/* * Copyright(c) 2008 - 2009 Atheros Corporation. All rights reserved. * * Derived from Intel e1000 driver * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "atl1c.h" #define ATL1C_DRV_VERSION "1.0.0.1-NAPI" char atl1c_driver_name[] = "atl1c"; char atl1c_driver_version[] = ATL1C_DRV_VERSION; #define PCI_DEVICE_ID_ATTANSIC_L2C 0x1062 #define PCI_DEVICE_ID_ATTANSIC_L1C 0x1063 /* * atl1c_pci_tbl - PCI Device ID Table * * Wildcard entries (PCI_ANY_ID) should come last * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, * Class, Class Mask, private data (not used) } */ static struct pci_device_id atl1c_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1C)}, {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2C)}, /* required last entry */ { 0 } }; MODULE_DEVICE_TABLE(pci, atl1c_pci_tbl); MODULE_AUTHOR("Jie Yang "); MODULE_DESCRIPTION("Atheros 1000M Ethernet Network Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(ATL1C_DRV_VERSION); static int atl1c_stop_mac(struct atl1c_hw *hw); static void atl1c_enable_rx_ctrl(struct atl1c_hw *hw); static void atl1c_enable_tx_ctrl(struct atl1c_hw *hw); static void atl1c_disable_l0s_l1(struct atl1c_hw *hw); static void atl1c_set_aspm(struct atl1c_hw *hw, bool linkup); static void atl1c_setup_mac_ctrl(struct atl1c_adapter *adapter); static void atl1c_clean_rx_irq(struct atl1c_adapter *adapter, u8 que, int *work_done, int work_to_do); static const u16 atl1c_pay_load_size[] = { 128, 256, 512, 1024, 2048, 4096, }; static const u16 atl1c_rfd_prod_idx_regs[AT_MAX_RECEIVE_QUEUE] = { REG_MB_RFD0_PROD_IDX, REG_MB_RFD1_PROD_IDX, REG_MB_RFD2_PROD_IDX, REG_MB_RFD3_PROD_IDX }; static const u16 atl1c_rfd_addr_lo_regs[AT_MAX_RECEIVE_QUEUE] = { REG_RFD0_HEAD_ADDR_LO, REG_RFD1_HEAD_ADDR_LO, REG_RFD2_HEAD_ADDR_LO, REG_RFD3_HEAD_ADDR_LO }; static const u16 atl1c_rrd_addr_lo_regs[AT_MAX_RECEIVE_QUEUE] = { REG_RRD0_HEAD_ADDR_LO, REG_RRD1_HEAD_ADDR_LO, REG_RRD2_HEAD_ADDR_LO, REG_RRD3_HEAD_ADDR_LO }; static const u32 atl1c_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP; /* * atl1c_init_pcie - init PCIE module */ static void atl1c_reset_pcie(struct atl1c_hw *hw, u32 flag) { u32 data; u32 pci_cmd; struct pci_dev *pdev = hw->adapter->pdev; AT_READ_REG(hw, PCI_COMMAND, &pci_cmd); pci_cmd &= ~PCI_COMMAND_INTX_DISABLE; pci_cmd |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_IO); AT_WRITE_REG(hw, PCI_COMMAND, pci_cmd); /* * Clear any PowerSaveing Settings */ pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); /* * Mask some pcie error bits */ AT_READ_REG(hw, REG_PCIE_UC_SEVERITY, &data); data &= ~PCIE_UC_SERVRITY_DLP; data &= ~PCIE_UC_SERVRITY_FCP; AT_WRITE_REG(hw, REG_PCIE_UC_SEVERITY, data); if (flag & ATL1C_PCIE_L0S_L1_DISABLE) atl1c_disable_l0s_l1(hw); if (flag & ATL1C_PCIE_PHY_RESET) AT_WRITE_REG(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT); else AT_WRITE_REG(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT | GPHY_CTRL_EXT_RESET); msleep(1); } /* * atl1c_irq_enable - Enable default interrupt generation settings * @adapter: board private structure */ static inline void atl1c_irq_enable(struct atl1c_adapter *adapter) { if (likely(atomic_dec_and_test(&adapter->irq_sem))) { AT_WRITE_REG(&adapter->hw, REG_ISR, 0x7FFFFFFF); AT_WRITE_REG(&adapter->hw, REG_IMR, adapter->hw.intr_mask); AT_WRITE_FLUSH(&adapter->hw); } } /* * atl1c_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure */ static inline void atl1c_irq_disable(struct atl1c_adapter *adapter) { atomic_inc(&adapter->irq_sem); AT_WRITE_REG(&adapter->hw, REG_IMR, 