/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "compat.h" #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "btrfs_inode.h" #include "volumes.h" #include "print-tree.h" #include "async-thread.h" #include "locking.h" #include "tree-log.h" #include "free-space-cache.h" #include "inode-map.h" #include "check-integrity.h" static struct extent_io_ops btree_extent_io_ops; static void end_workqueue_fn(struct btrfs_work *work); static void free_fs_root(struct btrfs_root *root); static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, int read_only); static int btrfs_destroy_ordered_operations(struct btrfs_root *root); static int btrfs_destroy_ordered_extents(struct btrfs_root *root); static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, struct btrfs_root *root); static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root); static int btrfs_destroy_marked_extents(struct btrfs_root *root, struct extent_io_tree *dirty_pages, int mark); static int btrfs_destroy_pinned_extent(struct btrfs_root *root, struct extent_io_tree *pinned_extents); static int btrfs_cleanup_transaction(struct btrfs_root *root); /* * end_io_wq structs are used to do processing in task context when an IO is * complete. This is used during reads to verify checksums, and it is used * by writes to insert metadata for new file extents after IO is complete. */ struct end_io_wq { struct bio *bio; bio_end_io_t *end_io; void *private; struct btrfs_fs_info *info; int error; int metadata; struct list_head list; struct btrfs_work work; }; /* * async submit bios are used to offload expensive checksumming * onto the worker threads. They checksum file and metadata bios * just before they are sent down the IO stack. */ struct async_submit_bio { struct inode *inode; struct bio *bio; struct list_head list; extent_submit_bio_hook_t *submit_bio_start; extent_submit_bio_hook_t *submit_bio_done; int rw; int mirror_num; unsigned long bio_flags; /* * bio_offset is optional, can be used if the pages in the bio * can't tell us where in the file the bio should go */ u64 bio_offset; struct btrfs_work work; }; /* * Lockdep class keys for extent_buffer->lock's in this root. For a given * eb, the lockdep key is determined by the btrfs_root it belongs to and * the level the eb occupies in the tree. * * Different roots are used for different purposes and may nest inside each * other and they require separate keysets. As lockdep keys should be * static, assign keysets according to the purpose of the root as indicated * by btrfs_root->objectid. This ensures that all special purpose roots * have separate keysets. * * Lock-nesting across peer nodes is always done with the immediate parent * node locked thus preventing deadlock. As lockdep doesn't know this, use * subclass to avoid triggering lockdep warning in such cases. * * The key is set by the readpage_end_io_hook after the buffer has passed * csum validation but before the pages are unlocked. It is also set by * btrfs_init_new_buffer on freshly allocated blocks. * * We also add a check to make sure the highest level of the tree is the * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code * needs update as well. */ #ifdef CONFIG_DEBUG_LOCK_ALLOC # if BTRFS_MAX_LEVEL != 8 # error # endif static struct btrfs_lockdep_keyset { u64 id; /* root objectid */ const char *name_stem; /* lock name stem */ char names[BTRFS_MAX_LEVEL + 1][20]; struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; } btrfs_lockdep_keysets[] = { { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" }, { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, { .id = 0, .name_stem = "tree" }, }; void __init btrfs_init_lockdep(void) { int i, j; /* initialize lockdep class names */ for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; for (j = 0; j < ARRAY_SIZE(ks->names); j++) snprintf(ks->names[j], sizeof(ks->names[j]), "btrfs-%s-%02d", ks->name_stem, j); } } void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level) { struct btrfs_lockdep_keyset *ks; BUG_ON(level >= ARRAY_SIZE(ks->keys)); /* find the matching keyset, id 0 is the default entry */ for (ks = btrfs_lockdep_keysets; ks->id; ks++) if (ks->id == objectid) break; lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]); } #endif /* * extents on the btree inode are pretty simple, there's one extent * that covers the entire device */ static struct extent_map *btree_get_extent(struct inode *inode, struct page *page, size_t pg_offset, u64 start, u64 len, int create) { struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; struct extent_map *em; int ret; read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, start, len); if (em) { em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; read_unlock(&em_tree->lock); goto out; } read_unlock(&em_tree->lock); em = alloc_extent_map(); if (!em) { em = ERR_PTR(-ENOMEM); goto out; } em->start = 0; em->len = (u64)-1; em->block_len = (u64)-1; em->block_start = 0; em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; write_lock(&em_tree->lock); ret = add_extent_mapping(em_tree, em); if (ret == -EEXIST) { u64 failed_start = em->start; u64 failed_len = em->len; free_extent_map(em); em = lookup_extent_mapping(em_tree, start, len); if (em) { ret = 0; } else { em = lookup_extent_mapping(em_tree, failed_start, failed_len); ret = -EIO; } } else if (ret) { free_extent_map(em); em = NULL; } write_unlock(&em_tree->lock); if (ret) em = ERR_PTR(ret); out: return em; } u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) { return crc32c(seed, data, len); } void btrfs_csum_final(u32 crc, char *result) { put_unaligned_le32(~crc, result); } /* * compute the csum for a btree block, and either verify it or write it * into the csum field of the block. */ static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, int verify) { u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); char *result = NULL; unsigned long len; unsigned long cur_len; unsigned long offset = BTRFS_CSUM_SIZE; char *kaddr; unsigned long map_start; unsigned long map_len; int err; u32 crc = ~(u32)0; unsigned long inline_result; len = buf->len - offset; while (len > 0) { err = map_private_extent_buffer(buf, offset, 32, &kaddr, &map_start, &map_len); if (err) return 1; cur_len = min(len, map_len - (offset - map_start)); crc = btrfs_csum_data(root, kaddr + offset - map_start, crc, cur_len); len -= cur_len; offset += cur_len; } if (csum_size > sizeof(inline_result)) { result = kzalloc(csum_size * sizeof(char), GFP_NOFS); if (!result) return 1; } else { result = (char *)&inline_result; } btrfs_csum_final(crc, result); if (verify) { if (memcmp_extent_buffer(buf, result, 0, csum_size)) { u32 val; u32 found = 0; memcpy(&found, result, csum_size); read_extent_buffer(buf, &val, 0, csum_size); printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " "failed on %llu wanted %X found %X " "level %d\n", root->fs_info->sb->s_id, (unsigned long long)buf->start, val, found, btrfs_header_level(buf)); if (result != (char *)&inline_result) kfree(result); return 1; } } else { write_extent_buffer(buf, result, 0, csum_size); } if (result != (char *)&inline_result) kfree(result); return 0; } /* * we can't consider a given block up to date unless the transid of the * block matches the transid in the parent node's pointer. This is how we * detect blocks that either didn't get written at all or got written * in the wrong place. */ static int verify_parent_transid(struct extent_io_tree *io_tree, struct extent_buffer *eb, u64 parent_transid) { struct extent_state *cached_state = NULL; int ret; if (!parent_transid || btrfs_header_generation(eb) == parent_transid) return 0; lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 0, &cached_state, GFP_NOFS); if (extent_buffer_uptodate(io_tree, eb, cached_state) && btrfs_header_generation(eb) == parent_transid) { ret = 0; goto out; } printk_ratelimited("parent transid verify failed on %llu wanted %llu " "found %llu\n", (unsigned long long)eb->start, (unsigned long long)parent_transid, (unsigned long long)btrfs_header_generation(eb)); ret = 1; clear_extent_buffer_uptodate(io_tree, eb, &cached_state); out: unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, &cached_state, GFP_NOFS); return ret; } /* * helper to read a given tree block, doing retries as required when * the checksums don't match and we have alternate mirrors to try. */ static int btree_read_extent_buffer_pages(struct btrfs_root *root, struct extent_buffer *eb, u64 start, u64 parent_transid) { struct extent_io_tree *io_tree; int ret; int num_copies = 0; int mirror_num = 0; clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; while (1) { ret = read_extent_buffer_pages(io_tree, eb, start, WAIT_COMPLETE, btree_get_extent, mirror_num); if (!ret && !verify_parent_transid(io_tree, eb, parent_transid)) return ret; /* * This buffer's crc is fine, but its contents are corrupted, so * there is no reason to read the other copies, they won't be * any less wrong. */ if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) return ret; num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, eb->start, eb->len); if (num_copies == 1) return ret; mirror_num++; if (mirror_num > num_copies) return ret; } return -EIO; } /* * checksum a dirty tree block before IO. This has extra checks to make sure * we only fill in the checksum field in the first page of a multi-page block */ static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) { struct extent_io_tree *tree; u64 start = (u64)page->index << PAGE_CACHE_SHIFT; u64 found_start; unsigned long len; struct extent_buffer *eb; int ret; tree = &BTRFS_I(page->mapping->host)->io_tree; if (page->private == EXTENT_PAGE_PRIVATE) { WARN_ON(1); goto out; } if (!page->private) { WARN_ON(1); goto out; } len = page->private >> 2; WARN_ON(len == 0); eb = alloc_extent_buffer(tree, start, len, page); if (eb == NULL) { WARN_ON(1); goto out; } ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, btrfs_header_generation(eb)); BUG_ON(ret); WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN)); found_start = btrfs_header_bytenr(eb); if (found_start != start) { WARN_ON(1); goto err; } if (eb->first_page != page) { WARN_ON(1); goto err; } if (!PageUptodate(page)) { WARN_ON(1); goto err; } csum_tree_block(root, eb, 0); err: free_extent_buffer(eb); out: return 0; } static int check_tree_block_fsid(struct btrfs_root *root, struct extent_buffer *eb) { struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; u8 fsid[BTRFS_UUID_SIZE]; int ret = 1; read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), BTRFS_FSID_SIZE); while (fs_devices) { if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { ret = 0; break; } fs_devices = fs_devices->seed; } return ret; } #define CORRUPT(reason, eb, root, slot) \ printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ "root=%llu, slot=%d\n", reason, \ (unsigned long long)btrfs_header_bytenr(eb), \ (unsigned long long)root->objectid, slot) static noinline int check_leaf(struct btrfs_root *root, struct extent_buffer *leaf) { struct btrfs_key key; struct btrfs_key leaf_key; u32 nritems = btrfs_header_nritems(leaf); int