_HOTPLUG_EN)); seq_printf(m, "DPFLIPSTAT:\t%08x\n", I915_READ(VLV_DPFLIPSTAT)); seq_printf(m, "DPINVGTT:\t%08x\n", I915_READ(DPINVGTT)); for (i = 0; i < 4; i++) { seq_printf(m, "GT Interrupt IMR %d:\t%08x\n", i, I915_READ(GEN8_GT_IMR(i))); seq_printf(m, "GT Interrupt IIR %d:\t%08x\n", i, I915_READ(GEN8_GT_IIR(i))); seq_printf(m, "GT Interrupt IER %d:\t%08x\n", i, I915_READ(GEN8_GT_IER(i))); } seq_printf(m, "PCU interrupt mask:\t%08x\n", I915_READ(GEN8_PCU_IMR)); seq_printf(m, "PCU interrupt identity:\t%08x\n", I915_READ(GEN8_PCU_IIR)); seq_printf(m, "PCU interrupt enable:\t%08x\n", I915_READ(GEN8_PCU_IER)); } else if (INTEL_INFO(dev)->gen >= 8) { seq_printf(m, "Master Interrupt Control:\t%08x\n", I915_READ(GEN8_MASTER_IRQ)); for (i = 0; i < 4; i++) { seq_printf(m, "GT Interrupt IMR %d:\t%08x\n", i, I915_READ(GEN8_GT_IMR(i))); seq_printf(m, "GT Interrupt IIR %d:\t%08x\n", i, I915_READ(GEN8_GT_IIR(i))); seq_printf(m, "GT Interrupt IER %d:\t%08x\n", i, I915_READ(GEN8_GT_IER(i))); } for_each_pipe(dev_priv, pipe) { enum intel_display_power_domain power_domain; power_domain = POWER_DOMAIN_PIPE(pipe); if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) { seq_printf(m, "Pipe %c power disabled\n", pipe_name(pipe)); continue; } seq_printf(m, "Pipe %c IMR:\t%08x\n", pipe_name(pipe), I915_READ(GEN8_DE_PIPE_IMR(pipe))); seq_printf(m, "Pipe %c IIR:\t%08x\n", pipe_name(pipe), I915_READ(GEN8_DE_PIPE_IIR(pipe))); seq_printf(m, "Pipe %c IER:\t%08x\n", pipe_name(pipe), I915_READ(GEN8_DE_PIPE_IER(pipe))); intel_display_power_put(dev_priv, power_domain); } seq_printf(m, "Display Engine port interrupt mask:\t%08x\n", I915_READ(GEN8_DE_PORT_IMR)); seq_printf(m, "Display Engine port interrupt identity:\t%08x\n", I915_READ(GEN8_DE_PORT_IIR)); seq_printf(m, "Display Engine port interrupt enable:\t%08x\n", I915_READ(GEN8_DE_PORT_IER)); seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n", I915_READ(GEN8_DE_MISC_IMR)); seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n", I915_READ(GEN8_DE_MISC_IIR)); seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n", I915_READ(GEN8_DE_MISC_IER)); seq_printf(m, "PCU interrupt mask:\t%08x\n", I915_READ(GEN8_PCU_IMR)); seq_printf(m, "PCU interrupt identity:\t%08x\n", I915_READ(GEN8_PCU_IIR)); seq_printf(m, "PCU interrupt enable:\t%08x\n", I915_READ(GEN8_PCU_IER)); } else if (IS_VALLEYVIEW(dev)) { seq_printf(m, "Display IER:\t%08x\n", I915_READ(VLV_IER)); seq_printf(m, "Display IIR:\t%08x\n", I915_READ(VLV_IIR)); seq_printf(m, "Display IIR_RW:\t%08x\n", I915_READ(VLV_IIR_RW)); seq_printf(m, "Display IMR:\t%08x\n", I915_READ(VLV_IMR)); for_each_pipe(dev_priv, pipe) seq_printf(m, "Pipe %c stat:\t%08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); seq_printf(m, "Master IER:\t%08x\n", I915_READ(VLV_MASTER_IER)); seq_printf(m, "Render IER:\t%08x\n", I915_READ(GTIER)); seq_printf(m, "Render IIR:\t%08x\n", I915_READ(GTIIR)); seq_printf(m, "Render IMR:\t%08x\n", I915_READ(GTIMR)); seq_printf(m, "PM IER:\t\t%08x\n", I915_READ(GEN6_PMIER)); seq_printf(m, "PM IIR:\t\t%08x\n", I915_READ(GEN6_PMIIR)); seq_printf(m, "PM IMR:\t\t%08x\n", I915_READ(GEN6_PMIMR)); seq_printf(m, "Port hotplug:\t%08x\n", I915_READ(PORT_HOTPLUG_EN)); seq_printf(m, "DPFLIPSTAT:\t%08x\n", I915_READ(VLV_DPFLIPSTAT)); seq_printf(m, "DPINVGTT:\t%08x\n", I915_READ(DPINVGTT)); } else if (!HAS_PCH_SPLIT(dev)) { seq_printf(m, "Interrupt enable: %08x\n", I915_READ(IER)); seq_printf(m, "Interrupt identity: %08x\n", I915_READ(IIR)); seq_printf(m, "Interrupt mask: %08x\n", I915_READ(IMR)); for_each_pipe(dev_priv, pipe) seq_printf(m, "Pipe %c stat: %08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); } else { seq_printf(m, "North Display Interrupt enable: %08x\n", I915_READ(DEIER)); seq_printf(m, "North Display Interrupt identity: %08x\n", I915_READ(DEIIR)); seq_printf(m, "North Display Interrupt mask: %08x\n", I915_READ(DEIMR)); seq_printf(m, "South Display Interrupt enable: %08x\n", I915_READ(SDEIER)); seq_printf(m, "South Display Interrupt identity: %08x\n", I915_READ(SDEIIR)); seq_printf(m, "South Display Interrupt mask: %08x\n", I915_READ(SDEIMR)); seq_printf(m, "Graphics Interrupt enable: %08x\n", I915_READ(GTIER)); seq_printf(m, "Graphics Interrupt identity: %08x\n", I915_READ(GTIIR)); seq_printf(m, "Graphics Interrupt mask: %08x\n", I915_READ(GTIMR)); } for_each_engine(engine, dev_priv) { if (INTEL_INFO(dev)->gen >= 6) { seq_printf(m, "Graphics Interrupt mask (%s): %08x\n", engine->name, I915_READ_IMR(engine)); } i915_ring_seqno_info(m, engine); } intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_gem_fence_regs_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; int i, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs); for (i = 0; i < dev_priv->num_fence_regs; i++) { struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj; seq_printf(m, "Fence %d, pin count = %d, object = ", i, dev_priv->fence_regs[i].pin_count); if (obj == NULL) seq_puts(m, "unused"); else describe_obj(m, obj); seq_putc(m, '\n'); } mutex_unlock(&dev->struct_mutex); return 0; } static int i915_hws_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine; const u32 *hws; int i; engine = &dev_priv->engine[(uintptr_t)node->info_ent->data]; hws = engine->status_page.page_addr; if (hws == NULL) return 0; for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) { seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4, hws[i], hws[i + 1], hws[i + 2], hws[i + 3]); } return 0; } static ssize_t i915_error_state_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct i915_error_state_file_priv *error_priv = filp->private_data; struct drm_device *dev = error_priv->dev; int ret; DRM_DEBUG_DRIVER("Resetting error state\n"); ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; i915_destroy_error_state(dev); mutex_unlock(&dev->struct_mutex); return cnt; } static int i915_error_state_open(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; struct i915_error_state_file_priv *error_priv; error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL); if (!error_priv) return -ENOMEM; error_priv->dev = dev; i915_error_state_get(dev, error_priv); file->private_data = error_priv; return 0; } static int i915_error_state_release(struct inode *inode, struct file *file) { struct i915_error_state_file_priv *error_priv = file->private_data; i915_error_state_put(error_priv); kfree(error_priv); return 0; } static ssize_t i915_error_state_read(struct file *file, char __user *userbuf, size_t count, loff_t *pos) { struct i915_error_state_file_priv *error_priv = file->private_data; struct drm_i915_error_state_buf error_str; loff_t tmp_pos = 0; ssize_t ret_count = 0; int ret; ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos); if (ret) return ret; ret = i915_error_state_to_str(&error_str, error_priv); if (ret) goto out; ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos, error_str.buf, error_str.bytes); if (ret_count < 0) ret = ret_count; else *pos = error_str.start + ret_count; out: i915_error_state_buf_release(&error_str); return ret ?: ret_count; } static const struct file_operations i915_error_state_fops = { .owner = THIS_MODULE, .open = i915_error_state_open, .read = i915_error_state_read, .write = i915_error_state_write, .llseek = default_llseek, .release = i915_error_state_release, }; static int i915_next_seqno_get(void *data, u64 *val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; *val = dev_priv->next_seqno; mutex_unlock(&dev->struct_mutex); return 0; } static int i915_next_seqno_set(void *data, u64 val) { struct drm_device *dev = data; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; ret = i915_gem_set_seqno(dev, val); mutex_unlock(&dev->struct_mutex); return ret; } DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops, i915_next_seqno_get, i915_next_seqno_set, "0x%llx\n"); static int i915_frequency_info(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret = 0; intel_runtime_pm_get(dev_priv); flush_delayed_work(&dev_priv->rps.delayed_resume_work); if (IS_GEN5(dev)) { u16 rgvswctl = I915_READ16(MEMSWCTL); u16 rgvstat = I915_READ16(MEMSTAT_ILK); seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf); seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f); seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >> MEMSTAT_VID_SHIFT); seq_printf(m, "Current P-state: %d\n", (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT); } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { u32 freq_sts; mutex_lock(&dev_priv->rps.hw_lock); freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts); seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq); seq_printf(m, "actual GPU freq: %d MHz\n", intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff)); seq_printf(m, "current GPU freq: %d MHz\n", intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq)); seq_printf(m, "max GPU freq: %d MHz\n", intel_gpu_freq(dev_priv, dev_priv->rps.max_freq)); seq_printf(m, "min GPU freq: %d MHz\n", intel_gpu_freq(dev_priv, dev_priv->rps.min_freq)); seq_printf(m, "idle GPU freq: %d MHz\n", intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq)); seq_printf(m, "efficient (RPe) frequency: %d MHz\n", intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq)); mutex_unlock(&dev_priv->rps.hw_lock); } else if (INTEL_INFO(dev)->gen >= 6) { u32 rp_state_limits; u32 gt_perf_status; u32 rp_state_cap; u32 rpmodectl, rpinclimit, rpdeclimit; u32 rpstat, cagf, reqf; u32 rpupei, rpcurup, rpprevup; u32 rpdownei, rpcurdown, rpprevdown; u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask; int max_freq; rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS); if (IS_BROXTON(dev)) { rp_state_cap = I915_READ(BXT_RP_STATE_CAP); gt_perf_status = I915_READ(BXT_GT_PERF_STATUS); } else { rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS); } /* RPSTAT1 is in the GT power well */ ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) goto out; intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); reqf = I915_READ(GEN6_RPNSWREQ); if (IS_GEN9(dev)) reqf >>= 23; else { reqf &= ~GEN6_TURBO_DISABLE; if (IS_HASWELL(dev) || IS_BROADWELL(dev)) reqf >>= 24; else reqf >>= 25; } reqf = intel_gpu_freq(dev_priv, reqf); rpmodectl = I915_READ(GEN6_RP_CONTROL); rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD); rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD); rpstat = I915_READ(GEN6_RPSTAT1); rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK; rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK; rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK; rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK; rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK; rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK; if (IS_GEN9(dev)) cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT; else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT; else cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT; cagf = intel_gpu_freq(dev_priv, cagf); intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); mutex_unlock(&dev->struct_mutex); if (IS_GEN6(dev) || IS_GEN7(dev)) { pm_ier = I915_READ(GEN6_PMIER); pm_imr = I915_READ(GEN6_PMIMR); pm_isr = I915_READ(GEN6_PMISR); pm_iir = I915_READ(GEN6_PMIIR); pm_mask = I915_READ(GEN6_PMINTRMSK); } else { pm_ier = I915_READ(GEN8_GT_IER(2)); pm_imr = I915_READ(GEN8_GT_IMR(2)); pm_isr = I915_READ(GEN8_GT_ISR(2)); pm_iir = I915_READ(GEN8_GT_IIR(2)); pm_mask = I915_READ(GEN6_PMINTRMSK); } seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n", pm_ier, pm_imr, pm_isr, pm_iir, pm_mask); seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep); seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status); seq_printf(m, "Render p-state ratio: %d\n", (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8); seq_printf(m, "Render p-state VID: %d\n", gt_perf_status & 0xff); seq_printf(m, "Render p-state limit: %d\n", rp_state_limits & 0xff); seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat); seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl); seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit); seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit); seq_printf(m, "RPNSWREQ: %dMHz\n", reqf); seq_printf(m, "CAGF: %dMHz\n", cagf); seq_printf(m, "RP CUR UP EI: %d (%dus)\n", rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei)); seq_printf(m, "RP CUR UP: %d (%dus)\n", rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup)); seq_printf(m, "RP PREV UP: %d (%dus)\n", rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup)); seq_printf(m, "Up threshold: %d%%\n", dev_priv->rps.up_threshold); seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n", rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei)); seq_printf(m, "RP CUR DOWN: %d (%dus)\n", rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown)); seq_printf(m, "RP PREV DOWN: %d (%dus)\n", rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown)); seq_printf(m, "Down threshold: %d%%\n", dev_priv->rps.down_threshold); max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 : rp_state_cap >> 16) & 0xff; max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ? GEN9_FREQ_SCALER : 1); seq_printf(m, "Lowest (RPN) frequency: %dMHz\n", intel_gpu_freq(dev_priv, max_freq)); max_freq = (rp_state_cap & 0xff00) >> 8; max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ? GEN9_FREQ_SCALER : 1); seq_printf(m, "Nominal (RP1) frequency: %dMHz\n", intel_gpu_freq(dev_priv, max_freq)); max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 : rp_state_cap >> 0) & 0xff; max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ? GEN9_FREQ_SCALER : 1); seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n", intel_gpu_freq(dev_priv, max_freq)); seq_printf(m, "Max overclocked frequency: %dMHz\n", intel_gpu_freq(dev_priv, dev_priv->rps.max_freq)); seq_printf(m, "Current freq: %d MHz\n", intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq)); seq_printf(m, "Actual freq: %d MHz\n", cagf); seq_printf(m, "Idle freq: %d MHz\n", intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq)); seq_printf(m, "Min freq: %d MHz\n", intel_gpu_freq(dev_priv, dev_priv->rps.min_freq)); seq_printf(m, "Max freq: %d MHz\n", intel_gpu_freq(dev_priv, dev_priv->rps.max_freq)); seq_printf(m, "efficient (RPe) frequency: %d MHz\n", intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq)); } else { seq_puts(m, "no P-state info available\n"); } seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq); seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq); seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq); out: intel_runtime_pm_put(dev_priv); return ret; } static int i915_hangcheck_info(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine; u64 acthd[I915_NUM_ENGINES]; u32 seqno[I915_NUM_ENGINES]; u32 instdone[I915_NUM_INSTDONE_REG]; enum intel_engine_id id; int j; if (!i915.enable_hangcheck) { seq_printf(m, "Hangcheck disabled\n"); return 0; } intel_runtime_pm_get(dev_priv); for_each_engine_id(engine, dev_priv, id) { acthd[id] = intel_ring_get_active_head(engine); seqno[id] = engine->get_seqno(engine); } i915_get_extra_instdone(dev_priv, instdone); intel_runtime_pm_put(dev_priv); if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) { seq_printf(m, "Hangcheck active, fires in %dms\n", jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires - jiffies)); } else seq_printf(m, "Hangcheck inactive\n"); for_each_engine_id(engine, dev_priv, id) { seq_printf(m, "%s:\n", engine->name); seq_printf(m, "\tseqno = %x [current %x, last %x]\n", engine->hangcheck.seqno, seqno[id], engine->last_submitted_seqno); seq_printf(m, "\tuser interrupts = %x [current %x]\n", engine->hangcheck.user_interrupts, READ_ONCE(engine->user_interrupts)); seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n", (long long)engine->hangcheck.acthd, (long long)acthd[id]); seq_printf(m, "\tscore = %d\n", engine->hangcheck.score); seq_printf(m, "\taction = %d\n", engine->hangcheck.action); if (engine->id == RCS) { seq_puts(m, "\tinstdone read ="); for (j = 0; j < I915_NUM_INSTDONE_REG; j++) seq_printf(m, " 0x%08x", instdone[j]); seq_puts(m, "\n\tinstdone accu ="); for (j = 0; j < I915_NUM_INSTDONE_REG; j++) seq_printf(m, " 0x%08x", engine->hangcheck.instdone[j]); seq_puts(m, "\n"); } } return 0; } static int ironlake_drpc_info(struct seq_file *m) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 rgvmodectl, rstdbyctl; u16 crstandvid; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); rgvmodectl = I915_READ(MEMMODECTL); rstdbyctl = I915_READ(RSTDBYCTL); crstandvid = I915_READ16(CRSTANDVID); intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN)); seq_printf(m, "Boost freq: %d\n", (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >> MEMMODE_BOOST_FREQ_SHIFT); seq_printf(m, "HW control enabled: %s\n", yesno(rgvmodectl & MEMMODE_HWIDLE_EN)); seq_printf(m, "SW control enabled: %s\n", yesno(rgvmodectl & MEMMODE_SWMODE_EN)); seq_printf(m, "Gated voltage change: %s\n", yesno(rgvmodectl & MEMMODE_RCLK_GATE)); seq_printf(m, "Starting frequency: P%d\n", (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT); seq_printf(m, "Max P-state: P%d\n", (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT); seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK)); seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f)); seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f)); seq_printf(m, "Render standby enabled: %s\n", yesno(!(rstdbyctl & RCX_SW_EXIT))); seq_puts(m, "Current RS state: "); switch (rstdbyctl & RSX_STATUS_MASK) { case RSX_STATUS_ON: seq_puts(m, "on\n"); break; case RSX_STATUS_RC1: seq_puts(m, "RC1\n"); break; case RSX_STATUS_RC1E: seq_puts(m, "RC1E\n"); break; case RSX_STATUS_RS1: seq_puts(m, "RS1\n"); break; case RSX_STATUS_RS2: seq_puts(m, "RS2 (RC6)\n"); break; case RSX_STATUS_RS3: seq_puts(m, "RC3 (RC6+)\n"); break; default: seq_puts(m, "unknown\n"); break; } return 0; } static int i915_forcewake_domains(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_uncore_forcewake_domain *fw_domain; spin_lock_irq(&dev_priv->uncore.lock); for_each_fw_domain(fw_domain, dev_priv) { seq_printf(m, "%s.wake_count = %u\n", intel_uncore_forcewake_domain_to_str(fw_domain->id), fw_domain->wake_count); } spin_unlock_irq(&dev_priv->uncore.lock); return 0; } static int vlv_drpc_info(struct seq_file *m) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 rpmodectl1, rcctl1, pw_status; intel_runtime_pm_get(dev_priv); pw_status = I915_READ(VLV_GTLC_PW_STATUS); rpmodectl1 = I915_READ(GEN6_RP_CONTROL); rcctl1 = I915_READ(GEN6_RC_CONTROL); intel_runtime_pm_put(dev_priv); seq_printf(m, "Video Turbo Mode: %s\n", yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO)); seq_printf(m, "Turbo enabled: %s\n", yesno(rpmodectl1 & GEN6_RP_ENABLE)); seq_printf(m, "HW control enabled: %s\n", yesno(rpmodectl1 & GEN6_RP_ENABLE)); seq_printf(m, "SW control enabled: %s\n", yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE)); seq_printf(m, "RC6 Enabled: %s\n", yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))); seq_printf(m, "Render Power Well: %s\n", (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down"); seq_printf(m, "Media Power Well: %s\n", (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down"); seq_printf(m, "Render RC6 residency since boot: %u\n", I915_READ(VLV_GT_RENDER_RC6)); seq_printf(m, "Media RC6 residency since boot: %u\n", I915_READ(VLV_GT_MEDIA_RC6)); return i915_forcewake_domains(m, NULL); } static int gen6_drpc_info(struct seq_file *m) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0; unsigned forcewake_count; int count = 0, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); spin_lock_irq(&dev_priv->uncore.lock); forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count; spin_unlock_irq(&dev_priv->uncore.lock); if (forcewake_count) { seq_puts(m, "RC information inaccurate because somebody " "holds a forcewake reference \n"); } else { /* NB: we cannot use forcewake, else we read the wrong values */ while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1)) udelay(10); seq_printf(m, "RC information accurate: %s\n", yesno(count < 51)); } gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS); trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true); rpmodectl1 = I915_READ(GEN6_RP_CONTROL); rcctl1 = I915_READ(GEN6_RC_CONTROL); mutex_unlock(&dev->struct_mutex); mutex_lock(&dev_priv->rps.hw_lock); sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids); mutex_unlock(&dev_priv->rps.hw_lock); intel_runtime_pm_put(dev_priv); seq_printf(m, "Video Turbo Mode: %s\n", yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO)); seq_printf(m, "HW control enabled: %s\n", yesno(rpmodectl1 & GEN6_RP_ENABLE)); seq_printf(m, "SW control enabled: %s\n", yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE)); seq_printf(m, "RC1e Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE)); seq_printf(m, "RC6 Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE)); seq_printf(m, "Deep RC6 Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE)); seq_printf(m, "Deepest RC6 Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE)); seq_puts(m, "Current RC state: "); switch (gt_core_status & GEN6_RCn_MASK) { case GEN6_RC0: if (gt_core_status & GEN6_CORE_CPD_STATE_MASK) seq_puts(m, "Core Power Down\n"); else seq_puts(m, "on\n"); break; case GEN6_RC3: seq_puts(m, "RC3\n"); break; case GEN6_RC6: seq_puts(m, "RC6\n"); break; case GEN6_RC7: seq_puts(m, "RC7\n"); break; default: seq_puts(m, "Unknown\n"); break; } seq_printf(m, "Core Power Down: %s\n", yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK)); /* Not exactly sure what this is */ seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n", I915_READ(GEN6_GT_GFX_RC6_LOCKED)); seq_printf(m, "RC6 residency since boot: %u\n", I915_READ(GEN6_GT_GFX_RC6)); seq_printf(m, "RC6+ residency since boot: %u\n", I915_READ(GEN6_GT_GFX_RC6p)); seq_printf(m, "RC6++ residency since boot: %u\n", I915_READ(GEN6_GT_GFX_RC6pp)); seq_printf(m, "RC6 voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff))); seq_printf(m, "RC6+ voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff))); seq_printf(m, "RC6++ voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff))); return 0; } static int i915_drpc_info(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) return vlv_drpc_info(m); else if (INTEL_INFO(dev)->gen >= 6) return gen6_drpc_info(m); else return ironlake_drpc_info(m); } static int i915_frontbuffer_tracking(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; seq_printf(m, "FB tracking busy bits: 0x%08x\n", dev_priv->fb_tracking.busy_bits); seq_printf(m, "FB tracking flip bits: 0x%08x\n", dev_priv->fb_tracking.flip_bits); return 0; } static int i915_fbc_status(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; if (!HAS_FBC(dev)) { seq_puts(m, "FBC unsupported on this chipset\n"); return 0; } intel_runtime_pm_get(dev_priv); mutex_lock(&dev_priv->fbc.lock); if (intel_fbc_is_active(dev_priv)) seq_puts(m, "FBC enabled\n"); else seq_printf(m, "FBC disabled: %s\n", dev_priv->fbc.no_fbc_reason); if (INTEL_INFO(dev_priv)->gen >= 7) seq_printf(m, "Compressing: %s\n", yesno(I915_READ(FBC_STATUS2) & FBC_COMPRESSION_MASK)); mutex_unlock(&dev_priv->fbc.lock); intel_runtime_pm_put(dev_priv); return 0; } static int i915_fbc_fc_get(void *data, u64 *val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev)) return -ENODEV; *val = dev_priv->fbc.false_color; return 0; } static int i915_fbc_fc_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; u32 reg; if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev)) return -ENODEV; mutex_lock(&dev_priv->fbc.lock); reg = I915_READ(ILK_DPFC_CONTROL); dev_priv->fbc.false_color = val; I915_WRITE(ILK_DPFC_CONTROL, val ? (reg | FBC_CTL_FALSE_COLOR) : (reg & ~FBC_CTL_FALSE_COLOR)); mutex_unlock(&dev_priv->fbc.lock); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops, i915_fbc_fc_get, i915_fbc_fc_set, "%llu\n"); static int i915_ips_status(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; if (!HAS_IPS(dev)) { seq_puts(m, "not supported\n"); return 0; } intel_runtime_pm_get(dev_priv); seq_printf(m, "Enabled by kernel parameter: %s\n", yesno(i915.enable_ips)); if (INTEL_INFO(dev)->gen >= 8) { seq_puts(m, "Currently: unknown\n"); } else { if (I915_READ(IPS_CTL) & IPS_ENABLE) seq_puts(m, "Currently: enabled\n"); else seq_puts(m, "Currently: disabled\n"); } intel_runtime_pm_put(dev_priv); return 0; } static int i915_sr_status(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; bool sr_enabled = false; intel_runtime_pm_get(dev_priv); if (HAS_PCH_SPLIT(dev)) sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN; else if (IS_CRESTLINE(dev) || IS_G4X(dev) || IS_I945G(dev) || IS_I945GM(dev)) sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; else if (IS_I915GM(dev)) sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN; else if (IS_PINEVIEW(dev)) sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN; else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; intel_runtime_pm_put(dev_priv); seq_printf(m, "self-refresh: %s\n", sr_enabled ? "enabled" : "disabled"); return 0; } static int i915_emon_status(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned long temp, chipset, gfx; int ret; if (!IS_GEN5(dev)) return -ENODEV; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; temp = i915_mch_val(dev_priv); chipset = i915_chipset_val(dev_priv); gfx = i915_gfx_val(dev_priv); mutex_unlock(&dev->struct_mutex); seq_printf(m, "GMCH temp: %ld\n", temp); seq_printf(m, "Chipset power: %ld\n", chipset); seq_printf(m, "GFX power: %ld\n", gfx); seq_printf(m, "Total power: %ld\n", chipset + gfx); return 0; } static int i915_ring_freq_table(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret = 0; int gpu_freq, ia_freq; unsigned int max_gpu_freq, min_gpu_freq; if (!HAS_CORE_RING_FREQ(dev)) { seq_puts(m, "unsupported on this chipset\n"); return 0; } intel_runtime_pm_get(dev_priv); flush_delayed_work(&dev_priv->rps.delayed_resume_work); ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); if (ret) goto out; if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) { /* Convert GT frequency to 50 HZ units */ min_gpu_freq = dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER; max_gpu_freq = dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER; } else { min_gpu_freq = dev_priv->rps.min_freq_softlimit; max_gpu_freq = dev_priv->rps.max_freq_softlimit; } seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n"); for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) { ia_freq = gpu_freq; sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_MIN_FREQ_TABLE, &ia_freq); seq_printf(m, "%d\t\t%d\t\t\t\t%d\n", intel_gpu_freq(dev_priv, (gpu_freq * (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ? GEN9_FREQ_SCALER : 1))), ((ia_freq >> 0) & 0xff) * 100, ((ia_freq >> 8) & 0xff) * 100); } mutex_unlock(&dev_priv->rps.hw_lock); out: intel_runtime_pm_put(dev_priv); return ret; } static int i915_opregion(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_opregion *opregion = &dev_priv->opregion; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) goto out; if (opregion->header) seq_write(m, opregion->header, OPREGION_SIZE); mutex_unlock(&dev->struct_mutex); out: return 0; } static int i915_vbt(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_opregion *opregion = &dev_priv->opregion; if (opregion->vbt) seq_write(m, opregion->vbt, opregion->vbt_size); return 0; } static int i915_gem_framebuffer_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct intel_framebuffer *fbdev_fb = NULL; struct drm_framebuffer *drm_fb; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; #ifdef CONFIG_DRM_FBDEV_EMULATION if (to_i915(dev)->fbdev) { fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb); seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ", fbdev_fb->base.width, fbdev_fb->base.height, fbdev_fb->base.depth, fbdev_fb->base.bits_per_pixel, fbdev_fb->base.modifier[0], drm_framebuffer_read_refcount(&fbdev_fb->base)); describe_obj(m, fbdev_fb->obj); seq_putc(m, '\n'); } #endif mutex_lock(&dev->mode_config.fb_lock); drm_for_each_fb(drm_fb, dev) { struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb); if (fb == fbdev_fb) continue; seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ", fb->base.width, fb->base.height, fb->base.depth, fb->base.bits_per_pixel, fb->base.modifier[0], drm_framebuffer_read_refcount(&fb->base)); describe_obj(m, fb->obj); seq_putc(m, '\n'); } mutex_unlock(&dev->mode_config.fb_lock); mutex_unlock(&dev->struct_mutex); return 0; } static void describe_ctx_ringbuf(struct seq_file *m, struct intel_ringbuffer *ringbuf) { seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)", ringbuf->space, ringbuf->head, ringbuf->tail, ringbuf->last_retired_head); } static int i915_context_status(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine; struct i915_gem_context *ctx; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; list_for_each_entry(ctx, &dev_priv->context_list, link) { seq_printf(m, "HW context %u ", ctx->hw_id); if (IS_ERR(ctx->file_priv)) { seq_puts(m, "(deleted) "); } else if (ctx->file_priv) { struct pid *pid = ctx->file_priv->file->pid; struct task_struct *task; task = get_pid_task(pid, PIDTYPE_PID); if (task) { seq_printf(m, "(%s [%d]) ", task->comm, task->pid); put_task_struct(task); } } else { seq_puts(m, "(kernel) "); } seq_putc(m, ctx->remap_slice ? 