0); AT_WRITE_FLUSH(&adapter->hw); synchronize_irq(adapter->pdev->irq); } /* * atl1c_irq_reset - reset interrupt confiure on the NIC * @adapter: board private structure */ static inline void atl1c_irq_reset(struct atl1c_adapter *adapter) { atomic_set(&adapter->irq_sem, 1); atl1c_irq_enable(adapter); } /* * atl1c_wait_until_idle - wait up to AT_HW_MAX_IDLE_DELAY reads * of the idle status register until the device is actually idle */ static u32 atl1c_wait_until_idle(struct atl1c_hw *hw) { int timeout; u32 data; for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) { AT_READ_REG(hw, REG_IDLE_STATUS, &data); if ((data & IDLE_STATUS_MASK) == 0) return 0; msleep(1); } return data; } /* * atl1c_phy_config - Timer Call-back * @data: pointer to netdev cast into an unsigned long */ static void atl1c_phy_config(unsigned long data) { struct atl1c_adapter *adapter = (struct atl1c_adapter *) data; struct atl1c_hw *hw = &adapter->hw; unsigned long flags; spin_lock_irqsave(&adapter->mdio_lock, flags); atl1c_restart_autoneg(hw); spin_unlock_irqrestore(&adapter->mdio_lock, flags); } void atl1c_reinit_locked(struct atl1c_adapter *adapter) { WARN_ON(in_interrupt()); atl1c_down(adapter); atl1c_up(adapter); clear_bit(__AT_RESETTING, &adapter->flags); } static void atl1c_reset_task(struct work_struct *work) { struct atl1c_adapter *adapter; struct net_device *netdev; adapter = container_of(work, struct atl1c_adapter, reset_task); netdev = adapter->netdev; netif_device_detach(netdev); atl1c_down(adapter); atl1c_up(adapter); netif_device_attach(netdev); } static void atl1c_check_link_status(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; int err; unsigned long flags; u16 speed, duplex, phy_data; spin_lock_irqsave(&adapter->mdio_lock, flags); /* MII_BMSR must read twise */ atl1c_read_phy_reg(hw, MII_BMSR, &phy_data); atl1c_read_phy_reg(hw, MII_BMSR, &phy_data); spin_unlock_irqrestore(&adapter->mdio_lock, flags); if ((phy_data & BMSR_LSTATUS) == 0) { /* link down */ if (netif_carrier_ok(netdev)) { hw->hibernate = true; if (atl1c_stop_mac(hw) != 0) if (netif_msg_hw(adapter)) dev_warn(&pdev->dev, "stop mac failed\n"); atl1c_set_aspm(hw, false); } netif_carrier_off(netdev); } else { /* Link Up */ hw->hibernate = false; spin_lock_irqsave(&adapter->mdio_lock, flags); err = atl1c_get_speed_and_duplex(hw, &speed, &duplex); spin_unlock_irqrestore(&adapter->mdio_lock, flags); if (unlikely(err)) return; /* link result is our setting */ if (adapter->link_speed != speed || adapter->link_duplex != duplex) { adapter->link_speed = speed; adapter->link_duplex = duplex; atl1c_set_aspm(hw, true); atl1c_enable_tx_ctrl(hw); atl1c_enable_rx_ctrl(hw); atl1c_setup_mac_ctrl(adapter); if (netif_msg_link(adapter)) dev_info(&pdev->dev, "%s: %s NIC Link is Up<%d Mbps %s>\n", atl1c_driver_name, netdev->name, adapter->link_speed, adapter->link_duplex == FULL_DUPLEX ? "Full Duplex" : "Half Duplex"); } if (!netif_carrier_ok(netdev)) netif_carrier_on(netdev); } } /* * atl1c_link_chg_task - deal with link change event Out of interrupt context * @netdev: network interface device structure */ static void atl1c_link_chg_task(struct work_struct *work) { struct atl1c_adapter *adapter; adapter = container_of(work, struct atl1c_adapter, link_chg_task); atl1c_check_link_status(adapter); } static void atl1c_link_chg_event(struct atl1c_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; u16 phy_data; u16 link_up; spin_lock(&adapter->mdio_lock); atl1c_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data); atl1c_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data); spin_unlock(&adapter->mdio_lock); link_up = phy_data & BMSR_LSTATUS; /* notify upper layer link down ASAP */ if (!link_up) { if (netif_carrier_ok(netdev)) { /* old link state: Up */ netif_carrier_off(netdev); if (netif_msg_link(adapter)) dev_info(&pdev->dev, "%s: %s NIC Link is Down\n", atl1c_driver_name, netdev->name); adapter->link_speed = SPEED_0; } } schedule_work(&adapter->link_chg_task); } static void atl1c_del_timer(struct atl1c_adapter *adapter) { del_timer_sync(&adapter->phy_config_timer); } static void atl1c_cancel_work(struct atl1c_adapter *adapter) { cancel_work_sync(&adapter->reset_task); cancel_work_sync(&adapter->link_chg_task); } /* * atl1c_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure */ static void atl1c_tx_timeout(struct net_device *netdev) { struct atl1c_adapter *adapter = netdev_priv(netdev); /* Do the reset outside of interrupt context */ schedule_work(&adapter->reset_task); } /* * atl1c_set_multi - Multicast and Promiscuous mode set * @netdev: network interface device structure * * The set_multi entry point is called whenever the multicast address * list or the network interface flags are updated. This routine is * responsible for configuring the hardware for proper multicast, * promiscuous mode, and all-multi behavior. */ static void atl1c_set_multi(struct net_device *netdev) { struct atl1c_adapter *adapter = netdev_priv(netdev); struct atl1c_hw *hw = &adapter->hw; struct dev_mc_list *mc_ptr; u32 mac_ctrl_data; u32 hash_value; /* Check for Promiscuous and All Multicast modes */ AT_READ_REG(hw, REG_MAC_CTRL, &mac_ctrl_data); if (netdev->flags & IFF_PROMISC) { mac_ctrl_data |= MAC_CTRL_PROMIS_EN; } else if (netdev->flags & IFF_ALLMULTI) { mac_ctrl_data |= MAC_CTRL_MC_ALL_EN; mac_ctrl_data &= ~MAC_CTRL_PROMIS_EN; } else { mac_ctrl_data &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN); } AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data); /* clear the old settings from the multicast hash table */ AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); /* comoute mc addresses' hash value ,and put it into hash table */ for (mc_ptr = netdev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) { hash_value = atl1c_hash_mc_addr(hw, mc_ptr->dmi_addr); atl1c_hash_set(hw, hash_value); } } static void atl1c_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) { struct atl1c_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; u32 mac_ctrl_data = 0; if (netif_msg_pktdata(adapter)) dev_dbg(&pdev->dev, "atl1c_vlan_rx_register\n"); atl1c_irq_disable(adapter); adapter->vlgrp = grp; AT_READ_REG(&adapter->hw, REG_MAC_CTRL, &mac_ctrl_data); if (grp) { /* enable VLAN tag insert/strip */ mac_ctrl_data |= MAC_CTRL_RMV_VLAN; } else { /* disable VLAN tag insert/strip */ mac_ctrl_data &= ~MAC_CTRL_RMV_VLAN; } AT_WRITE_REG(&adapter->hw, REG_MAC_CTRL, mac_ctrl_data); atl1c_irq_enable(adapter); } static void atl1c_restore_vlan(struct atl1c_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; if (netif_msg_pktdata(adapter)) dev_dbg(&pdev->dev, "atl1c_restore_vlan !"); atl1c_vlan_rx_register(adapter->netdev, adapter->vlgrp); } /* * atl1c_set_mac - Change the Ethernet Address of the NIC * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure */ static int atl1c_set_mac_addr(struct net_device *netdev, void *p) { struct atl1c_adapter *adapter = netdev_priv(netdev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; if (netif_running(netdev)) return -EBUSY; memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); atl1c_hw_set_mac_addr(&adapter->hw); return 0; } static void atl1c_set_rxbufsize(struct atl1c_adapter *adapter, struct