slot; if (nritems == 0) return 0; /* Check the 0 item */ if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root)) { CORRUPT("invalid item offset size pair", leaf, root, 0); return -EIO; } /* * Check to make sure each items keys are in the correct order and their * offsets make sense. We only have to loop through nritems-1 because * we check the current slot against the next slot, which verifies the * next slot's offset+size makes sense and that the current's slot * offset is correct. */ for (slot = 0; slot < nritems - 1; slot++) { btrfs_item_key_to_cpu(leaf, &leaf_key, slot); btrfs_item_key_to_cpu(leaf, &key, slot + 1); /* Make sure the keys are in the right order */ if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { CORRUPT("bad key order", leaf, root, slot); return -EIO; } /* * Make sure the offset and ends are right, remember that the * item data starts at the end of the leaf and grows towards the * front. */ if (btrfs_item_offset_nr(leaf, slot) != btrfs_item_end_nr(leaf, slot + 1)) { CORRUPT("slot offset bad", leaf, root, slot); return -EIO; } /* * Check to make sure that we don't point outside of the leaf, * just incase all the items are consistent to eachother, but * all point outside of the leaf. */ if (btrfs_item_end_nr(leaf, slot) > BTRFS_LEAF_DATA_SIZE(root)) { CORRUPT("slot end outside of leaf", leaf, root, slot); return -EIO; } } return 0; } static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, struct extent_state *state) { struct extent_io_tree *tree; u64 found_start; int found_level; unsigned long len; struct extent_buffer *eb; struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; int ret = 0; tree = &BTRFS_I(page->mapping->host)->io_tree; if (page->private == EXTENT_PAGE_PRIVATE) goto out; if (!page->private) goto out; len = page->private >> 2; WARN_ON(len == 0); eb = alloc_extent_buffer(tree, start, len, page); if (eb == NULL) { ret = -EIO; goto out; } found_start = btrfs_header_bytenr(eb); if (found_start != start) { printk_ratelimited(KERN_INFO "btrfs bad tree block start " "%llu %llu\n", (unsigned long long)found_start, (unsigned long long)eb->start); ret = -EIO; goto err; } if (eb->first_page != page) { printk(KERN_INFO "btrfs bad first page %lu %lu\n", eb->first_page->index, page->index); WARN_ON(1); ret = -EIO; goto err; } if (check_tree_block_fsid(root, eb)) { printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", (unsigned long long)eb->start); ret = -EIO; goto err; } found_level = btrfs_header_level(eb); btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb, found_level); ret = csum_tree_block(root, eb, 1); if (ret) { ret = -EIO; goto err; } /* * If this is a leaf block and it is corrupt, set the corrupt bit so * that we don't try and read the other copies of this block, just * return -EIO. */ if (found_level == 0 && check_leaf(root, eb)) { set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); ret = -EIO; } end = min_t(u64, eb->len, PAGE_CACHE_SIZE); end = eb->start + end - 1; err: if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); btree_readahead_hook(root, eb, eb->start, ret); } free_extent_buffer(eb); out: return ret; } static int btree_io_failed_hook(struct bio *failed_bio, struct page *page, u64 start, u64 end, int mirror_num, struct extent_state *state) { struct extent_io_tree *tree; unsigned long len; struct extent_buffer *eb; struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; tree = &BTRFS_I(page->mapping->host)->io_tree; if (page->private == EXTENT_PAGE_PRIVATE) goto out; if (!page->private) goto out; len = page->private >> 2; WARN_ON(len == 0); eb = alloc_extent_buffer(tree, start, len, page); if (eb == NULL) goto out; if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); btree_readahead_hook(root, eb, eb->start, -EIO); } free_extent_buffer(eb); out: return -EIO; /* we fixed nothing */ } static void end_workqueue_bio(struct bio *bio, int err) { struct end_io_wq *end_io_wq = bio->bi_private; struct btrfs_fs_info *fs_info; fs_info = end_io_wq->info; end_io_wq->error = err; end_io_wq->work.func = end_workqueue_fn; end_io_wq->work.flags = 0; if (bio->bi_rw & REQ_WRITE) { if (end_io_wq->metadata == 1) btrfs_queue_worker(&fs_info->endio_meta_write_workers, &end_io_wq->work); else if (end_io_wq->metadata == 2) btrfs_queue_worker(&fs_info->endio_freespace_worker, &end_io_wq->work); else btrfs_queue_worker(&fs_info->endio_write_workers, &end_io_wq->work); } else { if (end_io_wq->metadata) btrfs_queue_worker(&fs_info->endio_meta_workers, &end_io_wq->work); else btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work); } } /* * For the metadata arg you want * * 0 - if data * 1 - if normal metadta * 2 - if writing to the free space cache area */ int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, int metadata) { struct end_io_wq *end_io_wq; end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); if (!end_io_wq) return -ENOMEM; end_io_wq->private = bio->bi_private; end_io_wq->end_io = bio->bi_end_io; end_io_wq->info = info; end_io_wq->error = 0; end_io_wq->bio = bio; end_io_wq->metadata = metadata; bio->bi_private = end_io_wq; bio->bi_end_io = end_workqueue_bio; return 0; } unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) { unsigned long limit = min_t(unsigned long, info->workers.max_workers, info->fs_devices->open_devices); return 256 * limit; } static void run_one_async_start(struct btrfs_work *work) { struct async_submit_bio *async; async = container_of(work, struct async_submit_bio, work); async->submit_bio_start(async->inode, async->rw, async->bio, async->mirror_num, async->bio_flags, async->bio_offset); } static void run_one_async_done(struct btrfs_work *work) { struct btrfs_fs_info *fs_info; struct async_submit_bio *async; int limit; async = container_of(work, struct async_submit_bio, work); fs_info = BTRFS_I(async->inode)->root->fs_info; limit = btrfs_async_submit_limit(fs_info); limit = limit * 2 / 3; atomic_dec(&fs_info->nr_async_submits); if (atomic_read(&fs_info->nr_async_submits) < limit && waitqueue_active(&fs_info->async_submit_wait)) wake_up(&fs_info->async_submit_wait); async->submit_bio_done(async->inode, async->rw, async->bio, async->mirror_num, async->bio_flags, async->bio_offset); } static void run_one_async_free(struct btrfs_work *work) { struct async_submit_bio *async; async = container_of(work, struct async_submit_bio, work); kfree(async); } int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, int rw, struct bio *bio, int mirror_num, unsigned long bio_flags, u64 bio_offset, extent_submit_bio_hook_t *submit_bio_start, extent_submit_bio_hook_t *submit_bio_done) { struct async_submit_bio *async; async = kmalloc(sizeof(*async), GFP_NOFS); if (!async) return -ENOMEM; async->inode = inode; async->rw = rw; async->bio = bio; async->mirror_num = mirror_num; async->submit_bio_start = submit_bio_start; async->submit_bio_done = submit_bio_done; async->work.func = run_one_async_start; async->work.ordered_func = run_one_async_done; async->work.ordered_free = run_one_async_free; async->work.flags = 0; async->bio_flags = bio_flags; async->bio_offset = bio_offset; atomic_inc(&fs_info->nr_async_submits); if (rw & REQ_SYNC) btrfs_set_work_high_prio(&async->work); btrfs_queue_worker(&fs_info->workers, &async->work); while (atomic_read(&fs_info->async_submit_draining) && atomic_read(&fs_info->nr_async_submits)) { wait_event(fs_info->async_submit_wait, (atomic_read(&fs_info->nr_async_submits) == 0)); } return 0; } static int btree_csum_one_bio(struct bio *bio) { struct bio_vec *bvec = bio->bi_io_vec; int bio_index = 0; struct btrfs_root *root; WARN_ON(bio->bi_vcnt <= 0); while (bio_index < bio->bi_vcnt) { root = BTRFS_I(bvec->bv_page->mapping->host)->root; csum_dirty_buffer(root, bvec->bv_page); bio_index++; bvec++; } return 0; } static int __btree_submit_bio_start(struct inode *inode, int rw, struct bio *bio, int mirror_num, unsigned long bio_flags, u64 bio_offset) { /* * when we're called for a write, we're already in the async * submission context. Just jump into btrfs_map_bio */ btree_csum_one_bio(bio); return 0; } static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, int mirror_num, unsigned long bio_flags, u64 bio_offset) { /* * when we're called for a write, we're already in the async * submission context. Just jump into btrfs_map_bio */ return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); } static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, int mirror_num, unsigned long bio_flags, u64 bio_offset) { int ret; ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, bio, 1); BUG_ON(ret); if (!(rw & REQ_WRITE)) { /* * called for a read, do the setup so that checksum validation * can happen in the async kernel threads */ return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 0); } /* * kthread helpers are used to submit writes so that checksumming * can happen in parallel across all CPUs */ return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, inode, rw, bio, mirror_num, 0, bio_offset, __btree_submit_bio_start, __btree_submit_bio_done); } #ifdef CONFIG_MIGRATION static int btree_migratepage(struct address_space *mapping, struct page *newpage, struct page *page, enum migrate_mode mode) { /* * we can't safely write a btree page from here, * we haven't done the locking hook */ if (PageDirty(page)) return -EAGAIN; /* * Buffers may be managed in a filesystem specific way. * We must have no buffers or drop them. */ if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) return -EAGAIN; return migrate_page(mapping, newpage, page, mode); } #endif static int btree_writepage(struct page *page, struct writeback_control *wbc) { struct extent_io_tree *tree; struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; struct extent_buffer *eb; int was_dirty; tree = &BTRFS_I(page->mapping->host)->io_tree; if (!