'R' : 'r'); seq_putc(m, '\n'); for_each_engine(engine, dev_priv) { struct intel_context *ce = &ctx->engine[engine->id]; seq_printf(m, "%s: ", engine->name); seq_putc(m, ce->initialised ? 'I' : 'i'); if (ce->state) describe_obj(m, ce->state); if (ce->ringbuf) describe_ctx_ringbuf(m, ce->ringbuf); seq_putc(m, '\n'); } seq_putc(m, '\n'); } mutex_unlock(&dev->struct_mutex); return 0; } static void i915_dump_lrc_obj(struct seq_file *m, struct i915_gem_context *ctx, struct intel_engine_cs *engine) { struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state; struct page *page; uint32_t *reg_state; int j; unsigned long ggtt_offset = 0; seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id); if (ctx_obj == NULL) { seq_puts(m, "\tNot allocated\n"); return; } if (!i915_gem_obj_ggtt_bound(ctx_obj)) seq_puts(m, "\tNot bound in GGTT\n"); else ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj); if (i915_gem_object_get_pages(ctx_obj)) { seq_puts(m, "\tFailed to get pages for context object\n"); return; } page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); if (!WARN_ON(page == NULL)) { reg_state = kmap_atomic(page); for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) { seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n", ggtt_offset + 4096 + (j * 4), reg_state[j], reg_state[j + 1], reg_state[j + 2], reg_state[j + 3]); } kunmap_atomic(reg_state); } seq_putc(m, '\n'); } static int i915_dump_lrc(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine; struct i915_gem_context *ctx; int ret; if (!i915.enable_execlists) { seq_printf(m, "Logical Ring Contexts are disabled\n"); return 0; } ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; list_for_each_entry(ctx, &dev_priv->context_list, link) for_each_engine(engine, dev_priv) i915_dump_lrc_obj(m, ctx, engine); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_execlists(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *)m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine; u32 status_pointer; u8 read_pointer; u8 write_pointer; u32 status; u32 ctx_id; struct list_head *cursor; int i, ret; if (!i915.enable_execlists) { seq_puts(m, "Logical Ring Contexts are disabled\n"); return 0; } ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); for_each_engine(engine, dev_priv) { struct drm_i915_gem_request *head_req = NULL; int count = 0; seq_printf(m, "%s\n", engine->name); status = I915_READ(RING_EXECLIST_STATUS_LO(engine)); ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine)); seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n", status, ctx_id); status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine)); seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer); read_pointer = engine->next_context_status_buffer; write_pointer = GEN8_CSB_WRITE_PTR(status_pointer); if (read_pointer > write_pointer) write_pointer += GEN8_CSB_ENTRIES; seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n", read_pointer, write_pointer); for (i = 0; i < GEN8_CSB_ENTRIES; i++) { status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i)); ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i)); seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n", i, status, ctx_id); } spin_lock_bh(&engine->execlist_lock); list_for_each(cursor, &engine->execlist_queue) count++; head_req = list_first_entry_or_null(&engine->execlist_queue, struct drm_i915_gem_request, execlist_link); spin_unlock_bh(&engine->execlist_lock); seq_printf(m, "\t%d requests in queue\n", count); if (head_req) { seq_printf(m, "\tHead request context: %u\n", head_req->ctx->hw_id); seq_printf(m, "\tHead request tail: %u\n", head_req->tail); } seq_putc(m, '\n'); } intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); return 0; } static const char *swizzle_string(unsigned swizzle) { switch (swizzle) { case I915_BIT_6_SWIZZLE_NONE: return "none"; case I915_BIT_6_SWIZZLE_9: return "bit9"; case I915_BIT_6_SWIZZLE_9_10: return "bit9/bit10"; case I915_BIT_6_SWIZZLE_9_11: return "bit9/bit11"; case I915_BIT_6_SWIZZLE_9_10_11: return "bit9/bit10/bit11"; case I915_BIT_6_SWIZZLE_9_17: return "bit9/bit17"; case I915_BIT_6_SWIZZLE_9_10_17: return "bit9/bit10/bit17"; case I915_BIT_6_SWIZZLE_UNKNOWN: return "unknown"; } return "bug"; } static int i915_swizzle_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); seq_printf(m, "bit6 swizzle for X-tiling = %s\n", swizzle_string(dev_priv->mm.bit_6_swizzle_x)); seq_printf(m, "bit6 swizzle for Y-tiling = %s\n", swizzle_string(dev_priv->mm.bit_6_swizzle_y)); if (IS_GEN3(dev) || IS_GEN4(dev)) { seq_printf(m, "DDC = 0x%08x\n", I915_READ(DCC)); seq_printf(m, "DDC2 = 0x%08x\n", I915_READ(DCC2)); seq_printf(m, "C0DRB3 = 0x%04x\n", I915_READ16(C0DRB3)); seq_printf(m, "C1DRB3 = 0x%04x\n", I915_READ16(C1DRB3)); } else if (INTEL_INFO(dev)->gen >= 6) { seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n", I915_READ(MAD_DIMM_C0)); seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n", I915_READ(MAD_DIMM_C1)); seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n", I915_READ(MAD_DIMM_C2)); seq_printf(m, "TILECTL = 0x%08x\n", I915_READ(TILECTL)); if (INTEL_INFO(dev)->gen >= 8) seq_printf(m, "GAMTARBMODE = 0x%08x\n", I915_READ(GAMTARBMODE)); else seq_printf(m, "ARB_MODE = 0x%08x\n", I915_READ(ARB_MODE)); seq_printf(m, "DISP_ARB_CTL = 0x%08x\n", I915_READ(DISP_ARB_CTL)); } if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) seq_puts(m, "L-shaped memory detected\n"); intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); return 0; } static int per_file_ctx(int id, void *ptr, void *data) { struct i915_gem_context *ctx = ptr; struct seq_file *m = data; struct i915_hw_ppgtt *ppgtt = ctx->ppgtt; if (!ppgtt) { seq_printf(m, " no ppgtt for context %d\n", ctx->user_handle); return 0; } if (i915_gem_context_is_default(ctx)) seq_puts(m, " default context:\n"); else seq_printf(m, " context %d:\n", ctx->user_handle); ppgtt->debug_dump(ppgtt, m); return 0; } static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine; struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; int i; if (!ppgtt) return; for_each_engine(engine, dev_priv) { seq_printf(m, "%s\n", engine->name); for (i = 0; i < 4; i++) { u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i)); pdp <<= 32; pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i)); seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp); } } } static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine; if (IS_GEN6(dev_priv)) seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE)); for_each_engine(engine, dev_priv) { seq_printf(m, "%s\n", engine->name); if (IS_GEN7(dev_priv)) seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(engine))); seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(engine))); seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(engine))); seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(engine))); } if (dev_priv->mm.aliasing_ppgtt) { struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; seq_puts(m, "aliasing PPGTT:\n"); seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset); ppgtt->debug_dump(ppgtt, m); } seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK)); } static int i915_ppgtt_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_file *file; int ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); if (INTEL_INFO(dev)->gen >= 8) gen8_ppgtt_info(m, dev); else if (INTEL_INFO(dev)->gen >= 6) gen6_ppgtt_info(m, dev); mutex_lock(&dev->filelist_mutex); list_for_each_entry_reverse(file, &dev->filelist, lhead) { struct drm_i915_file_private *file_priv = file->driver_priv; struct task_struct *task; task = get_pid_task(file->pid, PIDTYPE_PID); if (!task) { ret = -ESRCH; goto out_unlock; } seq_printf(m, "\nproc: %s\n", task->comm); put_task_struct(task); idr_for_each(&file_priv->context_idr, per_file_ctx, (void *)(unsigned long)m); } out_unlock: mutex_unlock(&dev->filelist_mutex); intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); return ret; } static int count_irq_waiters(struct drm_i915_private *i915) { struct intel_engine_cs *engine; int count = 0; for_each_engine(engine, i915) count += engine->irq_refcount; return count; } static int i915_rps_boost_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_file *file; seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled); seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy); seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv)); seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n", intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq), intel_gpu_freq(dev_priv, dev_priv->rps.min_freq), intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit), intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit), intel_gpu_freq(dev_priv, dev_priv->rps.max_freq)); mutex_lock(&dev->filelist_mutex); spin_lock(&dev_priv->rps.client_lock); list_for_each_entry_reverse(file, &dev->filelist, lhead) { struct drm_i915_file_private *file_priv = file->driver_priv; struct task_struct *task; rcu_read_lock(); task = pid_task(file->pid, PIDTYPE_PID); seq_printf(m, "%s [%d]: %d boosts%s\n", task ? task->comm : "", task ? task->pid : -1, file_priv->rps.boosts, list_empty(&file_priv->rps.link) ? "" : ", active"); rcu_read_unlock(); } seq_printf(m, "Semaphore boosts: %d%s\n", dev_priv->rps.semaphores.boosts, list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active"); seq_printf(m, "MMIO flip boosts: %d%s\n", dev_priv->rps.mmioflips.boosts, list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active"); seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts); spin_unlock(&dev_priv->rps.client_lock); mutex_unlock(&dev->filelist_mutex); return 0; } static int i915_llc(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; const bool edram = INTEL_GEN(dev_priv) > 8; seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev))); seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC", intel_uncore_edram_size(dev_priv)/1024/1024); return 0; } static int i915_guc_load_status_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_i915_private *dev_priv = node->minor->dev->dev_private; struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw; u32 tmp, i; if (!HAS_GUC_UCODE(dev_priv)) return 0; seq_printf(m, "GuC firmware status:\n"); seq_printf(m, "\tpath: %s\n", guc_fw->guc_fw_path); seq_printf(m, "\tfetch: %s\n", intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status)); seq_printf(m, "\tload: %s\n", intel_guc_fw_status_repr(guc_fw->guc_fw_load_status)); seq_printf(m, "\tversion wanted: %d.%d\n", guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted); seq_printf(m, "\tversion found: %d.%d\n", guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found); seq_printf(m, "\theader: offset is %d; size = %d\n", guc_fw->header_offset, guc_fw->header_size); seq_printf(m, "\tuCode: offset is %d; size = %d\n", guc_fw->ucode_offset, guc_fw->ucode_size); seq_printf(m, "\tRSA: offset is %d; size = %d\n", guc_fw->rsa_offset, guc_fw->rsa_size); tmp = I915_READ(GUC_STATUS); seq_printf(m, "\nGuC status 0x%08x:\n", tmp); seq_printf(m, "\tBootrom status = 0x%x\n", (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); seq_printf(m, "\tuKernel status = 0x%x\n", (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); seq_printf(m, "\tMIA Core status = 0x%x\n", (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT); seq_puts(m, "\nScratch registers:\n"); for (i = 0; i < 16; i++) seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i))); return 0; } static void i915_guc_client_info(struct seq_file *m, struct drm_i915_private *dev_priv, struct i915_guc_client *client) { struct intel_engine_cs *engine; uint64_t tot = 0; seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n", client->priority, client->ctx_index, client->proc_desc_offset); seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n", client->doorbell_id, client->doorbell_offset, client->cookie); seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n", client->wq_size, client->wq_offset, client->wq_tail); seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space); seq_printf(m, "\tFailed to queue: %u\n", client->q_fail); seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail); seq_printf(m, "\tLast submission result: %d\n", client->retcode); for_each_engine(engine, dev_priv) { seq_printf(m, "\tSubmissions: %llu %s\n", client->submissions[engine->id], engine->name); tot += client->submissions[engine->id]; } seq_printf(m, "\tTotal: %llu\n", tot); } static int i915_guc_info(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_guc guc; struct i915_guc_client client = {}; struct intel_engine_cs *engine; u64 total = 0; if (!HAS_GUC_SCHED(dev_priv)) return 0; if (mutex_lock_interruptible(&dev->struct_mutex)) return 0; /* Take a local copy of the GuC data, so we can dump it at leisure */ guc = dev_priv->guc; if (guc.execbuf_client) client = *guc.execbuf_client; mutex_unlock(&dev->struct_mutex); seq_printf(m, "Doorbell map:\n"); seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap); seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline); seq_printf(m, "GuC total action count: %llu\n", guc.action_count); seq_printf(m, "GuC action failure count: %u\n", guc.action_fail); seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd); seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status); seq_printf(m, "GuC