net_device *dev) { int mtu = dev->mtu; adapter->rx_buffer_len = mtu > AT_RX_BUF_SIZE ? roundup(mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN, 8) : AT_RX_BUF_SIZE; } /* * atl1c_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure */ static int atl1c_change_mtu(struct net_device *netdev, int new_mtu) { struct atl1c_adapter *adapter = netdev_priv(netdev); int old_mtu = netdev->mtu; int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { if (netif_msg_link(adapter)) dev_warn(&adapter->pdev->dev, "invalid MTU setting\n"); return -EINVAL; } /* set MTU */ if (old_mtu != new_mtu && netif_running(netdev)) { while (test_and_set_bit(__AT_RESETTING, &adapter->flags)) msleep(1); netdev->mtu = new_mtu; adapter->hw.max_frame_size = new_mtu; atl1c_set_rxbufsize(adapter, netdev); atl1c_down(adapter); atl1c_up(adapter); clear_bit(__AT_RESETTING, &adapter->flags); if (adapter->hw.ctrl_flags & ATL1C_FPGA_VERSION) { u32 phy_data; AT_READ_REG(&adapter->hw, 0x1414, &phy_data); phy_data |= 0x10000000; AT_WRITE_REG(&adapter->hw, 0x1414, phy_data); } } return 0; } /* * caller should hold mdio_lock */ static int atl1c_mdio_read(struct net_device *netdev, int phy_id, int reg_num) { struct atl1c_adapter *adapter = netdev_priv(netdev); u16 result; atl1c_read_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, &result); return result; } static void atl1c_mdio_write(struct net_device *netdev, int phy_id, int reg_num, int val) { struct atl1c_adapter *adapter = netdev_priv(netdev); atl1c_write_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, val); } /* * atl1c_mii_ioctl - * @netdev: * @ifreq: * @cmd: */ static int atl1c_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct atl1c_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; struct mii_ioctl_data *data = if_mii(ifr); unsigned long flags; int retval = 0; if (!netif_running(netdev)) return -EINVAL; spin_lock_irqsave(&adapter->mdio_lock, flags); switch (cmd) { case SIOCGMIIPHY: data->phy_id = 0; break; case SIOCGMIIREG: if (atl1c_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, &data->val_out)) { retval = -EIO; goto out; } break; case SIOCSMIIREG: if (data->reg_num & ~(0x1F)) { retval = -EFAULT; goto out; } dev_dbg(&pdev->dev, " write %x %x", data->reg_num, data->val_in); if (atl1c_write_phy_reg(&adapter->hw, data->reg_num, data->val_in)) { retval = -EIO; goto out; } break; default: retval = -EOPNOTSUPP; break; } out: spin_unlock_irqrestore(&adapter->mdio_lock, flags); return retval; } /* * atl1c_ioctl - * @netdev: * @ifreq: * @cmd: */ static int atl1c_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: return atl1c_mii_ioctl(netdev, ifr, cmd); default: return -EOPNOTSUPP; } } /* * atl1c_alloc_queues - Allocate memory for all rings * @adapter: board private structure to initialize * */ static int __devinit atl1c_alloc_queues(struct atl1c_adapter *adapter) { return 0; } static void atl1c_set_mac_type(struct atl1c_hw *hw) { switch (hw->device_id) { case PCI_DEVICE_ID_ATTANSIC_L2C: hw->nic_type = athr_l2c; break; case PCI_DEVICE_ID_ATTANSIC_L1C: hw->nic_type = athr_l1c; break; default: break; } } static int atl1c_setup_mac_funcs(struct atl1c_hw *hw) { u32 phy_status_data; u32 link_ctrl_data; atl1c_set_mac_type(hw); AT_READ_REG(hw, REG_PHY_STATUS, &phy_status_data); AT_READ_REG(hw, REG_LINK_CTRL, &link_ctrl_data); hw->ctrl_flags = ATL1C_INTR_CLEAR_ON_READ | ATL1C_INTR_MODRT_ENABLE | ATL1C_RX_IPV6_CHKSUM | ATL1C_TXQ_MODE_ENHANCE; if (link_ctrl_data & LINK_CTRL_L0S_EN) hw->ctrl_flags |= ATL1C_ASPM_L0S_SUPPORT; if (link_ctrl_data & LINK_CTRL_L1_EN) hw->ctrl_flags |= ATL1C_ASPM_L1_SUPPORT; if (hw->nic_type == athr_l1c) { hw->ctrl_flags |= ATL1C_ASPM_CTRL_MON; hw->ctrl_flags |= ATL1C_LINK_CAP_1000M; } return 0; } /* * atl1c_sw_init - Initialize general software structures (struct atl1c_adapter) * @adapter: board private structure to initialize * * atl1c_sw_init initializes the Adapter private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). */ static int __devinit atl1c_sw_init(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; struct pci_dev *pdev = adapter->pdev; adapter->wol = 0; adapter->link_speed = SPEED_0; adapter->link_duplex = FULL_DUPLEX; adapter->num_rx_queues = AT_DEF_RECEIVE_QUEUE; adapter->tpd_ring[0].count = 1024; adapter->rfd_ring[0].count = 512; hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_id = pdev->subsystem_device; /* before link up, we assume hibernate is true */ hw->hibernate = true; hw->media_type = MEDIA_TYPE_AUTO_SENSOR; if (atl1c_setup_mac_funcs(hw) != 0) { dev_err(&pdev->dev, "set mac function pointers failed\n"); return -1; } hw->intr_mask = IMR_NORMAL_MASK; hw->phy_configured = false; hw->preamble_len = 7; hw->max_frame_size = adapter->netdev->mtu; if (adapter->num_rx_queues < 2) { hw->rss_type = atl1c_rss_disable; hw->rss_mode = atl1c_rss_mode_disable; } else { hw->rss_type = atl1c_rss_ipv4; hw->rss_mode = atl1c_rss_mul_que_mul_int; hw->rss_hash_bits = 16; } hw->autoneg_advertised = ADVERTISED_Autoneg; hw->indirect_tab = 0xE4E4E4E4; hw->base_cpu = 0; hw->ict = 50000; /* 100ms */ hw->smb_timer = 200000; /* 400ms */ hw->cmb_tpd = 4; hw->cmb_tx_timer = 1; /* 2 us */ hw->rx_imt = 200; hw->tx_imt = 1000; hw->tpd_burst = 5; hw->rfd_burst = 8; hw->dma_order = atl1c_dma_ord_out; hw->dmar_block = atl1c_dma_req_1024; hw->dmaw_block = atl1c_dma_req_1024; hw->dmar_dly_cnt = 15; hw->dmaw_dly_cnt = 4; if (atl1c_alloc_queues(adapter)) { dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); return -ENOMEM; } /* TODO */ atl1c_set_rxbufsize(adapter, adapter->netdev); atomic_set(&adapter->irq_sem, 1); spin_lock_init(&adapter->mdio_lock); spin_lock_init(&adapter->tx_lock); set_bit(__AT_DOWN, &adapter->flags); return 0; } static inline void atl1c_clean_buffer(struct pci_dev *pdev, struct atl1c_buffer *buffer_info, int in_irq) { if (buffer_info->flags & ATL1C_BUFFER_FREE) return; if (buffer_info->dma) { if (buffer_info->flags & ATL1C_PCIMAP_SINGLE) pci_unmap_single(pdev, buffer_info->dma, buffer_info->length, PCI_DMA_TODEVICE); else if (buffer_info->flags & ATL1C_PCIMAP_PAGE) pci_unmap_page(pdev, buffer_info->dma, buffer_info->length, PCI_DMA_TODEVICE); } if (buffer_info->skb) { if (in_irq) dev_kfree_skb_irq(buffer_info->skb); else dev_kfree_skb(buffer_info->skb); } buffer_info->dma = 0; buffer_info->skb = NULL; ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_FREE); } /* * atl1c_clean_tx_ring - Free Tx-skb * @adapter: board private structure */ static void atl1c_clean_tx_ring(struct atl1c_adapter *adapter, enum atl1c_trans_queue type) { struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type]; struct atl1c_buffer *buffer_info; struct pci_dev *pdev = adapter->pdev; u16 index, ring_count; ring_count = tpd_ring->count; for (index = 0; index < ring_count; index++) { buffer_info = &tpd_ring->buffer_info[index]; atl1c_clean_buffer(pdev, buffer_info, 0); } /* Zero out Tx-buffers */ memset(tpd_ring->desc, 0, sizeof(struct atl1c_tpd_desc) * ring_count); atomic_set(&tpd_ring->next_to_clean, 0); tpd_ring->next_to_use = 0; } /* * atl1c_clean_rx_ring - Free rx-reservation skbs * @adapter: board private structure */ static void atl1c_clean_rx_ring(struct