(current->flags & PF_MEMALLOC)) { return extent_write_full_page(tree, page, btree_get_extent, wbc); } redirty_page_for_writepage(wbc, page); eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE); WARN_ON(!eb); was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); if (!was_dirty) { spin_lock(&root->fs_info->delalloc_lock); root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; spin_unlock(&root->fs_info->delalloc_lock); } free_extent_buffer(eb); unlock_page(page); return 0; } static int btree_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct extent_io_tree *tree; tree = &BTRFS_I(mapping->host)->io_tree; if (wbc->sync_mode == WB_SYNC_NONE) { struct btrfs_root *root = BTRFS_I(mapping->host)->root; u64 num_dirty; unsigned long thresh = 32 * 1024 * 1024; if (wbc->for_kupdate) return 0; /* this is a bit racy, but that's ok */ num_dirty = root->fs_info->dirty_metadata_bytes; if (num_dirty < thresh) return 0; } return extent_writepages(tree, mapping, btree_get_extent, wbc); } static int btree_readpage(struct file *file, struct page *page) { struct extent_io_tree *tree; tree = &BTRFS_I(page->mapping->host)->io_tree; return extent_read_full_page(tree, page, btree_get_extent, 0); } static int btree_releasepage(struct page *page, gfp_t gfp_flags) { struct extent_io_tree *tree; struct extent_map_tree *map; int ret; if (PageWriteback(page) || PageDirty(page)) return 0; tree = &BTRFS_I(page->mapping->host)->io_tree; map = &BTRFS_I(page->mapping->host)->extent_tree; /* * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing * slab allocation from alloc_extent_state down the callchain where * it'd hit a BUG_ON as those flags are not allowed. */ gfp_flags &= ~GFP_SLAB_BUG_MASK; ret = try_release_extent_state(map, tree, page, gfp_flags); if (!ret) return 0; ret = try_release_extent_buffer(tree, page); if (ret == 1) { ClearPagePrivate(page); set_page_private(page, 0); page_cache_release(page); } return ret; } static void btree_invalidatepage(struct page *page, unsigned long offset) { struct extent_io_tree *tree; tree = &BTRFS_I(page->mapping->host)->io_tree; extent_invalidatepage(tree, page, offset); btree_releasepage(page, GFP_NOFS); if (PagePrivate(page)) { printk(KERN_WARNING "btrfs warning page private not zero " "on page %llu\n", (unsigned long long)page_offset(page)); ClearPagePrivate(page); set_page_private(page, 0); page_cache_release(page); } } static const struct address_space_operations btree_aops = { .readpage = btree_readpage, .writepage = btree_writepage, .writepages = btree_writepages, .releasepage = btree_releasepage, .invalidatepage = btree_invalidatepage, #ifdef CONFIG_MIGRATION .migratepage = btree_migratepage, #endif }; int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, u64 parent_transid) { struct extent_buffer *buf = NULL; struct inode *btree_inode = root->fs_info->btree_inode; int ret = 0; buf = btrfs_find_create_tree_block(root, bytenr, blocksize); if (!buf) return 0; read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, buf, 0, WAIT_NONE, btree_get_extent, 0); free_extent_buffer(buf); return ret; } int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, int mirror_num, struct extent_buffer **eb) { struct extent_buffer *buf = NULL; struct inode *btree_inode = root->fs_info->btree_inode; struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; int ret; buf = btrfs_find_create_tree_block(root, bytenr, blocksize); if (!buf) return 0; set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, btree_get_extent, mirror_num); if (ret) { free_extent_buffer(buf); return ret; } if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { free_extent_buffer(buf); return -EIO; } else if (extent_buffer_uptodate(io_tree, buf, NULL)) { *eb = buf; } else { free_extent_buffer(buf); } return 0; } struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize) { struct inode *btree_inode = root->fs_info->btree_inode; struct extent_buffer *eb; eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, bytenr, blocksize); return eb; } struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize) { struct inode *btree_inode = root->fs_info->btree_inode; struct extent_buffer *eb; eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, bytenr, blocksize, NULL); return eb; } int btrfs_write_tree_block(struct extent_buffer *buf) { return filemap_fdatawrite_range(buf->first_page->mapping, buf->start, buf->start + buf->len - 1); } int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) { return filemap_fdatawait_range(buf->first_page->mapping, buf->start, buf->start + buf->len - 1); } struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, u64 parent_transid) { struct extent_buffer *buf = NULL; int ret; buf = btrfs_find_create_tree_block(root, bytenr, blocksize); if (!buf) return NULL; ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); if (ret == 0) set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); return buf; } void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf) { struct inode *btree_inode = root->fs_info->btree_inode; if (btrfs_header_generation(buf) == root->fs_info->running_transaction->transid) { btrfs_assert_tree_locked(buf); if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { spin_lock(&root->fs_info->delalloc_lock); if (root->fs_info->dirty_metadata_bytes >= buf->len) root->fs_info->dirty_metadata_bytes -= buf->len; else { spin_unlock(&root->fs_info->delalloc_lock); btrfs_panic(root->fs_info, -EOVERFLOW, "Can't clear %lu bytes from " " dirty_mdatadata_bytes (%lu)", buf->len, root->fs_info->dirty_metadata_bytes); } spin_unlock(&root->fs_info->delalloc_lock); } /* ugh, clear_extent_buffer_dirty needs to lock the page */ btrfs_set_lock_blocking(buf); clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf); } } static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, u32 stripesize, struct btrfs_root *root, struct btrfs_fs_info *fs_info, u64 objectid) { root->node = NULL; root->commit_root = NULL; root->sectorsize = sectorsize; root->nodesize = nodesize; root->leafsize = leafsize; root->stripesize = stripesize; root->ref_cows = 0; root->track_dirty = 0; root->in_radix = 0; root->orphan_item_inserted = 0; root->orphan_cleanup_state = 0; root->objectid = objectid; root->last_trans = 0; root->highest_objectid = 0; root->name = NULL; root->inode_tree = RB_ROOT; INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); root->block_rsv = NULL; root->orphan_block_rsv = NULL; INIT_LIST_HEAD(&root->dirty_list); INIT_LIST_HEAD(&root->orphan_list); INIT_LIST_HEAD(&root->root_list); spin_lock_init(&root->orphan_lock); spin_lock_init(&root->inode_lock); spin_lock_init(&root->accounting_lock); mutex_init(&root->objectid_mutex); mutex_init(&root->log_mutex); init_waitqueue_head(&root->log_writer_wait); init_waitqueue_head(&root->log_commit_wait[0]); init_waitqueue_head(&root->log_commit_wait[1]); atomic_set(&root->log_commit[0], 0); atomic_set(&root->log_commit[1], 0); atomic_set(&root->log_writers, 0); root->log_batch = 0; root->log_transid = 0; root->last_log_commit = 0; extent_io_tree_init(&root->dirty_log_pages, fs_info->btree_inode->i_mapping); memset(&root->root_key, 0, sizeof(root->root_key)); memset(&root->root_item, 0, sizeof(root->root_item)); memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); memset(&root->root_kobj, 0, sizeof(root->root_kobj)); root->defrag_trans_start = fs_info->generation; init_completion(&root->kobj_unregister); root->defrag_running = 0; root->root_key.objectid = objectid; root->anon_dev = 0; return 0; } static int find_and_setup_root(struct btrfs_root *tree_root, struct btrfs_fs_info *fs_info, u64 objectid, struct btrfs_root *root) { int ret; u32 blocksize; u64 generation; __setup_root(tree_root->nodesize, tree_root->leafsize, tree_root->sectorsize, tree_root->stripesize, root, fs_info, objectid); ret = btrfs_find_last_root(tree_root, objectid, &root->root_item, &root->root_key); if (ret > 0) return -ENOENT; BUG_ON(ret); generation = btrfs_root_generation(&root->root_item); blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); root->commit_root = NULL; root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), blocksize, generation); if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) { free_extent_buffer(root->node); root->node = NULL; return -EIO; } root->commit_root = btrfs_root_node(root); return 0; } static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) { struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); if (root) root->fs_info = fs_info; return root; } static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *root; struct btrfs_root *tree_root = fs_info->tree_root; struct extent_buffer *leaf; root = btrfs_alloc_root(fs_info); if (!root) return ERR_PTR(-ENOMEM); __setup_root(tree_root->nodesize, tree_root->leafsize, tree_root->sectorsize, tree_root->stripesize, root, fs_info, BTRFS_TREE_LOG_OBJECTID); root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; root->root_key.type = BTRFS_ROOT_ITEM_KEY; root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; /* * log trees do not get reference counted because they go away * before a real commit is actually done. They do store pointers * to file data extents, and those reference counts still get * updated (along with back refs to the log tree). */ root->ref_cows = 0; leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0, 0); if (IS_ERR(leaf)) { kfree(root); return ERR_CAST(leaf); } memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); btrfs_set_header_bytenr(leaf, leaf->start); btrfs_set_header_generation(leaf, trans->transid); btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); root->node = leaf; write_extent_buffer(root->node, root->fs_info->fsid, (unsigned long)btrfs_header_fsid(root->node), BTRFS_FSID_SIZE); btrfs_mark_buffer_dirty(root->node); btrfs_tree_unlock(root->node); return root; } int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *log_root; log_root = alloc_log_tree(trans, fs_info); if (IS_ERR(log_root)) return PTR_ERR(log_root); WARN_ON(fs_info->log_root_tree); fs_info->log_root_tree = log_root; return 0; } int btrfs_add_log_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_root *log_root; struct btrfs_inode_item *inode_item; log_root = alloc_log_tree(trans, root->fs_info); if (IS_ERR(log_root)) return PTR_ERR(log_root); log_root->last_trans = trans->transid; log_root->root_key.offset = root->root_key.objectid; inode_item = &log_root->root_item.inode; inode_item->generation = cpu_to_le64(1); inode_item->size = cpu_to_le64(3); inode_item->nlink = cpu_to_le32(1); inode_item->nbytes = cpu_to_le64(root->leafsize); inode_item->mode = cpu_to_le32(S_IFDIR | 0755); btrfs_set_root_node(&log_root->root_item, log_root->node); WARN_ON(root->log_root); root->log_root = log_root; root->log_transid = 0; root->last_log_commit = 0; return 0; } struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, struct btrfs_key *location) { struct btrfs_root *root; struct btrfs_fs_info *fs_info = tree_root->fs_info; struct btrfs_path *path; struct extent_buffer *l; u64 generation; u32 blocksize; int ret = 0; root = btrfs_alloc_root(fs_info); if (!root) return ERR_PTR(-ENOMEM); if (location->offset == (u64)-1) { ret = find_and_setup_root(tree_root, fs_info, location->objectid, root); if (ret) { kfree(root); return ERR_PTR(ret); } goto out; } __setup_root(tree_root->nodesize, tree_root->leafsize, tree_root->sectorsize, tree_root->stripesize, root, fs_info, location->objectid); path = btrfs_alloc_path(); if (!path) { kfree(root); return ERR_PTR(-ENOMEM); } ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); if (ret == 0) { l = path->nodes[0]; read_extent_buffer(l, &root->root_item, btrfs_item_ptr_offset(l, path->slots[0]), sizeof(root->root_item)); memcpy(&root->root_key, location, sizeof(*location)); } btrfs_free_path(path); if (ret) { kfree(root); if (ret > 0) ret = -ENOENT; return ERR_PTR(ret); } generation = btrfs_root_generation(&root->root_item); blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), blocksize, generation); root->commit_root = btrfs_root_node(root); BUG_ON(!root->node); out: if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { root->ref_cows = 1; btrfs_check_and_init_root_item(&root->root_item); } return root; } struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, struct btrfs_key *location) { struct btrfs_root *root; int ret; if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) return