last action error code: %d\n", guc.action_err); seq_printf(m, "\nGuC submissions:\n"); for_each_engine(engine, dev_priv) { seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n", engine->name, guc.submissions[engine->id], guc.last_seqno[engine->id]); total += guc.submissions[engine->id]; } seq_printf(m, "\t%s: %llu\n", "Total", total); seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client); i915_guc_client_info(m, dev_priv, &client); /* Add more as required ... */ return 0; } static int i915_guc_log_dump(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj; u32 *log; int i = 0, pg; if (!log_obj) return 0; for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) { log = kmap_atomic(i915_gem_object_get_page(log_obj, pg)); for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4) seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n", *(log + i), *(log + i + 1), *(log + i + 2), *(log + i + 3)); kunmap_atomic(log); } seq_putc(m, '\n'); return 0; } static int i915_edp_psr_status(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 psrperf = 0; u32 stat[3]; enum pipe pipe; bool enabled = false; if (!HAS_PSR(dev)) { seq_puts(m, "PSR not supported\n"); return 0; } intel_runtime_pm_get(dev_priv); mutex_lock(&dev_priv->psr.lock); seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support)); seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok)); seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled)); seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active)); seq_printf(m, "Busy frontbuffer bits: 0x%03x\n", dev_priv->psr.busy_frontbuffer_bits); seq_printf(m, "Re-enable work scheduled: %s\n", yesno(work_busy(&dev_priv->psr.work.work))); if (HAS_DDI(dev)) enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE; else { for_each_pipe(dev_priv, pipe) { stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) & VLV_EDP_PSR_CURR_STATE_MASK; if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) || (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE)) enabled = true; } } seq_printf(m, "Main link in standby mode: %s\n", yesno(dev_priv->psr.link_standby)); seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled)); if (!HAS_DDI(dev)) for_each_pipe(dev_priv, pipe) { if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) || (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE)) seq_printf(m, " pipe %c", pipe_name(pipe)); } seq_puts(m, "\n"); /* * VLV/CHV PSR has no kind of performance counter * SKL+ Perf counter is reset to 0 everytime DC state is entered */ if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { psrperf = I915_READ(EDP_PSR_PERF_CNT) & EDP_PSR_PERF_CNT_MASK; seq_printf(m, "Performance_Counter: %u\n", psrperf); } mutex_unlock(&dev_priv->psr.lock); intel_runtime_pm_put(dev_priv); return 0; } static int i915_sink_crc(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct intel_connector *connector; struct intel_dp *intel_dp = NULL; int ret; u8 crc[6]; drm_modeset_lock_all(dev); for_each_intel_connector(dev, connector) { struct drm_crtc *crtc; if (!connector->base.state->best_encoder) continue; crtc = connector->base.state->crtc; if (!crtc->state->active) continue; if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP) continue; intel_dp = enc_to_intel_dp(connector->base.state->best_encoder); ret = intel_dp_sink_crc(intel_dp, crc); if (ret) goto out; seq_printf(m, "%02x%02x%02x%02x%02x%02x\n", crc[0], crc[1], crc[2], crc[3], crc[4], crc[5]); goto out; } ret = -ENODEV; out: drm_modeset_unlock_all(dev); return ret; } static int i915_energy_uJ(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; u64 power; u32 units; if (INTEL_INFO(dev)->gen < 6) return -ENODEV; intel_runtime_pm_get(dev_priv); rdmsrl(MSR_RAPL_POWER_UNIT, power); power = (power & 0x1f00) >> 8; units = 1000000 / (1 << power); /* convert to uJ */ power = I915_READ(MCH_SECP_NRG_STTS); power *= units; intel_runtime_pm_put(dev_priv); seq_printf(m, "%llu", (long long unsigned)power); return 0; } static int i915_runtime_pm_status(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; if (!HAS_RUNTIME_PM(dev_priv)) seq_puts(m, "Runtime power management not supported\n"); seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy)); seq_printf(m, "IRQs disabled: %s\n", yesno(!intel_irqs_enabled(dev_priv))); #ifdef CONFIG_PM seq_printf(m, "Usage count: %d\n", atomic_read(&dev->dev->power.usage_count)); #else seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n"); #endif seq_printf(m, "PCI device power state: %s [%d]\n", pci_power_name(dev_priv->dev->pdev->current_state), dev_priv->dev->pdev->current_state); return 0; } static int i915_power_domain_info(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct i915_power_domains *power_domains = &dev_priv->power_domains; int i; mutex_lock(&power_domains->lock); seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count"); for (i = 0; i < power_domains->power_well_count; i++) { struct i915_power_well *power_well; enum intel_display_power_domain power_domain; power_well = &power_domains->power_wells[i]; seq_printf(m, "%-25s %d\n", power_well->name, power_well->count); for (power_domain = 0; power_domain < POWER_DOMAIN_NUM; power_domain++) { if (!(BIT(power_domain) & power_well->domains)) continue; seq_printf(m, " %-23s %d\n", intel_display_power_domain_str(power_domain), power_domains->domain_use_count[power_domain]); } } mutex_unlock(&power_domains->lock); return 0; } static int i915_dmc_info(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_csr *csr; if (!HAS_CSR(dev)) { seq_puts(m, "not supported\n"); return 0; } csr = &dev_priv->csr; intel_runtime_pm_get(dev_priv); seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL)); seq_printf(m, "path: %s\n", csr->fw_path); if (!csr->dmc_payload) goto out; seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version), CSR_VERSION_MINOR(csr->version)); if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) { seq_printf(m, "DC3 -> DC5 count: %d\n", I915_READ(SKL_CSR_DC3_DC5_COUNT)); seq_printf(m, "DC5 -> DC6 count: %d\n", I915_READ(SKL_CSR_DC5_DC6_COUNT)); } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) { seq_printf(m, "DC3 -> DC5 count: %d\n", I915_READ(BXT_CSR_DC3_DC5_COUNT)); } out: seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0))); seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE)); seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL)); intel_runtime_pm_put(dev_priv); return 0; } static void intel_seq_print_mode(struct seq_file *m, int tabs, struct drm_display_mode *mode) { int i; for (i = 0; i < tabs; i++) seq_putc(m, '\t'); seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n", mode->base.id, mode->name, mode->vrefresh, mode->clock, mode->hdisplay, mode->hsync_start, mode->hsync_end, mode->htotal, mode->vdisplay, mode->vsync_start, mode->vsync_end, mode->vtotal, mode->type, mode->flags); } static void intel_encoder_info(struct seq_file *m, struct intel_crtc *intel_crtc, struct intel_encoder *intel_encoder) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_crtc *crtc = &intel_crtc->base; struct intel_connector *intel_connector; struct drm_encoder *encoder; encoder = &intel_encoder->base; seq_printf(m, "\tencoder %d: type: %s, connectors:\n", encoder->base.id, encoder->name); for_each_connector_on_encoder(dev, encoder, intel_connector) { struct drm_connector *connector = &intel_connector->base; seq_printf(m, "\t\tconnector %d: type: %s, status: %s", connector->base.id, connector->name, drm_get_connector_status_name(connector->status)); if (connector->status == connector_status_connected) { struct drm_display_mode *mode = &crtc->mode; seq_printf(m, ", mode:\n"); intel_seq_print_mode(m, 2, mode); } else { seq_putc(m, '\n'); } } } static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_crtc *crtc = &intel_crtc->base; struct intel_encoder *intel_encoder; struct drm_plane_state *plane_state = crtc->primary->state; struct drm_framebuffer *fb = plane_state->fb; if (fb) seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n", fb->base.id, plane_state->src_x >> 16, plane_state->src_y >> 16, fb->width, fb->height); else seq_puts(m, "\tprimary plane disabled\n"); for_each_encoder_on_crtc(dev, crtc, intel_encoder) intel_encoder_info(m, intel_crtc, intel_encoder); } static void intel_panel_info(struct seq_file *m, struct intel_panel *panel) { struct drm_display_mode *mode = panel->fixed_mode; seq_printf(m, "\tfixed mode:\n"); intel_seq_print_mode(m, 2, mode); } static void intel_dp_info(struct seq_file *m, struct intel_connector *intel_connector) { struct intel_encoder *intel_encoder = intel_connector->encoder; struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]); seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio)); if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP) intel_panel_info(m, &intel_connector->panel); } static void intel_hdmi_info(struct seq_file *m, struct intel_connector *intel_connector) { struct intel_encoder *intel_encoder = intel_connector->encoder; struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base); seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio)); } static void intel_lvds_info(struct seq_file *m, struct intel_connector *intel_connector) { intel_panel_info(m, &intel_connector->panel); } static void intel_connector_info(struct seq_file *m, struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); struct intel_encoder *intel_encoder = intel_connector->encoder; struct drm_display_mode *mode; seq_printf(m, "connector %d: type %s, status: %s\n", connector->base.id, connector->name, drm_get_connector_status_name(connector->status)); if (connector->status == connector_status_connected) { seq_printf(m, "\tname: %s\n", connector->display_info.name); seq_printf(m, "\tphysical dimensions: %dx%dmm\n", connector->display_info.width_mm, connector->display_info.height_mm); seq_printf(m, "\tsubpixel order: %s\n", drm_get_subpixel_order_name(connector->display_info.subpixel_order)); seq_printf(m, "\tCEA rev: %d\n", connector->display_info.cea_rev); } if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST) return; switch (connector->connector_type) { case DRM_MODE_CONNECTOR_DisplayPort: case DRM_MODE_CONNECTOR_eDP: intel_dp_info(m, intel_connector); break; case DRM_MODE_CONNECTOR_LVDS: if (intel_encoder->type == INTEL_OUTPUT_LVDS) intel_lvds_info(m, intel_connector); break; case DRM_MODE_CONNECTOR_HDMIA: if (intel_encoder->type == INTEL_OUTPUT_HDMI || intel_encoder->type == INTEL_OUTPUT_UNKNOWN) intel_hdmi_info(m, intel_connector); break; default: break; } seq_printf(m, "\tmodes:\n"); list_for_each_entry(mode, &connector->modes, head) intel_seq_print_mode(m, 2, mode); } static bool cursor_active(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; u32 state; if (IS_845G(dev) || IS_I865G(dev)) state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE; else state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE; return state; } static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y) { struct drm_i915_private *dev_priv = dev->dev_private; u32 pos; pos = I915_READ(CURPOS(pipe)); *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK; if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT)) *x = -*x; *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK; if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT)) *y = -*y; return cursor_active(dev, pipe); } static const char *plane_type(enum drm_plane_type type) { switch (type) { case DRM_PLANE_TYPE_OVERLAY: return "OVL"; case DRM_PLANE_TYPE_PRIMARY: return "PRI"; case DRM_PLANE_TYPE_CURSOR: return "CUR"; /* * Deliberately omitting default: to generate compiler warnings * when a new drm_plane_type gets added. */ } return "unknown"; } static const char *plane_rotation(unsigned int rotation) { static char buf[48]; /* * According to doc only one DRM_ROTATE_ is allowed but this * will print them all to visualize if the values are misused */ snprintf(buf, sizeof(buf), "%s%s%s%s%s%s(0x%08x)", (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "", (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "", (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "", (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "", (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "", (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "", rotation); return buf; } static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct intel_plane *intel_plane; for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) { struct drm_plane_state *state; struct drm_plane *plane = &intel_plane->base; if (!plane->state) { seq_puts(m, "plane->state is NULL!\n"); continue; } state = plane->state; seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n", plane->base.id, plane_type(intel_plane->base.type), state->crtc_x, state->crtc_y, state->crtc_w, state->crtc_h, (state->src_x >> 16), ((state->src_x & 0xffff) * 15625) >> 10, (state->src_y >> 16), ((state->src_y & 0xffff) * 15625) >> 10, (state->src_w >> 16), ((state->src_w & 0xffff) * 15625) >> 10, (state->src_h >> 16), ((state->src_h & 0xffff) * 15625) >> 10, state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A", plane_rotation(state->rotation)); } } static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc) { struct intel_crtc_state *pipe_config; int num_scalers = intel_crtc->num_scalers; int i; pipe_config = to_intel_crtc_state(intel_crtc->base.state); /* Not all platformas have a scaler */ if (num_scalers) { seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d", num_scalers, pipe_config->scaler_state.scaler_users, pipe_config->scaler_state.scaler_id); for (i = 0; i < SKL_NUM_SCALERS; i++) { struct intel_scaler *sc = &pipe_config->scaler_state.scalers[i]; seq_printf(m, ", scalers[%d]: use=%s, mode=%x", i, yesno(sc->in_use), sc->mode); } seq_puts(m, "\n"); } else { seq_puts(m, "\tNo scalers available on this platform\n"); } } static int i915_display_info(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *crtc; struct drm_connector *connector; intel_runtime_pm_get(dev_priv); drm_modeset_lock_all(dev); seq_printf(m, "CRTC info\n"); seq_printf(m, "---------\n"); for_each_intel_crtc(dev, crtc) { bool active; struct intel_crtc_state *pipe_config; int x, y; pipe_config = to_intel_crtc_state(crtc->base.state); seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n", crtc->base.base.id, pipe_name(crtc->pipe), yesno(pipe_config->base.active), pipe_config->pipe_src_w, pipe_config->pipe_src_h, yesno(pipe_config->dither), pipe_config->pipe_bpp); if (pipe_config->base.active) { intel_crtc_info(m, crtc); active = cursor_position(dev, crtc->pipe, &x, &y); seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n", yesno(crtc->cursor_base), x, y, crtc->base.cursor->state->crtc_w, crtc->base.cursor->state->crtc_h, crtc->cursor_addr, yesno(active)); intel_scaler_info(m, crtc); intel_plane_info(m, crtc); } seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n", yesno(!crtc->cpu_fifo_underrun_disabled), yesno(!crtc->pch_fifo_underrun_disabled)); } seq_printf(m, "\n"); seq_printf(m, "Connector info\n"); seq_printf(m, "--------------\n"); list_for_each_entry(connector, &dev->mode_config.connector_list, head) { intel_connector_info(m, connector); } drm_modeset_unlock_all(dev); intel_runtime_pm_put(dev_priv); return 0; } static int i915_semaphore_status(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *engine; int num_rings = hweight32(INTEL_INFO(dev)->ring_mask); enum intel_engine_id id; int j, ret; if (!i915_semaphore_is_enabled(dev_priv)) { seq_puts(m, "Semaphores are disabled\n"); return 0; } ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); if (IS_BROADWELL(dev)) { struct page *page; uint64_t *seqno; page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0); seqno = (uint64_t *)kmap_atomic(page); for_each_engine_id(engine, dev_priv, id) { uint64_t offset; seq_printf(m, "%s\n", engine->name); seq_puts(m, " Last signal:"); for (j = 0; j < num_rings; j++) { offset = id * I915_NUM_ENGINES + j; seq_printf(m, "0x%08llx (0x%02llx) ", seqno[offset], offset * 8); } seq_putc(m, '\n'); seq_puts(m, " Last wait: "); for (j = 0; j < num_rings; j++) { offset = id + (j * I915_NUM_ENGINES); seq_printf(m, "0x%08llx (0x%02llx) ", seqno[offset], offset * 8); } seq_putc(m, '\n'); } kunmap_atomic(seqno); } else { seq_puts(m, " Last signal:"); for_each_engine(engine, dev_priv) for (j = 0; j < num_rings; j++) seq_printf(m, "0x%08x\n", I915_READ(engine->semaphore.mbox.signal[j])); seq_putc(m, '\n'); } seq_puts(m, "\nSync seqno:\n"); for_each_engine(engine, dev_priv) { for (j = 0; j < num_rings; j++) seq_printf(m, " 0x%08x ", engine->semaphore.sync_seqno[j]); seq_putc(m, '\n'); } seq_putc(m, '\n'); intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_shared_dplls_info(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; int i; drm_modeset_lock_all(dev); for (i = 0; i < dev_priv->num_shared_dpll; i++) { struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id); seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n", pll->config.crtc_mask, pll->active_mask, yesno(pll->on)); seq_printf(m, " tracked hardware state:\n"); seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll); seq_printf(m, " dpll_md: 0x%08x\n", pll->config.hw_state.dpll_md); seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0); seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1); seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll); } drm_modeset_unlock_all(dev); return 0; } static int i915_wa_registers(struct seq_file *m, void *unused) { int i; int ret; struct intel_engine_cs *engine; struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct i915_workarounds *workarounds = &dev_priv->workarounds; enum intel_engine_id id; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); seq_printf(m, "Workarounds applied: %d\n", workarounds->count); for_each_engine_id(engine, dev_priv, id) seq_printf(m, "HW whitelist count for %s: %d\n", engine->name, workarounds->hw_whitelist_count[id]); for (i = 0; i < workarounds->count; ++i) { i915_reg_t addr; u32 mask, value, read; bool ok; addr = workarounds->reg[i].addr; mask = workarounds->reg[i].mask; value = workarounds->reg[i].value; read = I915_READ(addr); ok = (value & mask) == (read & mask); seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n", i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL"); } intel_runtime_pm_put(dev_priv); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_ddb_info(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct skl_ddb_allocation *ddb; struct skl_ddb_entry *entry; enum pipe pipe; int plane; if (INTEL_INFO(dev)->gen < 9) return 0; drm_modeset_lock_all(dev); ddb = &dev_priv->wm.skl_hw.ddb; seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size"); for_each_pipe(dev_priv, pipe) { seq_printf(m, "Pipe %c\n", pipe_name(pipe)); for_each_plane(dev_priv, pipe, plane) { entry = &ddb->plane[pipe][plane]; seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1, entry->start, entry->end, skl_ddb_entry_size(entry)); } entry = &ddb->plane[pipe][PLANE_CURSOR]; seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start, entry->end, skl_ddb_entry_size(entry)); } drm_modeset_unlock_all(dev); return 0; } static void drrs_status_per_crtc(struct seq_file *m, struct drm_device *dev, struct intel_crtc *intel_crtc) { struct drm_i915_private *dev_priv = dev->dev_private; struct i915_drrs *drrs = &dev_priv->drrs; int vrefresh = 0; struct drm_connector *connector; drm_for_each_connector(connector, dev) { if (connector->state->crtc != &intel_crtc->base) continue; seq_printf(m, "%s:\n", connector->name); } if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT) seq_puts(m, "\tVBT: DRRS_type: Static"); else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT) seq_puts(m, "\tVBT: DRRS_type: Seamless"); else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED) seq_puts(m, "\tVBT: DRRS_type: None"); else seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value"); seq_puts(m, "\n\n"); if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) { struct intel_panel *panel; mutex_lock(&drrs->mutex); /* DRRS Supported */ seq_puts(m, "\tDRRS Supported: Yes\n"); /* disable_drrs() will make drrs->dp NULL */ if (!drrs->dp) { seq_puts(m, "Idleness DRRS: Disabled"); mutex_unlock(&drrs->mutex); return; } panel = &drrs->dp->attached_connector->panel; seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X", drrs->busy_frontbuffer_bits); seq_puts(m, "\n\t\t"); if (drrs->refresh_rate_type == DRRS_HIGH_RR) { seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n"); vrefresh = panel->fixed_mode->vrefresh; } else if (drrs->refresh_rate_type == DRRS_LOW_RR) { seq_puts(m, "DRRS_State: DRRS_LOW_RR\n"); vrefresh = panel->downclock_mode->vrefresh; } else { seq_printf(m, "DRRS_State: Unknown(%d)\n", drrs->refresh_rate_type); mutex_unlock(&drrs->mutex); return; } seq_printf(m, "\t\tVrefresh: %d", vrefresh); seq_puts(m, "\n\t\t"); mutex_unlock(&drrs->mutex); } else { /* DRRS not supported. Print the VBT parameter*/ seq_puts(m, "\tDRRS Supported : No"); } seq_puts(m, "\n"); } static int i915_drrs_status(struct seq_file *m, void *unused) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct intel_crtc *intel_crtc; int active_crtc_cnt = 0; drm_modeset_lock_all(dev); for_each_intel_crtc(dev, intel_crtc) { if (intel_crtc->base.state->active) { active_crtc_cnt++; seq_printf(m, "\nCRTC %d: ", active_crtc_cnt); drrs_status_per_crtc(m, dev, intel_crtc); } } drm_modeset_unlock_all(dev); if (!active_crtc_cnt) seq_puts(m, "No active crtc found\n"); return 0; } struct pipe_crc_info { const char *name; struct drm_device *dev; enum pipe pipe; }; static int i915_dp_mst_info(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct intel_encoder *intel_encoder; struct intel_digital_port *intel_dig_port; struct drm_connector *connector; drm_modeset_lock_all(dev); drm_for_each_connector(connector, dev) { if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort) continue; intel_encoder = intel_attached_encoder(connector); if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST) continue; intel_dig_port = enc_to_dig_port(&intel_encoder->base); if (!intel_dig_port->dp.can_mst) continue; seq_printf(m, "MST Source Port %c\n", port_name(intel_dig_port->port)); drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr); } drm_modeset_unlock_all(dev); return 0; } static int i915_pipe_crc_open(struct inode *inode, struct file *filep) { struct pipe_crc_info *info = inode->i_private; struct drm_i915_private *dev_priv = info->dev->dev_private; struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe]; if (info->pipe >= INTEL_INFO(info->dev)->num_pipes) return -ENODEV; spin_lock_irq(&pipe_crc->lock); if (pipe_crc->opened) { spin_unlock_irq(&pipe_crc->lock); return -EBUSY; /* already open */ } pipe_crc->opened = true; filep->private_data = inode->i_private; spin_unlock_irq(&pipe_crc->lock); return 0; } static int i915_pipe_crc_release(struct inode *inode, struct file *filep) { struct pipe_crc_info *info = inode->i_private; struct drm_i915_private *dev_priv = info->dev->dev_private; struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe]; spin_lock_irq(&pipe_crc->lock); pipe_crc->opened = false; spin_unlock_irq(&pipe_crc->lock); return 0; } /* (6 fields, 8 chars each, space separated (5) + '\n') */ #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1) /* account for \'0' */ #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1) static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc) { assert_spin_locked(&pipe_crc->lock); return CIRC_CNT(pipe_crc->head, pipe_crc->tail, INTEL_PIPE_CRC_ENTRIES_NR); } static ssize_t i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count, loff_t *pos) { struct pipe_crc_info *info = filep->private_data; struct drm_device *dev = info->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe]; char buf[PIPE_CRC_BUFFER_LEN]; int n_entries; ssize_t bytes_read; /* * Don't allow user space to provide buffers not big enough to hold * a line of data. */ if (count < PIPE_CRC_LINE_LEN) return -EINVAL; if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE) return 0; /* nothing to read */ spin_lock_irq(&pipe_crc->lock); while (pipe_crc_data_count(pipe_crc) == 0) { int ret; if (filep->f_flags & O_NONBLOCK) { spin_unlock_irq(&pipe_crc->lock); return -EAGAIN; } ret = wait_event_interruptible_lock_irq(pipe_crc->wq, pipe_crc_data_count(pipe_crc), pipe_crc->lock); if (ret) { spin_unlock_irq(&pipe_crc->lock); return ret; } } /* We now have one or more entries to read */ n_entries = count / PIPE_CRC_LINE_LEN; bytes_read = 0; while (n_entries > 0) { struct intel_pipe_crc_entry *entry = &pipe_crc->entries[pipe_crc->tail]; int ret; if (CIRC_CNT(pipe_crc->head, pipe_crc->tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) break; BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR); pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1); bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN, "%8u %8x %8x %8x %8x %8x\n", entry->frame, entry->crc[0], entry->crc[1], entry->crc[2], entry->crc[3], entry->crc[4]); spin_unlock_irq(&pipe_crc->lock); ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN); if (ret == PIPE_CRC_LINE_LEN) return -EFAULT; user_buf += PIPE_CRC_LINE_LEN; n_entries--; spin_lock_irq(&pipe_crc->lock); } spin_unlock_irq(&pipe_crc->lock); return bytes_read; } static const struct file_operations i915_pipe_crc_fops = { .owner = THIS_MODULE, .open = i915_pipe_crc_open, .read = i915_pipe_crc_read, .release = i915_pipe_crc_release, }; static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = { { .name = "i915_pipe_A_crc", .pipe = PIPE_A, }, { .name = "i915_pipe_B_crc", .pipe = PIPE_B, }, { .name = "i915_pipe_C_crc", .pipe = PIPE_C, }, }; static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor, enum pipe pipe) { struct drm_device *dev = minor->dev; struct dentry *ent; struct pipe_crc_info *info = &i915_pipe_crc_data[pipe]; info->dev = dev; ent = debugfs_create_file(info->name, S_IRUGO, root, info, &i915_pipe_crc_fops); if (!ent) return -ENOMEM; return drm_add_fake_info_node(minor, ent, info); } static const char * const pipe_crc_sources[] = { "none", "plane1", "plane2", "pf", "pipe", "TV", "DP-B", "DP-C", "DP-D", "auto", }; static const char *pipe_crc_source_name(enum intel_pipe_crc_source source) { BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX); return pipe_crc_sources[source]; } static int display_crc_ctl_show(struct seq_file *m, void *data) { struct drm_device *dev = m->private; struct drm_i915_private *dev_priv = dev->dev_private; int i; for (i = 0; i < I915_MAX_PIPES; i++) seq_printf(m, "%c %s\n", pipe_name(i), pipe_crc_source_name(dev_priv->pipe_crc[i].source)); return 0; } static int display_crc_ctl_open(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; return single_open(file, display_crc_ctl_show, dev); } static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source, uint32_t *val) { if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) *source = INTEL_PIPE_CRC_SOURCE_PIPE; switch (*source) { case INTEL_PIPE_CRC_SOURCE_PIPE: *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX; break; case INTEL_PIPE_CRC_SOURCE_NONE: *val = 0; break; default: return -EINVAL; } return 0; } static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe, enum intel_pipe_crc_source *source) { struct intel_encoder *encoder; struct intel_crtc *crtc; struct intel_digital_port *dig_port; int ret = 0; *source = INTEL_PIPE_CRC_SOURCE_PIPE; drm_modeset_lock_all(dev); for_each_intel_encoder(dev, encoder) { if (!encoder->base.crtc) continue; crtc = to_intel_crtc(encoder->base.crtc); if (crtc->pipe != pipe) continue; switch (encoder->type) { case INTEL_OUTPUT_TVOUT: *source = INTEL_PIPE_CRC_SOURCE_TV; break; case INTEL_OUTPUT_DISPLAYPORT: case INTEL_OUTPUT_EDP: dig_port = enc_to_dig_port(&encoder->base); switch (dig_port->port) { case PORT_B: *source = INTEL_PIPE_CRC_SOURCE_DP_B; break; case PORT_C: *source = INTEL_PIPE_CRC_SOURCE_DP_C; break; case PORT_D: *source = INTEL_PIPE_CRC_SOURCE_DP_D; break; default: WARN(1, "nonexisting DP port %c\n", port_name(dig_port->port)); break; } break; default: break; } } drm_modeset_unlock_all(dev); return ret; } static int vlv_pipe_crc_ctl_reg(struct drm_device *dev, enum pipe pipe, enum intel_pipe_crc_source *source, uint32_t *val) { struct drm_i915_private *dev_priv = dev->dev_private; bool