fs_info->tree_root; if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) return fs_info->extent_root; if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) return fs_info->chunk_root; if (location->objectid == BTRFS_DEV_TREE_OBJECTID) return fs_info->dev_root; if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) return fs_info->csum_root; again: spin_lock(&fs_info->fs_roots_radix_lock); root = radix_tree_lookup(&fs_info->fs_roots_radix, (unsigned long)location->objectid); spin_unlock(&fs_info->fs_roots_radix_lock); if (root) return root; root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); if (IS_ERR(root)) return root; root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), GFP_NOFS); if (!root->free_ino_pinned || !root->free_ino_ctl) { ret = -ENOMEM; goto fail; } btrfs_init_free_ino_ctl(root); mutex_init(&root->fs_commit_mutex); spin_lock_init(&root->cache_lock); init_waitqueue_head(&root->cache_wait); ret = get_anon_bdev(&root->anon_dev); if (ret) goto fail; if (btrfs_root_refs(&root->root_item) == 0) { ret = -ENOENT; goto fail; } ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); if (ret < 0) goto fail; if (ret == 0) root->orphan_item_inserted = 1; ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); if (ret) goto fail; spin_lock(&fs_info->fs_roots_radix_lock); ret = radix_tree_insert(&fs_info->fs_roots_radix, (unsigned long)root->root_key.objectid, root); if (ret == 0) root->in_radix = 1; spin_unlock(&fs_info->fs_roots_radix_lock); radix_tree_preload_end(); if (ret) { if (ret == -EEXIST) { free_fs_root(root); goto again; } goto fail; } ret = btrfs_find_dead_roots(fs_info->tree_root, root->root_key.objectid); WARN_ON(ret); return root; fail: free_fs_root(root); return ERR_PTR(ret); } static int btrfs_congested_fn(void *congested_data, int bdi_bits) { struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; int ret = 0; struct btrfs_device *device; struct backing_dev_info *bdi; rcu_read_lock(); list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { if (!device->bdev) continue; bdi = blk_get_backing_dev_info(device->bdev); if (bdi && bdi_congested(bdi, bdi_bits)) { ret = 1; break; } } rcu_read_unlock(); return ret; } /* * If this fails, caller must call bdi_destroy() to get rid of the * bdi again. */ static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) { int err; bdi->capabilities = BDI_CAP_MAP_COPY; err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); if (err) return err; bdi->ra_pages = default_backing_dev_info.ra_pages; bdi->congested_fn = btrfs_congested_fn; bdi->congested_data = info; return 0; } static int bio_ready_for_csum(struct bio *bio) { u64 length = 0; u64 buf_len = 0; u64 start = 0; struct page *page; struct extent_io_tree *io_tree = NULL; struct bio_vec *bvec; int i; int ret; bio_for_each_segment(bvec, bio, i) { page = bvec->bv_page; if (page->private == EXTENT_PAGE_PRIVATE) { length += bvec->bv_len; continue; } if (!page->private) { length += bvec->bv_len; continue; } length = bvec->bv_len; buf_len = page->private >> 2; start = page_offset(page) + bvec->bv_offset; io_tree = &BTRFS_I(page->mapping->host)->io_tree; } /* are we fully contained in this bio? */ if (buf_len <= length) return 1; ret = extent_range_uptodate(io_tree, start + length, start + buf_len - 1); return ret; } /* * called by the kthread helper functions to finally call the bio end_io * functions. This is where read checksum verification actually happens */ static void end_workqueue_fn(struct btrfs_work *work) { struct bio *bio; struct end_io_wq *end_io_wq; struct btrfs_fs_info *fs_info; int error; end_io_wq = container_of(work, struct end_io_wq, work); bio = end_io_wq->bio; fs_info = end_io_wq->info; /* metadata bio reads are special because the whole tree block must * be checksummed at once. This makes sure the entire block is in * ram and up to date before trying to verify things. For * blocksize <= pagesize, it is basically a noop */ if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata && !bio_ready_for_csum(bio)) { btrfs_queue_worker(&fs_info->endio_meta_workers, &end_io_wq->work); return; } error = end_io_wq->error; bio->bi_private = end_io_wq->private; bio->bi_end_io = end_io_wq->end_io; kfree(end_io_wq); bio_endio(bio, error); } static int cleaner_kthread(void *arg) { struct btrfs_root *root = arg; do { vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); if (!(root->fs_info->sb->s_flags & MS_RDONLY) && mutex_trylock(&root->fs_info->cleaner_mutex)) { btrfs_run_delayed_iputs(root); btrfs_clean_old_snapshots(root); mutex_unlock(&root->fs_info->cleaner_mutex); btrfs_run_defrag_inodes(root->fs_info); } if (!try_to_freeze()) { set_current_state(TASK_INTERRUPTIBLE); if (!kthread_should_stop()) schedule(); __set_current_state(TASK_RUNNING); } } while (!kthread_should_stop()); return 0; } static int transaction_kthread(void *arg) { struct btrfs_root *root = arg; struct btrfs_trans_handle *trans; struct btrfs_transaction *cur; u64 transid; unsigned long now; unsigned long delay; int ret; do { delay = HZ * 30; vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); mutex_lock(&root->fs_info->transaction_kthread_mutex); spin_lock(&root->fs_info->trans_lock); cur = root->fs_info->running_transaction; if (!cur) { spin_unlock(&root->fs_info->trans_lock); goto sleep; } now = get_seconds(); if (!cur->blocked && (now < cur->start_time || now - cur->start_time < 30)) { spin_unlock(&root->fs_info->trans_lock); delay = HZ * 5; goto sleep; } transid = cur->transid; spin_unlock(&root->fs_info->trans_lock); trans = btrfs_join_transaction(root); BUG_ON(IS_ERR(trans)); if (transid == trans->transid) { ret = btrfs_commit_transaction(trans, root); BUG_ON(ret); } else { btrfs_end_transaction(trans, root); } sleep: wake_up_process(root->fs_info->cleaner_kthread); mutex_unlock(&root->fs_info->transaction_kthread_mutex); if (!try_to_freeze()) { set_current_state(TASK_INTERRUPTIBLE); if (!kthread_should_stop() && !btrfs_transaction_blocked(root->fs_info)) schedule_timeout(delay); __set_current_state(TASK_RUNNING); } } while (!kthread_should_stop()); return 0; } /* * this will find the highest generation in the array of * root backups. The index of the highest array is returned, * or -1 if we can't find anything. * * We check to make sure the array is valid by comparing the * generation of the latest root in the array with the generation * in the super block. If they don't match we pitch it. */ static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) { u64 cur; int newest_index = -1; struct btrfs_root_backup *root_backup; int i; for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { root_backup = info->super_copy->super_roots + i; cur = btrfs_backup_tree_root_gen(root_backup); if (cur == newest_gen) newest_index = i; } /* check to see if we actually wrapped around */ if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { root_backup = info->super_copy->super_roots; cur = btrfs_backup_tree_root_gen(root_backup); if (cur == newest_gen) newest_index = 0; } return newest_index; } /* * find the oldest backup so we know where to store new entries * in the backup array. This will set the backup_root_index * field in the fs_info struct */ static void find_oldest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) { int newest_index = -1; newest_index = find_newest_super_backup(info, newest_gen); /* if there was garbage in there, just move along */ if (newest_index == -1) { info->backup_root_index = 0; } else { info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; } } /* * copy all the root pointers into the super backup array. * this will bump the backup pointer by one when it is * done */ static void backup_super_roots(struct btrfs_fs_info *info) { int next_backup; struct btrfs_root_backup *root_backup; int last_backup; next_backup = info->backup_root_index; last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % BTRFS_NUM_BACKUP_ROOTS; /* * just overwrite the last backup if we're at the same generation * this happens only at umount */ root_backup = info->super_for_commit->super_roots + last_backup; if (btrfs_backup_tree_root_gen(root_backup) == btrfs_header_generation(info->tree_root->node)) next_backup = last_backup; root_backup = info->super_for_commit->super_roots + next_backup; /* * make sure all of our padding and empty slots get zero filled * regardless of which ones we use today */ memset(root_backup, 0, sizeof(*root_backup)); info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); btrfs_set_backup_tree_root_gen(root_backup, btrfs_header_generation(info->tree_root->node)); btrfs_set_backup_tree_root_level(root_backup, btrfs_header_level(info->tree_root->node)); btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); btrfs_set_backup_chunk_root_gen(root_backup, btrfs_header_generation(info->chunk_root->node)); btrfs_set_backup_chunk_root_level(root_backup, btrfs_header_level(info->chunk_root->node)); btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); btrfs_set_backup_extent_root_gen(root_backup, btrfs_header_generation(info->extent_root->node)); btrfs_set_backup_extent_root_level(root_backup, btrfs_header_level(info->extent_root->node)); /* * we might commit during log recovery, which happens before we set * the fs_root. Make sure it is valid before we fill it in. */ if (info->fs_root && info->fs_root->node) { btrfs_set_backup_fs_root(root_backup, info->fs_root->node->start); btrfs_set_backup_fs_root_gen(root_backup, btrfs_header_generation(info->fs_root->node)); btrfs_set_backup_fs_root_level(root_backup, btrfs_header_level(info->fs_root->node)); } btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); btrfs_set_backup_dev_root_gen(root_backup, btrfs_header_generation(info->dev_root->node)); btrfs_set_backup_dev_root_level(root_backup, btrfs_header_level(info->dev_root->node)); btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); btrfs_set_backup_csum_root_gen(root_backup, btrfs_header_generation(info->csum_root->node)); btrfs_set_backup_csum_root_level(root_backup, btrfs_header_level(info->csum_root->node)); btrfs_set_backup_total_bytes(root_backup, btrfs_super_total_bytes(info->super_copy)); btrfs_set_backup_bytes_used(root_backup, btrfs_super_bytes_used(info->super_copy)); btrfs_set_backup_num_devices(root_backup, btrfs_super_num_devices(info->super_copy)); /* * if we don't copy this out to the super_copy, it won't get remembered * for the next commit */ memcpy(&info->super_copy->super_roots, &info->super_for_commit->super_roots, sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); } /* * this copies info out of the root backup array and back into * the in-memory super block. It is meant to help iterate through * the array, so you send it the number of backups you've already * tried and the last backup index you used. * * this returns -1 when it has tried all the backups */ static noinline int next_root_backup(struct btrfs_fs_info *info, struct btrfs_super_block *super, int *num_backups_tried, int *backup_index) { struct btrfs_root_backup *root_backup; int newest = *backup_index; if (*num_backups_tried == 0) { u64 gen = btrfs_super_generation(super); newest = find_newest_super_backup(info, gen); if (newest == -1) return -1; *backup_index = newest; *num_backups_tried = 1; } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { /* we've tried all the backups, all done */ return -1; } else { /* jump to the next oldest backup */ newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % BTRFS_NUM_BACKUP_ROOTS; *backup_index = newest; *num_backups_tried += 1; } root_backup = super->super_roots + newest; btrfs_set_super_generation(super, btrfs_backup_tree_root_gen(root_backup)); btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); btrfs_set_super_root_level(super, btrfs_backup_tree_root_level(root_backup)); btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); /* * fixme: the total bytes and num_devices need to match or we should * need a fsck */ btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); return 0; } /* helper to cleanup tree roots */ static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) { free_extent_buffer(info->tree_root->node); free_extent_buffer(info->tree_root->commit_root); free_extent_buffer(info->dev_root->node); free_extent_buffer(info->dev_root->commit_root); free_extent_buffer(info->extent_root->node); free_extent_buffer(info->extent_root->commit_root); free_extent_buffer(info->csum_root->node); free_extent_buffer(info->csum_root->commit_root); info->tree_root->node = NULL; info->tree_root->commit_root = NULL; info->dev_root->node = NULL; info->dev_root->commit_root = NULL; info->extent_root->node = NULL; info->extent_root->commit_root = NULL; info->csum_root->node = NULL; info->csum_root->commit_root = NULL; if (chunk_root) { free_extent_buffer(info->chunk_root->node); free_extent_buffer(info->chunk_root->commit_root); info->chunk_root->node = NULL; info->chunk_root->commit_root = NULL; } } int open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, char *options) { u32 sectorsize; u32 nodesize; u32 leafsize; u32 blocksize; u32 stripesize; u64 generation; u64 features; struct btrfs_key location; struct buffer_head *bh; struct btrfs_super_block *disk_super; struct btrfs_fs_info *fs_info = btrfs_sb(sb); struct btrfs_root *tree_root; struct btrfs_root *extent_root; struct btrfs_root *csum_root; struct btrfs_root *chunk_root; struct btrfs_root *dev_root; struct btrfs_root *log_tree_root; int ret; int err = -EINVAL; int num_backups_tried = 0; int backup_index = 0; tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info); csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info); chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info); if (!tree_root || !extent_root || !csum_root || !chunk_root || !dev_root) { err = -ENOMEM; goto fail; } ret = init_srcu_struct(&fs_info->subvol_srcu); if (ret) { err = ret; goto fail; } ret = setup_bdi(fs_info, &fs_info->bdi); if (ret) { err = ret; goto fail_srcu; } fs_info->btree_inode = new_inode(sb); if (!fs_info->btree_inode) { err = -ENOMEM; goto fail_bdi; } mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); INIT_LIST_HEAD(&fs_info->trans_list); INIT_LIST_HEAD(&fs_info->dead_roots); INIT_LIST_HEAD(&fs_info->delayed_iputs); INIT_LIST_HEAD(&fs_info->hashers); INIT_LIST_HEAD(&fs_info->delalloc_inodes); INIT_LIST_HEAD(&fs_info->ordered_operations); INIT_LIST_HEAD(&fs_info->caching_block_groups); spin_lock_init(&fs_info->delalloc_lock); spin_lock_init(&fs_info->trans_lock); spin_lock_init(&fs_info->ref_cache_lock); spin_lock_init(&fs_info->fs_roots_radix_lock); spin_lock_init(&fs_info->delayed_iput_lock); spin_lock_init(&fs_info->defrag_inodes_lock); spin_lock_init(&fs_info->free_chunk_lock); mutex_init(&fs_info->reloc_mutex); init_completion(&fs_info->kobj_unregister); INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); INIT_LIST_HEAD(&fs_info->space_info); btrfs_mapping_init(&fs_info->mapping_tree); btrfs_init_block_rsv(&fs_info->global_block_rsv); btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); btrfs_init_block_rsv(&fs_info->trans_block_rsv); btrfs_init_block_rsv(&fs_info->chunk_block_rsv); btrfs_init_block_rsv(&fs_info->empty_block_rsv); btrfs_init_block_rsv(&fs_info->delayed_block_rsv); atomic_set(&fs_info->nr_async_submits, 0); atomic_set(&fs_info->async_delalloc_pages, 0); atomic_set(&fs_info->async_submit_draining, 0); atomic_set(&fs_info->nr_async_bios, 0); atomic_set(&fs_info->defrag_running, 0); fs_info->sb = sb; fs_info->max_inline = 8192 * 1024; fs_info->metadata_ratio = 0; fs_info->defrag_inodes = RB_ROOT; fs_info->trans_no_join = 0; fs_info->free_chunk_space = 0; /* readahead state */ INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); spin_lock_init(&fs_info->reada_lock); fs_info->thread_pool_size = min_t(unsigned long, num_online_cpus() + 2, 8); INIT_LIST_HEAD(&fs_info->ordered_extents); spin_lock_init(&fs_info->ordered_extent_lock); fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), GFP_NOFS); if (!fs_info->delayed_root) { err = -ENOMEM; goto fail_iput; } btrfs_init_delayed_root(fs_info->delayed_root); mutex_init(&fs_info->scrub_lock); atomic_set(&fs_info->scrubs_running, 0); atomic_set(&fs_info->scrub_pause_req, 0); atomic_set(&fs_info->scrubs_paused, 0); atomic_set(&fs_info->scrub_cancel_req, 0); init_waitqueue_head(&fs_info->scrub_pause_wait); init_rwsem(&fs_info->scrub_super_lock); fs_info->scrub_workers_refcnt = 0; #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY fs_info->check_integrity_print_mask = 0; #endif spin_lock_init(&fs_info->balance_lock); mutex_init(&fs_info->balance_mutex); atomic_set(&fs_info->balance_running, 0); atomic_set(&fs_info->balance_pause_req, 0); atomic_set(&fs_info->balance_cancel_req, 0); fs_info->balance_ctl = NULL; init_waitqueue_head(&fs_info->balance_wait_q); sb->s_blocksize = 4096; sb->s_blocksize_bits = blksize_bits(4096); sb->s_bdi = &fs_info->bdi; fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; set_nlink(fs_info->btree_inode, 1); /* * we set the i_size on the btree inode to the max possible int. * the real end of the address space is determined by all of * the devices in the system */ fs_info->btree_inode->i_size = OFFSET_MAX; fs_info->btree_inode->i_mapping->a_ops = &btree_aops; fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, fs_info->btree_inode->i_mapping); extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; BTRFS_I(fs_info->btree_inode)->root = tree_root; memset(&BTRFS_I(fs_info->btree_inode)->location, 0, sizeof(struct btrfs_key)); BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; insert_inode_hash(fs_info->btree_inode); spin_lock_init(&fs_info->block_group_cache_lock); fs_info->block_group_cache_tree = RB_ROOT; extent_io_tree_init(&fs_info->freed_extents[0], fs_info->btree_inode->i_mapping); extent_io_tree_init(&fs_info->freed_extents[1], fs_info->btree_inode->i_mapping); fs_info->pinned_extents = &fs_info->freed_extents[0]; fs_info->do_barriers = 1; mutex_init(&fs_info->ordered_operations_mutex); mutex_init(&fs_info->tree_log_mutex); mutex_init(&fs_info->chunk_mutex); mutex_init(&fs_info->transaction_kthread_mutex); mutex_init(&fs_info->cleaner_mutex); mutex_init(&fs_info->volume_mutex); init_rwsem(&fs_info->extent_commit_sem); init_rwsem(&fs_info->cleanup_work_sem); init_rwsem(&fs_info->subvol_sem); btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); btrfs_init_free_cluster(&fs_info->data_alloc_cluster); init_waitqueue_head(&fs_info->transaction_throttle); init_waitqueue_head(&fs_info->transaction_wait); init_waitqueue_head(&fs_info->transaction_blocked_wait); init_waitqueue_head(&fs_info->async_submit_wait); __setup_root(4096, 4096, 4096, 4096, tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); bh = btrfs_read_dev_super(fs_devices->latest_bdev); if (!bh) { err = -EINVAL; goto fail_alloc; } memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); memcpy(fs_info->super_for_commit, fs_info->super_copy, sizeof(*fs_info->super_for_commit)); brelse(bh); memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); disk_super = fs_info->super_copy; if (!btrfs_super_root(disk_super)) goto fail_alloc; /* check FS state, whether FS is broken. */ fs_info->fs_state |= btrfs_super_flags(disk_super); btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); /* * run through our array of backup supers and setup * our ring pointer to the oldest one */ generation = btrfs_super_generation(disk_super); find_oldest_super_backup(fs_info, generation); /* * In the long term, we'll store the compression type in the super * block, and it'll be used for per file compression control. */ fs_info->compress_type = BTRFS_COMPRESS_ZLIB; ret = btrfs_parse_options(tree_root, options); if (ret) { err = ret; goto fail_alloc; } features = btrfs_super_incompat_flags(disk_super) & ~BTRFS_FEATURE_INCOMPAT_SUPP; if (features) { printk(KERN_ERR "BTRFS: couldn't mount because of " "unsupported optional features (%Lx).\n", (unsigned long long)features); err = -EINVAL; goto fail_alloc; } features = btrfs_super_incompat_flags(disk_super); features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO) features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; btrfs_set_super_incompat_flags(disk_super, features); features = btrfs_super_compat_ro_flags(disk_super) & ~BTRFS_FEATURE_COMPAT_RO_SUPP; if (!(sb->s_flags & MS_RDONLY) && features) { printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " "unsupported option features (%Lx).\n", (unsigned long long)features); err = -EINVAL; goto fail_alloc; } btrfs_init_workers(&fs_info->generic_worker, "genwork", 1, NULL); btrfs_init_workers(&fs_info->workers, "worker", fs_info->thread_pool_size, &fs_info->generic_worker); btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", fs_info->thread_pool_size, &fs_info->generic_worker); btrfs_init_workers(&fs_info->submit_workers, "submit", min_t(u64, fs_devices->num_devices, fs_info->thread_pool_size), &fs_info->generic_worker); btrfs_init_workers(&fs_info->caching_workers, "cache", 2, &fs_info->generic_worker); /* a higher idle thresh on the submit workers makes it much more * likely that bios will be send down in a sane order to the * devices */ fs_info->submit_workers.idle_thresh = 64; fs_info->workers.idle_thresh = 16; fs_info->workers.ordered = 1; fs_info->delalloc_workers.idle_thresh = 2; fs_info->delalloc_workers.ordered = 1; btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, &fs_info->generic_worker); btrfs_init_workers(&fs_info->endio_workers, "endio", fs_info->thread_pool_size, &fs_info->generic_worker); btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", fs_info->thread_pool_size, &fs_info->generic_worker); btrfs_init_workers(&fs_info->endio_meta_write_workers, "endio-meta-write", fs_info->thread_pool_size, &fs_info->generic_worker); btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", fs_info->thread_pool_size, &fs_info->generic_worker); btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 1, &fs_info->generic_worker); btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", fs_info->thread_pool_size, &fs_info->generic_worker); btrfs_init_workers(&fs_info->readahead_workers, "readahead", fs_info->thread_pool_size, &fs_info->generic_worker); /* * endios are largely parallel and should have a very * low idle thresh */ fs_info->endio_workers.idle_thresh = 4; fs_info->endio_meta_workers.idle_thresh = 4; fs_info->endio_write_workers.idle_thresh = 2; fs_info->endio_meta_write_workers.idle_thresh = 2; fs_info->readahead_workers.idle_thresh = 2; /* * btrfs_start_workers can really only fail because of ENOMEM so just * return -ENOMEM if any of these fail. */ ret = btrfs_start_workers(&fs_info->workers); ret |= btrfs_start_workers(&fs_info->generic_worker); ret |= btrfs_start_workers(&fs_info->submit_workers); ret |= btrfs_start_workers(&fs_info->delalloc_workers); ret |= btrfs_start_workers(&fs_info->fixup_workers); ret |= btrfs_start_workers(&fs_info->endio_workers); ret |= btrfs_start_workers(&fs_info->endio_meta_workers); ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); ret |= btrfs_start_workers(&fs_info->endio_write_workers); ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); ret |= btrfs_start_workers(&fs_info->delayed_workers); ret |= btrfs_start_workers(&fs_info->caching_workers); ret |= btrfs_start_workers(&fs_info->readahead_workers); if (ret) { ret = -ENOMEM; goto fail_sb_buffer; } fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 4 * 1024 * 1024 / PAGE_CACHE_SIZE); nodesize = btrfs_super_nodesize(disk_super); leafsize = btrfs_super_leafsize(disk_super); sectorsize = btrfs_super_sectorsize(disk_super); stripesize = btrfs_super_stripesize(disk_super); tree_root->nodesize = nodesize; tree_root->leafsize = leafsize; tree_root->sectorsize = sectorsize; tree_root->stripesize = stripesize; sb->s_blocksize = sectorsize; sb->s_blocksize_bits = blksize_bits(sectorsize); if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, sizeof(disk_super->magic))) { printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); goto fail_sb_buffer; } if (sectorsize < PAGE_SIZE) { printk(KERN_WARNING "btrfs: Incompatible sector size " "found on %s\n", sb->s_id); goto fail_sb_buffer; } mutex_lock(&fs_info->chunk_mutex); ret = btrfs_read_sys_array(tree_root); mutex_unlock(&fs_info->chunk_mutex); if (ret) { printk(KERN_WARNING "btrfs: failed to read the system " "array on %s\n", sb->s_id); goto fail_sb_buffer; } blocksize = btrfs_level_size(tree_root, btrfs_super_chunk_root_level(disk_super)); generation = btrfs_super_chunk_root_generation(disk_super); __setup_root(nodesize, leafsize, sectorsize, stripesize, chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); chunk_root->node = read_tree_block(chunk_root, btrfs_super_chunk_root(disk_super), blocksize, generation); BUG_ON(!chunk_root->node); if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", sb->s_id); goto fail_tree_roots; } btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); chunk_root->commit_root = btrfs_root_node(chunk_root); read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); ret = btrfs_read_chunk_tree(chunk_root); if (ret) { printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", sb->s_id); goto fail_tree_roots; } btrfs_close_extra_devices(fs_devices); if (!fs_devices->latest_bdev) { printk(KERN_CRIT "btrfs: failed to read devices on %s\n", sb->s_id); goto fail_tree_roots; } retry_root_backup: blocksize = btrfs_level_size(tree_root, btrfs_super_root_level(disk_super)); generation = btrfs_super_generation(disk_super); tree_root->node = read_tree_block(tree_root, btrfs_super_root(disk_super), blocksize, generation); if (!tree_root->node || !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", sb->s_id); goto recovery_tree_root; } btrfs_set_root_node(&tree_root->root_item, tree_root->node); tree_root->commit_root = btrfs_root_node(tree_root); ret = find_and_setup_root(tree_root, fs_info, BTRFS_EXTENT_TREE_OBJECTID, extent_root); if (ret) goto recovery_tree_root; extent_root->track_dirty = 1; ret = find_and_setup_root(tree_root, fs_info, BTRFS_DEV_TREE_OBJECTID, dev_root); if (ret) goto recovery_tree_root; dev_root->track_dirty = 1; ret = find_and_setup_root(tree_root, fs_info, BTRFS_CSUM_TREE_OBJECTID, csum_root); if (ret) goto recovery_tree_root; csum_root->track_dirty = 1; fs_info->generation = generation; fs_info->last_trans_committed = generation; ret = btrfs_init_space_info(fs_info); if (ret) { printk(KERN_ERR "Failed to initial space info: %d\n", ret); goto fail_block_groups; } ret = btrfs_read_block_groups(extent_root); if (ret) { printk(KERN_ERR "Failed to read block groups: %d\n", ret); goto fail_block_groups; } fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, "btrfs-cleaner"); if (IS_ERR(fs_info->cleaner_kthread)) goto fail_block_groups; fs_info->transaction_kthread = kthread_run(transaction_kthread, tree_root, "btrfs-transaction"); if (IS_ERR(fs_info->transaction_kthread)) goto fail_cleaner; if (!btrfs_test_opt(tree_root, SSD) && !btrfs_test_opt(tree_root, NOSSD) && !fs_info->fs_devices->rotating) { printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " "mode\n"); btrfs_set_opt(fs_info->mount_opt, SSD); } #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { ret = btrfsic_mount(tree_root, fs_devices, btrfs_test_opt(tree_root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 1 : 0, fs_info->check_integrity_print_mask); if (ret) printk(KERN_WARNING "btrfs: failed to initialize" " integrity check module %s\n", sb->s_id); } #endif /* do not make disk changes in broken FS */ if (btrfs_super_log_root(disk_super) != 0 && !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) { u64 bytenr = btrfs_super_log_root(disk_super); if (fs_devices->rw_devices == 0) { printk(KERN_WARNING "Btrfs log replay required " "on RO media\n"); err = -EIO; goto fail_trans_kthread; } blocksize = btrfs_level_size(tree_root, btrfs_super_log_root_level(disk_super)); log_tree_root = btrfs_alloc_root(fs_info); if (!log_tree_root) { err = -ENOMEM; goto fail_trans_kthread; } __setup_root(nodesize, leafsize, sectorsize, stripesize, log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); log_tree_root->node = read_tree_block(tree_root, bytenr, blocksize, generation + 1); ret = btrfs_recover_log_trees(log_tree_root); BUG_ON(ret); if (sb->s_flags & MS_RDONLY) { ret = btrfs_commit_super(tree_root); BUG_ON(ret); } } ret = btrfs_find_orphan_roots(tree_root); BUG_ON(ret); if (!(sb->s_flags & MS_RDONLY)) { ret = btrfs_cleanup_fs_roots(fs_info); BUG_ON(ret); ret = btrfs_recover_relocation(tree_root); if (ret < 0) { printk(KERN_WARNING "btrfs: failed to recover relocation\n"); err = -EINVAL; goto fail_trans_kthread; } } location.objectid = BTRFS_FS_TREE_OBJECTID; location.type = BTRFS_ROOT_ITEM_KEY; location.offset = (u64)-1; fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); if (!fs_info->fs_root) goto fail_trans_kthread; if (IS_ERR(fs_info->fs_root)) { err = PTR_ERR(fs_info->fs_root); goto fail_trans_kthread; } if (!(sb->s_flags & MS_RDONLY)) { down_read(&fs_info->cleanup_work_sem); err = btrfs_orphan_cleanup(fs_info->fs_root); if (!err) err = btrfs_orphan_cleanup(fs_info->tree_root); up_read(&fs_info->cleanup_work_sem); if (!err) err = btrfs_recover_balance(fs_info->tree_root); if (err) { close_ctree(tree_root); return err; } } return 0; fail_trans_kthread: kthread_stop(fs_info->transaction_kthread); fail_cleaner: kthread_stop(fs_info->cleaner_kthread); /* * make sure we're done with the btree inode before we stop our * kthreads */ filemap_write_and_wait(fs_info->btree_inode->i_mapping); invalidate_inode_pages2(fs_info->btree_inode->i_mapping); fail_block_groups: btrfs_free_block_groups(fs_info); fail_tree_roots: free_root_pointers(fs_info, 1); fail_sb_buffer: btrfs_stop_workers(&fs_info->generic_worker); btrfs_stop_workers(&fs_info->readahead_workers); btrfs_stop_workers(&fs_info->fixup_workers); btrfs_stop_workers(&fs_info->delalloc_workers); btrfs_stop_workers(&fs_info->workers); btrfs_stop_workers(&fs_info->endio_workers); btrfs_stop_workers(&fs_info->endio_meta_workers); btrfs_stop_workers(&fs_info->endio_meta_write_workers); btrfs_stop_workers(&fs_info->endio_write_workers); btrfs_stop_workers(&fs_info->endio_freespace_worker); btrfs_stop_workers(&fs_info->submit_workers); btrfs_stop_workers(&fs_info->delayed_workers); btrfs_stop_workers(&fs_info->caching_workers); fail_alloc: fail_iput: btrfs_mapping_tree_free(&fs_info->mapping_tree); invalidate_inode_pages2(fs_info->btree_inode->i_mapping); iput(fs_info->btree_inode); fail_bdi: bdi_destroy(&fs_info->bdi); fail_srcu: cleanup_srcu_struct(&fs_info->subvol_srcu); fail: btrfs_close_devices(fs_info->fs_devices); return err; recovery_tree_root: if (!btrfs_test_opt(tree_root, RECOVERY)) goto fail_tree_roots; free_root_pointers(fs_info, 0); /* don't use the log in recovery mode, it won't be valid */ btrfs_set_super_log_root(disk_super, 0); /* we can't trust the free space cache either */ btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); ret = next_root_backup(fs_info, fs_info->super_copy, &num_backups_tried, &backup_index); if (ret == -1) goto fail_block_groups; goto retry_root_backup; } static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) { char b[BDEVNAME_SIZE]; if (uptodate) { set_buffer_uptodate(bh); } else { printk_ratelimited(KERN_WARNING "lost page write due to " "I/O error on %s\n", bdevname(bh->b_bdev, b)); /* note, we dont' set_buffer_write_io_error because we have * our own ways of dealing with the IO errors */ clear_buffer_uptodate(bh); } unlock_buffer(bh); put_bh(bh); } struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) { struct buffer_head *bh; struct buffer_head *latest = NULL; struct btrfs_super_block *super; int i; u64 transid = 0; u64 bytenr; /* we would like to check all the supers, but that would make * a btrfs mount succeed after a mkfs from a different FS. * So, we need to add a special mount option to scan for * later supers, using BTRFS_SUPER_MIRROR_MAX instead */ for (i = 0; i < 1; i++) { bytenr = btrfs_sb_offset(i); if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) break; bh = __bread(bdev, bytenr / 4096, 4096); if (!bh) continue; super = (struct btrfs_super_block *)bh->b_data; if (btrfs_super_bytenr(super) != bytenr || strncmp((char *)(&super->magic), BTRFS_MAGIC, sizeof(super->magic))) { brelse(bh); continue; } if (!latest || btrfs_super_generation(super) > transid) { brelse(latest); latest = bh; transid = btrfs_super_generation(super); } else { brelse(bh); } } return latest; } /* * this should be called twice, once with wait == 0 and * once with wait == 1. When wait == 0 is done, all the buffer heads * we write are pinned. * * They are released when wait == 1 is done. * max_mirrors must be the same for both runs, and it indicates how * many supers on this one device should be written. * * max_mirrors == 0 means to write them all. */ static int write_dev_supers(struct btrfs_device *device, struct btrfs_super_block *sb, int do_barriers, int wait, int max_mirrors) { struct buffer_head *bh; int i; int ret; int errors = 0; u32 crc; u64 bytenr; if (max_mirrors == 0) max_mirrors = BTRFS_SUPER_MIRROR_MAX; for (i = 0; i < max_mirrors; i++) { bytenr = btrfs_sb_offset(i); if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) break; if (wait) { bh = __find_get_block(device->bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); BUG_ON(!bh); wait_on_buffer(bh); if (!buffer_uptodate(bh)) errors++; /* drop our reference */ brelse(bh); /* drop the reference from the wait == 0 run */ brelse(bh); continue; } else { btrfs_set_super_bytenr(sb, bytenr); crc = ~(u32)0; crc = btrfs_csum_data(NULL, (char *)sb + BTRFS_CSUM_SIZE, crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); btrfs_csum_final(crc, sb->csum); /* * one reference for us, and we leave it for the * caller */ bh = __getblk(device->bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); /* one reference for submit_bh */ get_bh(bh); set_buffer_uptodate(bh); lock_buffer(bh); bh->b_end_io = btrfs_end_buffer_write_sync; } /* * we fua the first super. The others we allow * to go down lazy. */ ret = btrfsic_submit_bh(WRITE_FUA, bh); if (ret) errors++; } return errors < i ? 