need_stable_symbols = false; if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) { int ret = i9xx_pipe_crc_auto_source(dev, pipe, source); if (ret) return ret; } switch (*source) { case INTEL_PIPE_CRC_SOURCE_PIPE: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV; break; case INTEL_PIPE_CRC_SOURCE_DP_B: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV; need_stable_symbols = true; break; case INTEL_PIPE_CRC_SOURCE_DP_C: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV; need_stable_symbols = true; break; case INTEL_PIPE_CRC_SOURCE_DP_D: if (!IS_CHERRYVIEW(dev)) return -EINVAL; *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV; need_stable_symbols = true; break; case INTEL_PIPE_CRC_SOURCE_NONE: *val = 0; break; default: return -EINVAL; } /* * When the pipe CRC tap point is after the transcoders we need * to tweak symbol-level features to produce a deterministic series of * symbols for a given frame. We need to reset those features only once * a frame (instead of every nth symbol): * - DC-balance: used to ensure a better clock recovery from the data * link (SDVO) * - DisplayPort scrambling: used for EMI reduction */ if (need_stable_symbols) { uint32_t tmp = I915_READ(PORT_DFT2_G4X); tmp |= DC_BALANCE_RESET_VLV; switch (pipe) { case PIPE_A: tmp |= PIPE_A_SCRAMBLE_RESET; break; case PIPE_B: tmp |= PIPE_B_SCRAMBLE_RESET; break; case PIPE_C: tmp |= PIPE_C_SCRAMBLE_RESET; break; default: return -EINVAL; } I915_WRITE(PORT_DFT2_G4X, tmp); } return 0; } static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev, enum pipe pipe, enum intel_pipe_crc_source *source, uint32_t *val) { struct drm_i915_private *dev_priv = dev->dev_private; bool need_stable_symbols = false; if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) { int ret = i9xx_pipe_crc_auto_source(dev, pipe, source); if (ret) return ret; } switch (*source) { case INTEL_PIPE_CRC_SOURCE_PIPE: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX; break; case INTEL_PIPE_CRC_SOURCE_TV: if (!SUPPORTS_TV(dev)) return -EINVAL; *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE; break; case INTEL_PIPE_CRC_SOURCE_DP_B: if (!IS_G4X(dev)) return -EINVAL; *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X; need_stable_symbols = true; break; case INTEL_PIPE_CRC_SOURCE_DP_C: if (!IS_G4X(dev)) return -EINVAL; *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X; need_stable_symbols = true; break; case INTEL_PIPE_CRC_SOURCE_DP_D: if (!IS_G4X(dev)) return -EINVAL; *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X; need_stable_symbols = true; break; case INTEL_PIPE_CRC_SOURCE_NONE: *val = 0; break; default: return -EINVAL; } /* * When the pipe CRC tap point is after the transcoders we need * to tweak symbol-level features to produce a deterministic series of * symbols for a given frame. We need to reset those features only once * a frame (instead of every nth symbol): * - DC-balance: used to ensure a better clock recovery from the data * link (SDVO) * - DisplayPort scrambling: used for EMI reduction */ if (need_stable_symbols) { uint32_t tmp = I915_READ(PORT_DFT2_G4X); WARN_ON(!IS_G4X(dev)); I915_WRITE(PORT_DFT_I9XX, I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET); if (pipe == PIPE_A) tmp |= PIPE_A_SCRAMBLE_RESET; else tmp |= PIPE_B_SCRAMBLE_RESET; I915_WRITE(PORT_DFT2_G4X, tmp); } return 0; } static void vlv_undo_pipe_scramble_reset(struct drm_device *dev, enum pipe pipe) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t tmp = I915_READ(PORT_DFT2_G4X); switch (pipe) { case PIPE_A: tmp &= ~PIPE_A_SCRAMBLE_RESET; break; case PIPE_B: tmp &= ~PIPE_B_SCRAMBLE_RESET; break; case PIPE_C: tmp &= ~PIPE_C_SCRAMBLE_RESET; break; default: return; } if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) tmp &= ~DC_BALANCE_RESET_VLV; I915_WRITE(PORT_DFT2_G4X, tmp); } static void g4x_undo_pipe_scramble_reset(struct drm_device *dev, enum pipe pipe) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t tmp = I915_READ(PORT_DFT2_G4X); if (pipe == PIPE_A) tmp &= ~PIPE_A_SCRAMBLE_RESET; else tmp &= ~PIPE_B_SCRAMBLE_RESET; I915_WRITE(PORT_DFT2_G4X, tmp); if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) { I915_WRITE(PORT_DFT_I9XX, I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET); } } static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source, uint32_t *val) { if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) *source = INTEL_PIPE_CRC_SOURCE_PIPE; switch (*source) { case INTEL_PIPE_CRC_SOURCE_PLANE1: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK; break; case INTEL_PIPE_CRC_SOURCE_PLANE2: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK; break; case INTEL_PIPE_CRC_SOURCE_PIPE: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK; break; case INTEL_PIPE_CRC_SOURCE_NONE: *val = 0; break; default: return -EINVAL; } return 0; } static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]); struct intel_crtc_state *pipe_config; struct drm_atomic_state *state; int ret = 0; drm_modeset_lock_all(dev); state = drm_atomic_state_alloc(dev); if (!state) { ret = -ENOMEM; goto out; } state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base); pipe_config = intel_atomic_get_crtc_state(state, crtc); if (IS_ERR(pipe_config)) { ret = PTR_ERR(pipe_config); goto out; } pipe_config->pch_pfit.force_thru = enable; if (pipe_config->cpu_transcoder == TRANSCODER_EDP && pipe_config->pch_pfit.enabled != enable) pipe_config->base.connectors_changed = true; ret = drm_atomic_commit(state); out: drm_modeset_unlock_all(dev); WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret); if (ret) drm_atomic_state_free(state); } static int ivb_pipe_crc_ctl_reg(struct drm_device *dev, enum pipe pipe, enum intel_pipe_crc_source *source, uint32_t *val) { if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) *source = INTEL_PIPE_CRC_SOURCE_PF; switch (*source) { case INTEL_PIPE_CRC_SOURCE_PLANE1: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB; break; case INTEL_PIPE_CRC_SOURCE_PLANE2: *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB; break; case INTEL_PIPE_CRC_SOURCE_PF: if (IS_HASWELL(dev) && pipe == PIPE_A) hsw_trans_edp_pipe_A_crc_wa(dev, true); *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB; break; case INTEL_PIPE_CRC_SOURCE_NONE: *val = 0; break; default: return -EINVAL; } return 0; } static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe, enum intel_pipe_crc_source source) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe)); enum intel_display_power_domain power_domain; u32 val = 0; /* shut up gcc */ int ret; if (pipe_crc->source == source) return 0; /* forbid changing the source without going back to 'none' */ if (pipe_crc->source && source) return -EINVAL; power_domain = POWER_DOMAIN_PIPE(pipe); if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) { DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n"); return -EIO; } if (IS_GEN2(dev)) ret = i8xx_pipe_crc_ctl_reg(&source, &val); else if (INTEL_INFO(dev)->gen < 5) ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val); else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val); else if (IS_GEN5(dev) || IS_GEN6(dev)) ret = ilk_pipe_crc_ctl_reg(&source, &val); else ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val); if (ret != 0) goto out; /* none -> real source transition */ if (source) { struct intel_pipe_crc_entry *entries; DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n", pipe_name(pipe), pipe_crc_source_name(source)); entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR, sizeof(pipe_crc->entries[0]), GFP_KERNEL); if (!entries) { ret = -ENOMEM; goto out; } /* * When IPS gets enabled, the pipe CRC changes. Since IPS gets * enabled and disabled dynamically based on package C states, * user space can't make reliable use of the CRCs, so let's just * completely disable it. */ hsw_disable_ips(crtc); spin_lock_irq(&pipe_crc->lock); kfree(pipe_crc->entries); pipe_crc->entries = entries; pipe_crc->head = 0; pipe_crc->tail = 0; spin_unlock_irq(&pipe_crc->lock); } pipe_crc->source = source; I915_WRITE(PIPE_CRC_CTL(pipe), val); POSTING_READ(PIPE_CRC_CTL(pipe)); /* real source -> none transition */ if (source == INTEL_PIPE_CRC_SOURCE_NONE) { struct intel_pipe_crc_entry *entries; struct intel_crtc *crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n", pipe_name(pipe)); drm_modeset_lock(&crtc->base.mutex, NULL); if (crtc->base.state->active) intel_wait_for_vblank(dev, pipe); drm_modeset_unlock(&crtc->base.mutex); spin_lock_irq(&pipe_crc->lock); entries = pipe_crc->entries; pipe_crc->entries = NULL; pipe_crc->head = 0; pipe_crc->tail = 0; spin_unlock_irq(&pipe_crc->lock); kfree(entries); if (IS_G4X(dev)) g4x_undo_pipe_scramble_reset(dev, pipe); else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) vlv_undo_pipe_scramble_reset(dev, pipe); else if (IS_HASWELL(dev) && pipe == PIPE_A) hsw_trans_edp_pipe_A_crc_wa(dev, false); hsw_enable_ips(crtc); } ret = 0; out: intel_display_power_put(dev_priv, power_domain); return ret; } /* * Parse pipe CRC command strings: * command: wsp* object wsp+ name wsp+ source wsp* * object: 'pipe' * name: (A | B | C) * source: (none | plane1 | plane2 | pf) * wsp: (#0x20 | #0x9 | #0xA)+ * * eg.: * "pipe A plane1" -> Start CRC computations on plane1 of pipe A * "pipe A none" -> Stop CRC */ static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words) { int n_words = 0; while (*buf) { char *end; /* skip leading white space */ buf = skip_spaces(buf); if (!*buf) break; /* end of buffer */ /* find end of word */ for (end = buf; *end && !isspace(*end); end++) ; if (n_words == max_words) { DRM_DEBUG_DRIVER("too many words, allowed <= %d\n", max_words); return -EINVAL; /* ran out of words[] before bytes */ } if (*end) *end++ = '\0'; words[n_words++] = buf; buf = end; } return n_words; } enum intel_pipe_crc_object { PIPE_CRC_OBJECT_PIPE, }; static const char * const pipe_crc_objects[] = { "pipe", }; static int display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o) { int i; for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++) if (!strcmp(buf, pipe_crc_objects[i])) { *o = i; return 0; } return -EINVAL; } static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe) { const char name = buf[0]; if (name < 'A' || name >= pipe_name(I915_MAX_PIPES)) return -EINVAL; *pipe = name - 'A'; return 0; } static int display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s) { int i; for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++) if (!strcmp(buf, pipe_crc_sources[i])) { *s = i; return 0; } return -EINVAL; } static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len) { #define N_WORDS 3 int n_words; char *words[N_WORDS]; enum pipe pipe; enum intel_pipe_crc_object object; enum intel_pipe_crc_source source; n_words = display_crc_ctl_tokenize(buf, words, N_WORDS); if (n_words != N_WORDS) { DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n", N_WORDS); return -EINVAL; } if (display_crc_ctl_parse_object(words[0], &object) < 0) { DRM_DEBUG_DRIVER("unknown object %s\n", words[0]); return -EINVAL; } if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) { DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]); return -EINVAL; } if (display_crc_ctl_parse_source(words[2], &source) < 0) { DRM_DEBUG_DRIVER("unknown source %s\n", words[2]); return -EINVAL; } return pipe_crc_set_source(dev, pipe, source); } static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { struct seq_file *m = file->private_data; struct drm_device *dev = m->private; char *tmpbuf; int ret; if (len == 0) return 0; if (len > PAGE_SIZE - 1) { DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n", PAGE_SIZE); return -E2BIG; } tmpbuf = kmalloc(len + 1, GFP_KERNEL); if (!tmpbuf) return -ENOMEM; if (copy_from_user(tmpbuf, ubuf, len)) { ret = -EFAULT; goto out; } tmpbuf[len] = '\0'; ret = display_crc_ctl_parse(dev, tmpbuf, len); out: kfree(tmpbuf); if (ret < 0) return ret; *offp += len; return len; } static const struct file_operations i915_display_crc_ctl_fops = { .owner = THIS_MODULE, .open = display_crc_ctl_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = display_crc_ctl_write }; static ssize_t i915_displayport_test_active_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { char *input_buffer; int status = 0; struct drm_device *dev; struct drm_connector *connector; struct list_head *connector_list; struct intel_dp *intel_dp; int val = 0; dev = ((struct seq_file *)file->private_data)->private; connector_list = &dev->mode_config.connector_list; if (len == 0) return 0; input_buffer = kmalloc(len + 1, GFP_KERNEL); if (!input_buffer) return -ENOMEM; if (copy_from_user(input_buffer, ubuf, len)) { status = -EFAULT; goto out; } input_buffer[len] = '\0'; DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len); list_for_each_entry(connector, connector_list, head) { if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort) continue; if (connector->status == connector_status_connected && connector->encoder != NULL) { intel_dp = enc_to_intel_dp(connector->encoder); status = kstrtoint(input_buffer, 10, &val); if (status < 0) goto out; DRM_DEBUG_DRIVER("Got %d for test active\n", val); /* To prevent erroneous activation of the compliance * testing code, only accept an actual value of 1 here */ if (val == 1) intel_dp->compliance_test_active = 1; else intel_dp->compliance_test_active = 0; } } out: kfree(input_buffer); if (status < 0) return status; *offp += len; return len; } static int i915_displayport_test_active_show(struct seq_file *m, void *data) { struct drm_device *dev = m->private; struct drm_connector *connector; struct list_head *connector_list = &dev->mode_config.connector_list; struct intel_dp *intel_dp; list_for_each_entry(connector, connector_list, head) { if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort) continue; if (connector->status == connector_status_connected && connector->encoder != NULL) { intel_dp = enc_to_intel_dp(connector->encoder); if (intel_dp->compliance_test_active) seq_puts(m, "1"); else seq_puts(m, "0"); } else seq_puts(m, "0"); } return 0; } static int i915_displayport_test_active_open(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; return single_open(file, i915_displayport_test_active_show, dev); } static const struct file_operations i915_displayport_test_active_fops = { .owner = THIS_MODULE, .open = i915_displayport_test_active_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = i915_displayport_test_active_write }; static int i915_displayport_test_data_show(struct seq_file *m, void *data) { struct drm_device *dev = m->private; struct drm_connector *connector; struct list_head *connector_list = &dev->mode_config.connector_list; struct intel_dp *intel_dp; list_for_each_entry(connector, connector_list, head) { if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort) continue; if (connector->status == connector_status_connected && connector->encoder != NULL) { intel_dp = enc_to_intel_dp(connector->encoder); seq_printf(m, "%lx", intel_dp->compliance_test_data); } else seq_puts(m, "0"); } return 0; } static int i915_displayport_test_data_open(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; return single_open(file, i915_displayport_test_data_show, dev); } static const struct file_operations i915_displayport_test_data_fops = { .owner = THIS_MODULE, .open = i915_displayport_test_data_open, .read = seq_read, .llseek = seq_lseek, .release = single_release }; static int i915_displayport_test_type_show(struct seq_file *m, void *data) { struct drm_device *dev = m->private; struct drm_connector *connector; struct list_head *connector_list = &dev->mode_config.connector_list; struct intel_dp *intel_dp; list_for_each_entry(connector, connector_list, head) { if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort) continue; if (connector->status == connector_status_connected && connector->encoder != NULL) { intel_dp = enc_to_intel_dp(connector->encoder); seq_printf(m, "%02lx", intel_dp->compliance_test_type); } else seq_puts(m, "0"); } return 0; } static int i915_displayport_test_type_open(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; return single_open(file, i915_displayport_test_type_show, dev); } static const struct file_operations i915_displayport_test_type_fops = { .owner = THIS_MODULE, .open = i915_displayport_test_type_open, .read = seq_read, .llseek = seq_lseek, .release = single_release }; static void wm_latency_show(struct seq_file *m, const uint16_t wm[8]) { struct drm_device *dev = m->private; int level; int num_levels; if (IS_CHERRYVIEW(dev)) num_levels = 3; else if (IS_VALLEYVIEW(dev)) num_levels = 1; else num_levels = ilk_wm_max_level(dev) + 1; drm_modeset_lock_all(dev); for (level = 0; level < num_levels; level++) { unsigned int latency = wm[level]; /* * - WM1+ latency values in 0.5us units * - latencies are in us on gen9/vlv/chv */ if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) latency *= 10; else if (level > 0) latency *= 5; seq_printf(m, "WM%d %u (%u.%u usec)\n", level, wm[level], latency / 10, latency % 10); } drm_modeset_unlock_all(dev); } static int pri_wm_latency_show(struct seq_file *m, void *data) { struct drm_device *dev = m->private; struct drm_i915_private *dev_priv = dev->dev_private; const uint16_t *latencies; if (INTEL_INFO(dev)->gen >= 9) latencies = dev_priv->wm.skl_latency; else latencies = to_i915(dev)->wm.pri_latency; wm_latency_show(m, latencies); return 0; } static int spr_wm_latency_show(struct seq_file *m, void *data) { struct drm_device *dev = m->private; struct drm_i915_private *dev_priv = dev->dev_private; const uint16_t *latencies; if (INTEL_INFO(dev)->gen >= 9) latencies = dev_priv->wm.skl_latency; else latencies = to_i915(dev)->wm.spr_latency; wm_latency_show(m, latencies); return 0; } static int cur_wm_latency_show(struct seq_file *m, void *data) { struct drm_device *dev = m->private; struct drm_i915_private *dev_priv = dev->dev_private; const uint16_t *latencies; if (INTEL_INFO(dev)->gen >= 9) latencies = dev_priv->wm.skl_latency; else latencies = to_i915(dev)->wm.cur_latency; wm_latency_show(m, latencies); return 0; } static int pri_wm_latency_open(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; if (INTEL_INFO(dev)->gen < 5) return -ENODEV; return single_open(file, pri_wm_latency_show, dev); } static int spr_wm_latency_open(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; if (HAS_GMCH_DISPLAY(dev)) return -ENODEV; return single_open(file, spr_wm_latency_show, dev); } static int cur_wm_latency_open(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; if (HAS_GMCH_DISPLAY(dev)) return -ENODEV; return single_open(file, cur_wm_latency_show, dev); } static ssize_t wm_latency_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp, uint16_t wm[8]) { struct seq_file *m = file->private_data; struct drm_device *dev = m->private; uint16_t new[8] = { 0 }; int num_levels; int level; int ret; char tmp[32]; if (IS_CHERRYVIEW(dev)) num_levels = 3; else if (IS_VALLEYVIEW(dev)) num_levels = 1; else num_levels = ilk_wm_max_level(dev) + 1; if (len >= sizeof(tmp)) return -EINVAL; if (copy_from_user(tmp, ubuf, len)) return -EFAULT; tmp[len] = '\0'; ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4], &new[5], &new[6], &new[7]); if (ret != num_levels) return -EINVAL; drm_modeset_lock_all(dev); for (level = 0; level < num_levels; level++) wm[level] = new[level]; drm_modeset_unlock_all(dev); return len; } static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { struct seq_file *m = file->private_data; struct drm_device *dev = m->private; struct drm_i915_private *dev_priv = dev->dev_private; uint16_t *latencies; if (INTEL_INFO(dev)->gen >= 9) latencies = dev_priv->wm.skl_latency; else latencies = to_i915(dev)->wm.pri_latency; return wm_latency_write(file, ubuf, len, offp, latencies); } static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { struct seq_file *m = file->private_data; struct drm_device *dev = m->private; struct drm_i915_private *dev_priv = dev->dev_private; uint16_t *latencies; if (INTEL_INFO(dev)->gen >= 9) latencies = dev_priv->wm.skl_latency; else latencies = to_i915(dev)->wm.spr_latency; return wm_latency_write(file, ubuf, len, offp, latencies); } static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { struct seq_file *m = file->private_data; struct drm_device *dev = m->private; struct drm_i915_private *dev_priv = dev->dev_private; uint16_t *latencies; if (INTEL_INFO(dev)->gen >= 9) latencies = dev_priv->wm.skl_latency; else latencies = to_i915(dev)->wm.cur_latency; return wm_latency_write(file, ubuf, len, offp, latencies); } static const struct file_operations i915_pri_wm_latency_fops = { .owner = THIS_MODULE, .open = pri_wm_latency_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = pri_wm_latency_write }; static const struct file_operations i915_spr_wm_latency_fops = { .owner = THIS_MODULE, .open = spr_wm_latency_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = spr_wm_latency_write }; static const struct file_operations i915_cur_wm_latency_fops = { .owner = THIS_MODULE, .open = cur_wm_latency_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = cur_wm_latency_write }; static int i915_wedged_get(void *data, u64 *val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; *val = i915_terminally_wedged(&dev_priv->gpu_error); return 0; } static int i915_wedged_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; /* * There is no safeguard against this debugfs entry colliding * with the hangcheck calling same i915_handle_error() in * parallel, causing an explosion. For now we assume that the * test harness is responsible enough not to inject gpu hangs * while it is writing to 'i915_wedged' */ if (i915_reset_in_progress(&dev_priv->gpu_error)) return -EAGAIN; intel_runtime_pm_get(dev_priv); i915_handle_error(dev_priv, val, "Manually setting wedged to %llu", val); intel_runtime_pm_put(dev_priv); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops, i915_wedged_get, i915_wedged_set, "%llu\n"); static int i915_ring_stop_get(void *data, u64 *val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; *val = dev_priv->gpu_error.stop_rings; return 0; } static int i915_ring_stop_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; int ret; DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val); ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; dev_priv->gpu_error.stop_rings = val; mutex_unlock(&dev->struct_mutex); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops, i915_ring_stop_get, i915_ring_stop_set, "0x%08llx\n"); static int i915_ring_missed_irq_get(void *data, u64 *val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; *val = dev_priv->gpu_error.missed_irq_rings; return 0; } static int i915_ring_missed_irq_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; int ret; /* Lock against concurrent debugfs callers */ ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; dev_priv->gpu_error.missed_irq_rings = val; mutex_unlock(&dev->struct_mutex); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops, i915_ring_missed_irq_get, i915_ring_missed_irq_set, "0x%08llx\n"); static int i915_ring_test_irq_get(void *data, u64 *val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; *val = dev_priv->gpu_error.test_irq_rings; return 0; } static int i915_ring_test_irq_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; int ret; DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val); /* Lock against concurrent debugfs callers */ ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; dev_priv->gpu_error.test_irq_rings = val; mutex_unlock(&dev->struct_mutex); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops, i915_ring_test_irq_get, i915_ring_test_irq_set, "0x%08llx\n"); #define DROP_UNBOUND 0x1 #define DROP_BOUND 0x2 #define DROP_RETIRE 0x4 #define DROP_ACTIVE 0x8 #define DROP_ALL (DROP_UNBOUND | \ DROP_BOUND | \ DROP_RETIRE | \ DROP_ACTIVE) static int i915_drop_caches_get(void *data, u64 *val) { *val = DROP_ALL; return 0; } static int i915_drop_caches_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; int ret; DRM_DEBUG("Dropping caches: 0x%08llx\n", val); /* No need to check and wait for gpu resets, only libdrm auto-restarts * on ioctls on -EAGAIN. */ ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; if (val & DROP_ACTIVE) { ret = i915_gem_wait_for_idle(dev_priv); if (ret) goto unlock; } if (val & (DROP_RETIRE | DROP_ACTIVE)) i915_gem_retire_requests(dev_priv); if (val & DROP_BOUND) i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND); if (val & DROP_UNBOUND) i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND); unlock: mutex_unlock(&dev->struct_mutex); return ret; } DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops, i915_drop_caches_get, i915_drop_caches_set, "0x%08llx\n"); static int i915_max_freq_get(void *data, u64 *val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; int ret; if (INTEL_INFO(dev)->gen < 6) return -ENODEV; flush_delayed_work(&dev_priv->rps.delayed_resume_work); ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); if (ret) return ret; *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit); mutex_unlock(&dev_priv->rps.hw_lock); return 0; } static int i915_max_freq_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; u32 hw_max, hw_min; int ret; if (INTEL_INFO(dev)->gen < 6) return -ENODEV; flush_delayed_work(&dev_priv->rps.delayed_resume_work); DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val); ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); if (ret) return ret; /* * Turbo will still be enabled, but won't go above the set value. */ val = intel_freq_opcode(dev_priv, val); hw_max = dev_priv->rps.max_freq; hw_min = dev_priv->rps.min_freq; if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) { mutex_unlock(&dev_priv->rps.hw_lock); return -EINVAL; } dev_priv->rps.max_freq_softlimit = val; intel_set_rps(dev_priv, val); mutex_unlock(&dev_priv->rps.hw_lock); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops, i915_max_freq_get, i915_max_freq_set, "%llu\n"); static int i915_min_freq_get(void *data, u64 *val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; int ret; if (INTEL_INFO(dev)->gen < 6) return -ENODEV; flush_delayed_work(&dev_priv->rps.delayed_resume_work); ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); if (ret) return ret; *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit); mutex_unlock(&dev_priv->rps.hw_lock); return 0; } static int i915_min_freq_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; u32 hw_max, hw_min; int ret; if (INTEL_INFO(dev)->gen < 6) return -ENODEV; flush_delayed_work(&dev_priv->rps.delayed_resume_work); DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val); ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); if (ret) return ret; /* * Turbo will still be enabled, but won't go below the set value. */ val = intel_freq_opcode(dev_priv, val); hw_max = dev_priv->rps.max_freq; hw_min = dev_priv->rps.min_freq; if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) { mutex_unlock(&dev_priv->rps.hw_lock); return -EINVAL; } dev_priv->rps.min_freq_softlimit = val; intel_set_rps(dev_priv, val); mutex_unlock(&dev_priv->rps.hw_lock); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops, i915_min_freq_get, i915_min_freq_set, "%llu\n"); static int i915_cache_sharing_get(void *data, u64 *val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; u32 snpcr; int ret; if (!(IS_GEN6(dev) || IS_GEN7(dev))) return -ENODEV; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; intel_runtime_pm_get(dev_priv); snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); intel_runtime_pm_put(dev_priv); mutex_unlock(&dev_priv->dev->struct_mutex); *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT; return 0; } static int i915_cache_sharing_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; u32 snpcr; if (!