0 : -1; } /* * endio for the write_dev_flush, this will wake anyone waiting * for the barrier when it is done */ static void btrfs_end_empty_barrier(struct bio *bio, int err) { if (err) { if (err == -EOPNOTSUPP) set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); clear_bit(BIO_UPTODATE, &bio->bi_flags); } if (bio->bi_private) complete(bio->bi_private); bio_put(bio); } /* * trigger flushes for one the devices. If you pass wait == 0, the flushes are * sent down. With wait == 1, it waits for the previous flush. * * any device where the flush fails with eopnotsupp are flagged as not-barrier * capable */ static int write_dev_flush(struct btrfs_device *device, int wait) { struct bio *bio; int ret = 0; if (device->nobarriers) return 0; if (wait) { bio = device->flush_bio; if (!bio) return 0; wait_for_completion(&device->flush_wait); if (bio_flagged(bio, BIO_EOPNOTSUPP)) { printk("btrfs: disabling barriers on dev %s\n", device->name); device->nobarriers = 1; } if (!bio_flagged(bio, BIO_UPTODATE)) { ret = -EIO; } /* drop the reference from the wait == 0 run */ bio_put(bio); device->flush_bio = NULL; return ret; } /* * one reference for us, and we leave it for the * caller */ device->flush_bio = NULL;; bio = bio_alloc(GFP_NOFS, 0); if (!bio) return -ENOMEM; bio->bi_end_io = btrfs_end_empty_barrier; bio->bi_bdev = device->bdev; init_completion(&device->flush_wait); bio->bi_private = &device->flush_wait; device->flush_bio = bio; bio_get(bio); btrfsic_submit_bio(WRITE_FLUSH, bio); return 0; } /* * send an empty flush down to each device in parallel, * then wait for them */ static int barrier_all_devices(struct btrfs_fs_info *info) { struct list_head *head; struct btrfs_device *dev; int errors = 0; int ret; /* send down all the barriers */ head = &info->fs_devices->devices; list_for_each_entry_rcu(dev, head, dev_list) { if (!dev->bdev) { errors++; continue; } if (!dev->in_fs_metadata || !dev->writeable) continue; ret = write_dev_flush(dev, 0); if (ret) errors++; } /* wait for all the barriers */ list_for_each_entry_rcu(dev, head, dev_list) { if (!dev->bdev) { errors++; continue; } if (!dev->in_fs_metadata || !dev->writeable) continue; ret = write_dev_flush(dev, 1); if (ret) errors++; } if (errors) return -EIO; return 0; } int write_all_supers(struct btrfs_root *root, int max_mirrors) { struct list_head *head; struct btrfs_device *dev; struct btrfs_super_block *sb; struct btrfs_dev_item *dev_item; int ret; int do_barriers; int max_errors; int total_errors = 0; u64 flags; max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; do_barriers = !btrfs_test_opt(root, NOBARRIER); backup_super_roots(root->fs_info); sb = root->fs_info->super_for_commit; dev_item = &sb->dev_item; mutex_lock(&root->fs_info->fs_devices->device_list_mutex); head = &root->fs_info->fs_devices->devices; if (do_barriers) barrier_all_devices(root->fs_info); list_for_each_entry_rcu(dev, head, dev_list) { if (!dev->bdev) { total_errors++; continue; } if (!dev->in_fs_metadata || !dev->writeable) continue; btrfs_set_stack_device_generation(dev_item, 0); btrfs_set_stack_device_type(dev_item, dev->type); btrfs_set_stack_device_id(dev_item, dev->devid); btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); btrfs_set_stack_device_io_align(dev_item, dev->io_align); btrfs_set_stack_device_io_width(dev_item, dev->io_width); btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); flags = btrfs_super_flags(sb); btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); if (ret) total_errors++; } if (total_errors > max_errors) { printk(KERN_ERR "btrfs: %d errors while writing supers\n", total_errors); BUG(); } total_errors = 0; list_for_each_entry_rcu(dev, head, dev_list) { if (!dev->bdev) continue; if (!dev->in_fs_metadata || !dev->writeable) continue; ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); if (ret) total_errors++; } mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); if (total_errors > max_errors) { printk(KERN_ERR "btrfs: %d errors while writing supers\n", total_errors); BUG(); } return 0; } int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root *root, int max_mirrors) { int ret; ret = write_all_supers(root, max_mirrors); return ret; } int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) { spin_lock(&fs_info->fs_roots_radix_lock); radix_tree_delete(&fs_info->fs_roots_radix, (unsigned long)root->root_key.objectid); spin_unlock(&fs_info->fs_roots_radix_lock); if (btrfs_root_refs(&root->root_item) == 0) synchronize_srcu(&fs_info->subvol_srcu); __btrfs_remove_free_space_cache(root->free_ino_pinned); __btrfs_remove_free_space_cache(root->free_ino_ctl); free_fs_root(root); return 0; } static void free_fs_root(struct btrfs_root *root) { iput(root->cache_inode); WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); if (root->anon_dev) free_anon_bdev(root->anon_dev); free_extent_buffer(root->node); free_extent_buffer(root->commit_root); kfree(root->free_ino_ctl); kfree(root->free_ino_pinned); kfree(root->name); kfree(root); } static int del_fs_roots(struct btrfs_fs_info *fs_info) { int ret; struct btrfs_root *gang[8]; int i; while (!list_empty(&fs_info->dead_roots)) { gang[0] = list_entry(fs_info->dead_roots.next, struct btrfs_root, root_list); list_del(&gang[0]->root_list); if (gang[0]->in_radix) { btrfs_free_fs_root(fs_info, gang[0]); } else { free_extent_buffer(gang[0]->node); free_extent_buffer(gang[0]->commit_root); kfree(gang[0]); } } while (1) { ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, (void **)gang, 0, ARRAY_SIZE(gang)); if (!ret) break; for (i = 0; i < ret; i++) btrfs_free_fs_root(fs_info, gang[i]); } return 0; } int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) { u64 root_objectid = 0; struct btrfs_root *gang[8]; int i; int ret; while (1) { ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, (void **)gang, root_objectid, ARRAY_SIZE(gang)); if (!ret) break; root_objectid = gang[ret - 1]->root_key.objectid + 1; for (i = 0; i < ret; i++) { int err; root_objectid = gang[i]->root_key.objectid; err = btrfs_orphan_cleanup(gang[i]); if (err) return err; } root_objectid++; } return 0; } int btrfs_commit_super(struct btrfs_root *root) { struct btrfs_trans_handle *trans; int ret; mutex_lock(&root->fs_info->cleaner_mutex); btrfs_run_delayed_iputs(root); btrfs_clean_old_snapshots(root); mutex_unlock(&root->fs_info->cleaner_mutex); /* wait until ongoing cleanup work done */ down_write(&root->fs_info->cleanup_work_sem); up_write(&root->fs_info->cleanup_work_sem); trans = btrfs_join_transaction(root); if (IS_ERR(trans)) return PTR_ERR(trans); ret = btrfs_commit_transaction(trans, root); BUG_ON(ret); /* run commit again to drop the original snapshot */ trans = btrfs_join_transaction(root); if (IS_ERR(trans)) return PTR_ERR(trans); btrfs_commit_transaction(trans, root); ret = btrfs_write_and_wait_transaction(NULL, root); BUG_ON(ret); ret = write_ctree_super(NULL, root, 0); return ret; } int close_ctree(struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; int ret; fs_info->closing = 1; smp_mb(); /* pause restriper - we want to resume on mount */ btrfs_pause_balance(root->fs_info); btrfs_scrub_cancel(root); /* wait for any defraggers to finish */ wait_event(fs_info->transaction_wait, (atomic_read(&fs_info->defrag_running) == 0)); /* clear out the rbtree of defraggable inodes */ btrfs_run_defrag_inodes(fs_info); /* * Here come 2 situations when btrfs is broken to flip readonly: * * 1. when btrfs flips readonly somewhere else before * btrfs_commit_super, sb->s_flags has MS_RDONLY flag, * and btrfs will skip to write sb directly to keep * ERROR state on disk. * * 2. when btrfs flips readonly just in btrfs_commit_super, * and in such case, btrfs cannot write sb via btrfs_commit_super, * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag, * btrfs will cleanup all FS resources first and write sb then. */ if (!(fs_info->sb->s_flags & MS_RDONLY)) { ret = btrfs_commit_super(root); if (ret) printk(KERN_ERR "btrfs: commit super ret %d\n", ret); } if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { ret = btrfs_error_commit_super(root); if (ret) printk(KERN_ERR "btrfs: commit super ret %d\n", ret); } btrfs_put_block_group_cache(fs_info); kthread_stop(fs_info->transaction_kthread); kthread_stop(fs_info->cleaner_kthread); fs_info->closing = 2; smp_mb(); if (fs_info->delalloc_bytes) { printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", (unsigned long long)fs_info->delalloc_bytes); } if (fs_info->total_ref_cache_size) { printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", (unsigned long long)fs_info->total_ref_cache_size); } free_extent_buffer(fs_info->extent_root->node); free_extent_buffer(fs_info->extent_root->commit_root); free_extent_buffer(fs_info->tree_root->node); free_extent_buffer(fs_info->tree_root->commit_root); free_extent_buffer(fs_info->chunk_root->node); free_extent_buffer(fs_info->chunk_root->commit_root); free_extent_buffer(fs_info->dev_root->node); free_extent_buffer(fs_info->dev_root->commit_root); free_extent_buffer(fs_info->csum_root->node); free_extent_buffer(fs_info->csum_root->commit_root); btrfs_free_block_groups(fs_info); del_fs_roots(fs_info); iput(fs_info->btree_inode); btrfs_stop_workers(&fs_info->generic_worker); btrfs_stop_workers(&fs_info->fixup_workers); btrfs_stop_workers(&fs_info->delalloc_workers); btrfs_stop_workers(&fs_info->workers); btrfs_stop_workers(&fs_info->endio_workers); btrfs_stop_workers(&fs_info->endio_meta_workers); btrfs_stop_workers(&fs_info->endio_meta_write_workers); btrfs_stop_workers(&fs_info->endio_write_workers); btrfs_stop_workers(&fs_info->endio_freespace_worker); btrfs_stop_workers(&fs_info->submit_workers); btrfs_stop_workers(&fs_info->delayed_workers); btrfs_stop_workers(&fs_info->caching_workers); btrfs_stop_workers(&fs_info->readahead_workers); #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY if (btrfs_test_opt(root, CHECK_INTEGRITY)) btrfsic_unmount(root, fs_info->fs_devices); #endif btrfs_close_devices(fs_info->fs_devices); btrfs_mapping_tree_free(&fs_info->mapping_tree); bdi_destroy(&fs_info->bdi); cleanup_srcu_struct(&fs_info->subvol_srcu); return 0; } int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) { int ret; struct inode *btree_inode = buf->first_page->mapping->host; ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf, NULL); if (!ret) return ret; ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, parent_transid); return !ret; } int btrfs_set_buffer_uptodate(struct extent_buffer *buf) { struct inode *btree_inode = buf->first_page->mapping->host; return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf); } void btrfs_mark_buffer_dirty(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; u64 transid = btrfs_header_generation(buf); struct inode *btree_inode = root->fs_info->btree_inode; int was_dirty; btrfs_assert_tree_locked(buf); if (transid != root->fs_info->generation) { printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " "found %llu running %llu\n", (unsigned long long)buf->start, (unsigned long long)transid, (unsigned long long)root->fs_info->generation); WARN_ON(1); } was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf); if (!was_dirty) { spin_lock(&root->fs_info->delalloc_lock); root->fs_info->dirty_metadata_bytes += buf->len; spin_unlock(&root->fs_info->delalloc_lock); } } void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) { /* * looks as though older kernels can get into trouble with * this code, they end up stuck in balance_dirty_pages forever */ u64 num_dirty; unsigned long thresh = 32 * 1024 * 1024; if (current->flags & PF_MEMALLOC) return; btrfs_balance_delayed_items(root); num_dirty = root->fs_info->dirty_metadata_bytes; if (num_dirty > thresh) { balance_dirty_pages_ratelimited_nr( root->fs_info->btree_inode->i_mapping, 1); } return; } void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) { /* * looks as though older kernels can get into trouble with * this code, they end up stuck in balance_dirty_pages forever */ u64 num_dirty; unsigned long thresh = 32 * 1024 * 1024; if (current->flags & PF_MEMALLOC) return; num_dirty = root->fs_info->dirty_metadata_bytes; if (num_dirty > thresh) { balance_dirty_pages_ratelimited_nr( root->fs_info->btree_inode->i_mapping, 1); } return; } int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) { struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; int ret; ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); if (ret == 0) set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); return ret; } static int btree_lock_page_hook(struct page *page, void *data, void (*flush_fn)(void *)) { struct inode *inode = page->mapping->host; struct btrfs_root *root = BTRFS_I(inode)->root; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct extent_buffer *eb; unsigned long len; u64 bytenr = page_offset(page); if (page->private == EXTENT_PAGE_PRIVATE) goto out; len = page->private >> 2; eb = find_extent_buffer(io_tree, bytenr, len); if (!eb) goto out; if (!btrfs_try_tree_write_lock(eb)) { flush_fn(data); btrfs_tree_lock(eb); } btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { spin_lock(&root->fs_info->delalloc_lock); if (root->fs_info->dirty_metadata_bytes >= eb->len) root->fs_info->dirty_metadata_bytes -= eb->len; else WARN_ON(1); spin_unlock(&root->fs_info->delalloc_lock); } btrfs_tree_unlock(eb); free_extent_buffer(eb); out: if (!trylock_page(page)) { flush_fn(data); lock_page(page); } return 0; } static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, int read_only) { if (read_only) return; if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) printk(KERN_WARNING "warning: mount fs with errors, " "running btrfsck is recommended\n"); } int btrfs_error_commit_super(struct btrfs_root *root) { int ret; mutex_lock(&root->fs_info->cleaner_mutex); btrfs_run_delayed_iputs(root); mutex_unlock(&root->fs_info->cleaner_mutex); down_write(&root->fs_info->cleanup_work_sem); up_write(&root->fs_info->cleanup_work_sem); /* cleanup FS via transaction */ btrfs_cleanup_transaction(root); ret = write_ctree_super(NULL, root, 0); return ret; } static int btrfs_destroy_ordered_operations(struct btrfs_root *root) { struct btrfs_inode *btrfs_inode; struct list_head splice; INIT_LIST_HEAD(&splice); mutex_lock(&root->fs_info->ordered_operations_mutex); spin_lock(&root->fs_info->ordered_extent_lock); list_splice_init(&root->fs_info->ordered_operations, &splice); while (!list_empty(&splice)) { btrfs_inode = list_entry(splice.next, struct btrfs_inode, ordered_operations); list_del_init(&btrfs_inode->ordered_operations); btrfs_invalidate_inodes(btrfs_inode->root); } spin_unlock(&root->fs_info->ordered_extent_lock); mutex_unlock(&root->fs_info->ordered_operations_mutex); return 0; } static int btrfs_destroy_ordered_extents(struct btrfs_root *root) { struct list_head splice; struct btrfs_ordered_extent *ordered; struct inode *inode; INIT_LIST_HEAD(&splice); spin_lock(&root->fs_info->ordered_extent_lock); list_splice_init(&root->fs_info->ordered_extents, &splice); while (!list_empty(&splice)) { ordered = list_entry(splice.next, struct btrfs_ordered_extent, root_extent_list); list_del_init(&ordered->root_extent_list); atomic_inc(&ordered->refs); /* the inode may be getting freed (in sys_unlink path). */ inode = igrab(ordered->inode); spin_unlock(&root->fs_info->ordered_extent_lock); if (inode) iput(inode); atomic_set(&ordered->refs, 1); btrfs_put_ordered_extent(ordered); spin_lock(&root->fs_info->ordered_extent_lock); } spin_unlock(&root->fs_info->ordered_extent_lock); return 0; } static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, struct btrfs_root *root) { struct rb_node *node; struct btrfs_delayed_ref_root *delayed_refs; struct btrfs_delayed_ref_node *ref; int ret = 0; delayed_refs = &trans->delayed_refs; spin_lock(&delayed_refs->lock); if (delayed_refs->num_entries == 0) { spin_unlock(&delayed_refs->lock); printk(KERN_INFO "delayed_refs has NO entry\n"); return ret; } node = rb_first(&delayed_refs->root); while (node) { ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); node = rb_next(node); ref->in_tree = 0; rb_erase(&ref->rb_node, &delayed_refs->root); delayed_refs->num_entries--; atomic_set(&ref->refs, 1); if (btrfs_delayed_ref_is_head(ref)) { struct btrfs_delayed_ref_head *head; head = btrfs_delayed_node_to_head(ref); mutex_lock(&head->mutex); kfree(head->extent_op); delayed_refs->num_heads--; if (list_empty(&head->cluster)) delayed_refs->num_heads_ready--; list_del_init(&head->cluster); mutex_unlock(&head->mutex); } spin_unlock(&delayed_refs->lock); btrfs_put_delayed_ref(ref); cond_resched(); spin_lock(&delayed_refs->lock); } spin_unlock(&delayed_refs->lock); return ret; } static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) { struct btrfs_pending_snapshot *snapshot; struct list_head splice; INIT_LIST_HEAD(&splice); list_splice_init(&t->pending_snapshots, &splice); while (!list_empty(&splice)) { snapshot = list_entry(splice.next, struct btrfs_pending_snapshot, list); list_del_init(&snapshot->list); kfree(snapshot); } return 0; } static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root) { struct btrfs_inode *btrfs_inode; struct list_head splice; INIT_LIST_HEAD(&splice); spin_lock(&root->fs_info->delalloc_lock); list_splice_init(&root->fs_info->delalloc_inodes, &splice); while (!list_empty(&splice)) { btrfs_inode = list_entry(splice.next, struct btrfs_inode, delalloc_inodes); list_del_init(&btrfs_inode->delalloc_inodes); btrfs_invalidate_inodes(btrfs_inode->root); } spin_unlock(&root->fs_info->delalloc_lock); return 0; } static int btrfs_destroy_marked_extents(struct btrfs_root *root, struct extent_io_tree *dirty_pages, int mark) { int ret; struct page *page; struct inode *btree_inode = root->fs_info->btree_inode; struct extent_buffer *eb; u64 start = 0; u64 end; u64 offset; unsigned long index; while (1) { ret = find_first_extent_bit(dirty_pages, start, &start, &end, mark); if (ret) break; clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); while (start <= end) { index = start >> PAGE_CACHE_SHIFT; start = (u64)(index + 1) << PAGE_CACHE_SHIFT; page = find_get_page(btree_inode->i_mapping, index); if (!page) continue; offset = page_offset(page); spin_lock(&dirty_pages->buffer_lock); eb = radix_tree_lookup( &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, offset >> PAGE_CACHE_SHIFT); spin_unlock(&dirty_pages->buffer_lock); if (eb) { ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); atomic_set(&eb->refs, 1); } if (PageWriteback(page)) end_page_writeback(page); lock_page(page); if (PageDirty(page)) { clear_page_dirty_for_io(page); spin_lock_irq(&page->mapping->tree_lock); radix_tree_tag_clear(&page->mapping->page_tree, page_index(page), PAGECACHE_TAG_DIRTY); spin_unlock_irq(&page->mapping->tree_lock); } page->mapping->a_ops->invalidatepage(page, 0); unlock_page(page); } } return ret; } static int btrfs_destroy_pinned_extent(struct btrfs_root *root, struct extent_io_tree *pinned_extents) { struct extent_io_tree *unpin; u64 start; u64 end; int ret; unpin = pinned_extents; while (1) { ret = find_first_extent_bit(unpin, 0, &start, &end, EXTENT_DIRTY); if (ret) break; /* opt_discard */ if (btrfs_test_opt(root, DISCARD)) ret = btrfs_error_discard_extent(root, start, end + 1 - start, NULL); clear_extent_dirty(unpin, start, end, GFP_NOFS); btrfs_error_unpin_extent_range(root, start, end); cond_resched(); } return 0; } static int btrfs_cleanup_transaction(struct btrfs_root *root) { struct btrfs_transaction *t; LIST_HEAD(list); WARN_ON(1); mutex_lock(&root->fs_info->transaction_kthread_mutex); spin_lock(&root->fs_info->trans_lock); list_splice_init(&root->fs_info->trans_list, &list); root->fs_info->trans_no_join = 1; spin_unlock(&root->fs_info->trans_lock); while (!list_empty(&list)) { t = list_entry(list.next, struct btrfs_transaction, list); if (!t) break; btrfs_destroy_ordered_operations(root); btrfs_destroy_ordered_extents(root); btrfs_destroy_delayed_refs(t, root); btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, t->dirty_pages.dirty_bytes); /* FIXME: cleanup wait for commit */ t->in_commit = 1; t->blocked = 1; if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) wake_up(&root->fs_info->transaction_blocked_wait); t->blocked = 0; if (waitqueue_active(&root->fs_info->transaction_wait)) wake_up(&root->fs_info->transaction_wait); t->commit_done = 1; if (waitqueue_active(&t->commit_wait)) wake_up(&t->commit_wait); btrfs_destroy_pending_snapshots(t); btrfs_destroy_delalloc_inodes(root); spin_lock(&root->fs_info->trans_lock); root->fs_info->running_transaction = NULL; spin_unlock(&root->fs_info->trans_lock); btrfs_destroy_marked_extents(root, &t->dirty_pages, EXTENT_DIRTY); btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); atomic_set(&t->use_count, 0); list_del_init(&t->list); memset(t, 0, sizeof(*t)); kmem_cache_free(btrfs_transaction_cachep, t); } spin_lock(&root->fs_info->trans_lock); root->fs_info->trans_no_join = 0; spin_unlock(&root->fs_info->trans_lock); mutex_unlock(&root->fs_info->transaction_kthread_mutex); return 0; } static struct extent_io_ops btree_extent_io_ops = { .write_cache_pages_lock_hook = btree_lock_page_hook, .readpage_end_io_hook = btree_readpage_end_io_hook, .readpage_io_failed_hook = btree_io_failed_hook, .submit_bio_hook = btree_submit_bio_hook, /* note we're sharing with inode.c for the merge bio hook */ .merge_bio_hook = btrfs_merge_bio_hook, };