(IS_GEN6(dev) || IS_GEN7(dev))) return -ENODEV; if (val > 3) return -EINVAL; intel_runtime_pm_get(dev_priv); DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val); /* Update the cache sharing policy here as well */ snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); snpcr &= ~GEN6_MBC_SNPCR_MASK; snpcr |= (val << GEN6_MBC_SNPCR_SHIFT); I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr); intel_runtime_pm_put(dev_priv); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops, i915_cache_sharing_get, i915_cache_sharing_set, "%llu\n"); struct sseu_dev_status { unsigned int slice_total; unsigned int subslice_total; unsigned int subslice_per_slice; unsigned int eu_total; unsigned int eu_per_subslice; }; static void cherryview_sseu_device_status(struct drm_device *dev, struct sseu_dev_status *stat) { struct drm_i915_private *dev_priv = dev->dev_private; int ss_max = 2; int ss; u32 sig1[ss_max], sig2[ss_max]; sig1[0] = I915_READ(CHV_POWER_SS0_SIG1); sig1[1] = I915_READ(CHV_POWER_SS1_SIG1); sig2[0] = I915_READ(CHV_POWER_SS0_SIG2); sig2[1] = I915_READ(CHV_POWER_SS1_SIG2); for (ss = 0; ss < ss_max; ss++) { unsigned int eu_cnt; if (sig1[ss] & CHV_SS_PG_ENABLE) /* skip disabled subslice */ continue; stat->slice_total = 1; stat->subslice_per_slice++; eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) + ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) + ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) + ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2); stat->eu_total += eu_cnt; stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt); } stat->subslice_total = stat->subslice_per_slice; } static void gen9_sseu_device_status(struct drm_device *dev, struct sseu_dev_status *stat) { struct drm_i915_private *dev_priv = dev->dev_private; int s_max = 3, ss_max = 4; int s, ss; u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2]; /* BXT has a single slice and at most 3 subslices. */ if (IS_BROXTON(dev)) { s_max = 1; ss_max = 3; } for (s = 0; s < s_max; s++) { s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s)); eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s)); eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s)); } eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK | GEN9_PGCTL_SSA_EU19_ACK | GEN9_PGCTL_SSA_EU210_ACK | GEN9_PGCTL_SSA_EU311_ACK; eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK | GEN9_PGCTL_SSB_EU19_ACK | GEN9_PGCTL_SSB_EU210_ACK | GEN9_PGCTL_SSB_EU311_ACK; for (s = 0; s < s_max; s++) { unsigned int ss_cnt = 0; if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0) /* skip disabled slice */ continue; stat->slice_total++; if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) ss_cnt = INTEL_INFO(dev)->subslice_per_slice; for (ss = 0; ss < ss_max; ss++) { unsigned int eu_cnt; if (IS_BROXTON(dev) && !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss)))) /* skip disabled subslice */ continue; if (IS_BROXTON(dev)) ss_cnt++; eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] & eu_mask[ss%2]); stat->eu_total += eu_cnt; stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt); } stat->subslice_total += ss_cnt; stat->subslice_per_slice = max(stat->subslice_per_slice, ss_cnt); } } static void broadwell_sseu_device_status(struct drm_device *dev, struct sseu_dev_status *stat) { struct drm_i915_private *dev_priv = dev->dev_private; int s; u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO); stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK); if (stat->slice_total) { stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice; stat->subslice_total = stat->slice_total * stat->subslice_per_slice; stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice; stat->eu_total = stat->eu_per_subslice * stat->subslice_total; /* subtract fused off EU(s) from enabled slice(s) */ for (s = 0; s < stat->slice_total; s++) { u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s]; stat->eu_total -= hweight8(subslice_7eu); } } } static int i915_sseu_status(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct sseu_dev_status stat; if (INTEL_INFO(dev)->gen < 8) return -ENODEV; seq_puts(m, "SSEU Device Info\n"); seq_printf(m, " Available Slice Total: %u\n", INTEL_INFO(dev)->slice_total); seq_printf(m, " Available Subslice Total: %u\n", INTEL_INFO(dev)->subslice_total); seq_printf(m, " Available Subslice Per Slice: %u\n", INTEL_INFO(dev)->subslice_per_slice); seq_printf(m, " Available EU Total: %u\n", INTEL_INFO(dev)->eu_total); seq_printf(m, " Available EU Per Subslice: %u\n", INTEL_INFO(dev)->eu_per_subslice); seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev))); if (HAS_POOLED_EU(dev)) seq_printf(m, " Min EU in pool: %u\n", INTEL_INFO(dev)->min_eu_in_pool); seq_printf(m, " Has Slice Power Gating: %s\n", yesno(INTEL_INFO(dev)->has_slice_pg)); seq_printf(m, " Has Subslice Power Gating: %s\n", yesno(INTEL_INFO(dev)->has_subslice_pg)); seq_printf(m, " Has EU Power Gating: %s\n", yesno(INTEL_INFO(dev)->has_eu_pg)); seq_puts(m, "SSEU Device Status\n"); memset(&stat, 0, sizeof(stat)); if (IS_CHERRYVIEW(dev)) { cherryview_sseu_device_status(dev, &stat); } else if (IS_BROADWELL(dev)) { broadwell_sseu_device_status(dev, &stat); } else if (INTEL_INFO(dev)->gen >= 9) { gen9_sseu_device_status(dev, &stat); } seq_printf(m, " Enabled Slice Total: %u\n", stat.slice_total); seq_printf(m, " Enabled Subslice Total: %u\n", stat.subslice_total); seq_printf(m, " Enabled Subslice Per Slice: %u\n", stat.subslice_per_slice); seq_printf(m, " Enabled EU Total: %u\n", stat.eu_total); seq_printf(m, " Enabled EU Per Subslice: %u\n", stat.eu_per_subslice); return 0; } static int i915_forcewake_open(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; struct drm_i915_private *dev_priv = dev->dev_private; if (INTEL_INFO(dev)->gen < 6) return 0; intel_runtime_pm_get(dev_priv); intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); return 0; } static int i915_forcewake_release(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; struct drm_i915_private *dev_priv = dev->dev_private; if (INTEL_INFO(dev)->gen < 6) return 0; intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); intel_runtime_pm_put(dev_priv); return 0; } static const struct file_operations i915_forcewake_fops = { .owner = THIS_MODULE, .open = i915_forcewake_open, .release = i915_forcewake_release, }; static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor) { struct drm_device *dev = minor->dev; struct dentry *ent; ent = debugfs_create_file("i915_forcewake_user", S_IRUSR, root, dev, &i915_forcewake_fops); if (!ent) return -ENOMEM; return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops); } static int i915_debugfs_create(struct dentry *root, struct drm_minor *minor, const char *name, const struct file_operations *fops) { struct drm_device *dev = minor->dev; struct dentry *ent; ent = debugfs_create_file(name, S_IRUGO | S_IWUSR, root, dev, fops); if (!ent) return -ENOMEM; return drm_add_fake_info_node(minor, ent, fops); } static const struct drm_info_list i915_debugfs_list[] = { {"i915_capabilities", i915_capabilities, 0}, {"i915_gem_objects", i915_gem_object_info, 0}, {"i915_gem_gtt", i915_gem_gtt_info, 0}, {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST}, {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST}, {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST}, {"i915_gem_stolen", i915_gem_stolen_list_info }, {"i915_gem_pageflip", i915_gem_pageflip_info, 0}, {"i915_gem_request", i915_gem_request_info, 0}, {"i915_gem_seqno", i915_gem_seqno_info, 0}, {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0}, {"i915_gem_interrupt", i915_interrupt_info, 0}, {"i915_gem_hws", i915_hws_info, 0, (void *)RCS}, {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS}, {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS}, {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS}, {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0}, {"i915_guc_info", i915_guc_info, 0}, {"i915_guc_load_status", i915_guc_load_status_info, 0}, {"i915_guc_log_dump", i915_guc_log_dump, 0}, {"i915_frequency_info", i915_frequency_info, 0}, {"i915_hangcheck_info", i915_hangcheck_info, 0}, {"i915_drpc_info", i915_drpc_info, 0}, {"i915_emon_status", i915_emon_status, 0}, {"i915_ring_freq_table", i915_ring_freq_table, 0}, {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0}, {"i915_fbc_status", i915_fbc_status, 0}, {"i915_ips_status", i915_ips_status, 0}, {"i915_sr_status", i915_sr_status, 0}, {"i915_opregion", i915_opregion, 0}, {"i915_vbt", i915_vbt, 0}, {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0}, {"i915_context_status", i915_context_status, 0}, {"i915_dump_lrc", i915_dump_lrc, 0}, {"i915_execlists", i915_execlists, 0}, {"i915_forcewake_domains", i915_forcewake_domains, 0}, {"i915_swizzle_info", i915_swizzle_info, 0}, {"i915_ppgtt_info", i915_ppgtt_info, 0}, {"i915_llc", i915_llc, 0}, {"i915_edp_psr_status", i915_edp_psr_status, 0}, {"i915_sink_crc_eDP1", i915_sink_crc, 0}, {"i915_energy_uJ", i915_energy_uJ, 0}, {"i915_runtime_pm_status", i915_runtime_pm_status, 0}, {"i915_power_domain_info", i915_power_domain_info, 0}, {"i915_dmc_info", i915_dmc_info, 0}, {"i915_display_info", i915_display_info, 0}, {"i915_semaphore_status", i915_semaphore_status, 0}, {"i915_shared_dplls_info", i915_shared_dplls_info, 0}, {"i915_dp_mst_info", i915_dp_mst_info, 0}, {"i915_wa_registers", i915_wa_registers, 0}, {"i915_ddb_info", i915_ddb_info, 0}, {"i915_sseu_status", i915_sseu_status, 0}, {"i915_drrs_status", i915_drrs_status, 0}, {"i915_rps_boost_info", i915_rps_boost_info, 0}, }; #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list) static const struct i915_debugfs_files { const char *name; const struct file_operations *fops; } i915_debugfs_files[] = { {"i915_wedged", &i915_wedged_fops}, {"i915_max_freq", &i915_max_freq_fops}, {"i915_min_freq", &i915_min_freq_fops}, {"i915_cache_sharing", &i915_cache_sharing_fops}, {"i915_ring_stop", &i915_ring_stop_fops}, {"i915_ring_missed_irq", &i915_ring_missed_irq_fops}, {"i915_ring_test_irq", &i915_ring_test_irq_fops}, {"i915_gem_drop_caches", &i915_drop_caches_fops}, {"i915_error_state", &i915_error_state_fops}, {"i915_next_seqno", &i915_next_seqno_fops}, {"i915_display_crc_ctl", &i915_display_crc_ctl_fops}, {"i915_pri_wm_latency", &i915_pri_wm_latency_fops}, {"i915_spr_wm_latency", &i915_spr_wm_latency_fops}, {"i915_cur_wm_latency", &i915_cur_wm_latency_fops}, {"i915_fbc_false_color", &i915_fbc_fc_fops}, {"i915_dp_test_data", &i915_displayport_test_data_fops}, {"i915_dp_test_type", &i915_displayport_test_type_fops}, {"i915_dp_test_active", &i915_displayport_test_active_fops} }; void intel_display_crc_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe; for_each_pipe(dev_priv, pipe) { struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; pipe_crc->opened = false; spin_lock_init(&pipe_crc->lock); init_waitqueue_head(&pipe_crc->wq); } } int i915_debugfs_register(struct drm_i915_private *dev_priv) { struct drm_minor *minor = dev_priv->dev->primary; int ret, i; ret = i915_forcewake_create(minor->debugfs_root, minor); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) { ret = i915_pipe_crc_create(minor->debugfs_root, minor, i); if (ret) return ret; } for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) { ret = i915_debugfs_create(minor->debugfs_root, minor, i915_debugfs_files[i].name, i915_debugfs_files[i].fops); if (ret) return ret; } return drm_debugfs_create_files(i915_debugfs_list, I915_DEBUGFS_ENTRIES, minor->debugfs_root, minor); } void i915_debugfs_unregister(struct drm_i915_private *dev_priv) { struct drm_minor *minor = dev_priv->dev->primary; int i; drm_debugfs_remove_files(i915_debugfs_list, I915_DEBUGFS_ENTRIES, minor); drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops, 1, minor); for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) { struct drm_info_list *info_list = (struct drm_info_list *)&i915_pipe_crc_data[i]; drm_debugfs_remove_files(info_list, 1, minor); } for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) { struct drm_info_list *info_list = (struct drm_info_list *) i915_debugfs_files[i].fops; drm_debugfs_remove_files(info_list, 1, minor); } } struct dpcd_block { /* DPCD dump start address. */ unsigned int offset; /* DPCD dump end address, inclusive. If unset, .size will be used. */ unsigned int end; /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */ size_t size; /* Only valid for eDP. */ bool edp; }; static const struct dpcd_block i915_dpcd_debug[] = { { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE }, { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS }, { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 }, { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET }, { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 }, { .offset = DP_SET_POWER }, { .offset = DP_EDP_DPCD_REV }, { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 }, { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB }, { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET }, }; static int i915_dpcd_show(struct seq_file *m, void *data) { struct drm_connector *connector = m->private; struct intel_dp *intel_dp = enc_to_intel_dp(&intel_attached_encoder(connector)->base); uint8_t buf[16]; ssize_t err; int i; if (connector->status != connector_status_connected) return -ENODEV; for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) { const struct dpcd_block *b = &i915_dpcd_debug[i]; size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1); if (b->edp && connector->connector_type != DRM_MODE_CONNECTOR_eDP) continue; /* low tech for now */ if (WARN_ON(size > sizeof(buf))) continue; err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size); if (err <= 0) { DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n", size, b->offset, err); continue; } seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf); } return 0; } static int i915_dpcd_open(struct inode *inode, struct file *file) { return single_open(file, i915_dpcd_show, inode->i_private); } static const struct file_operations i915_dpcd_fops = { .owner = THIS_MODULE, .open = i915_dpcd_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /** * i915_debugfs_connector_add - add i915 specific connector debugfs files * @connector: pointer to a registered drm_connector * * Cleanup will be done by drm_connector_unregister() through a call to * drm_debugfs_connector_remove(). * * Returns 0 on success, negative error codes on error. */ int i915_debugfs_connector_add(struct drm_connector *connector) { struct dentry *root = connector->debugfs_entry; /* The connector must have been registered beforehands. */ if (!root) return -ENODEV; if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort || connector->connector_type == DRM_MODE_CONNECTOR_eDP) debugfs_create_file("i915_dpcd", S_IRUGO, root, connector, &i915_dpcd_fops); return 0; }