atl1c_adapter *adapter) { struct atl1c_rfd_ring *rfd_ring = adapter->rfd_ring; struct atl1c_rrd_ring *rrd_ring = adapter->rrd_ring; struct atl1c_buffer *buffer_info; struct pci_dev *pdev = adapter->pdev; int i, j; for (i = 0; i < adapter->num_rx_queues; i++) { for (j = 0; j < rfd_ring[i].count; j++) { buffer_info = &rfd_ring[i].buffer_info[j]; atl1c_clean_buffer(pdev, buffer_info, 0); } /* zero out the descriptor ring */ memset(rfd_ring[i].desc, 0, rfd_ring[i].size); rfd_ring[i].next_to_clean = 0; rfd_ring[i].next_to_use = 0; rrd_ring[i].next_to_use = 0; rrd_ring[i].next_to_clean = 0; } } /* * Read / Write Ptr Initialize: */ static void atl1c_init_ring_ptrs(struct atl1c_adapter *adapter) { struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring; struct atl1c_rfd_ring *rfd_ring = adapter->rfd_ring; struct atl1c_rrd_ring *rrd_ring = adapter->rrd_ring; struct atl1c_buffer *buffer_info; int i, j; for (i = 0; i < AT_MAX_TRANSMIT_QUEUE; i++) { tpd_ring[i].next_to_use = 0; atomic_set(&tpd_ring[i].next_to_clean, 0); buffer_info = tpd_ring[i].buffer_info; for (j = 0; j < tpd_ring->count; j++) ATL1C_SET_BUFFER_STATE(&buffer_info[i], ATL1C_BUFFER_FREE); } for (i = 0; i < adapter->num_rx_queues; i++) { rfd_ring[i].next_to_use = 0; rfd_ring[i].next_to_clean = 0; rrd_ring[i].next_to_use = 0; rrd_ring[i].next_to_clean = 0; for (j = 0; j < rfd_ring[i].count; j++) { buffer_info = &rfd_ring[i].buffer_info[j]; ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_FREE); } } } /* * atl1c_free_ring_resources - Free Tx / RX descriptor Resources * @adapter: board private structure * * Free all transmit software resources */ static void atl1c_free_ring_resources(struct atl1c_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; pci_free_consistent(pdev, adapter->ring_header.size, adapter->ring_header.desc, adapter->ring_header.dma); adapter->ring_header.desc = NULL; /* Note: just free tdp_ring.buffer_info, * it contain rfd_ring.buffer_info, do not double free */ if (adapter->tpd_ring[0].buffer_info) { kfree(adapter->tpd_ring[0].buffer_info); adapter->tpd_ring[0].buffer_info = NULL; } } /* * atl1c_setup_mem_resources - allocate Tx / RX descriptor resources * @adapter: board private structure * * Return 0 on success, negative on failure */ static int atl1c_setup_ring_resources(struct atl1c_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring; struct atl1c_rfd_ring *rfd_ring = adapter->rfd_ring; struct atl1c_rrd_ring *rrd_ring = adapter->rrd_ring; struct atl1c_ring_header *ring_header = &adapter->ring_header; int num_rx_queues = adapter->num_rx_queues; int size; int i; int count = 0; int rx_desc_count = 0; u32 offset = 0; rrd_ring[0].count = rfd_ring[0].count; for (i = 1; i < AT_MAX_TRANSMIT_QUEUE; i++) tpd_ring[i].count = tpd_ring[0].count; for (i = 1; i < adapter->num_rx_queues; i++) rfd_ring[i].count = rrd_ring[i].count = rfd_ring[0].count; /* 2 tpd queue, one high priority queue, * another normal priority queue */ size = sizeof(struct atl1c_buffer) * (tpd_ring->count * 2 + rfd_ring->count * num_rx_queues); tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL); if (unlikely(!tpd_ring->buffer_info)) { dev_err(&pdev->dev, "kzalloc failed, size = %d\n", size); goto err_nomem; } for (i = 0; i < AT_MAX_TRANSMIT_QUEUE; i++) { tpd_ring[i].buffer_info = (struct atl1c_buffer *) (tpd_ring->buffer_info + count); count += tpd_ring[i].count; } for (i = 0; i < num_rx_queues; i++) { rfd_ring[i].buffer_info = (struct atl1c_buffer *) (tpd_ring->buffer_info + count); count += rfd_ring[i].count; rx_desc_count += rfd_ring[i].count; } /* * real ring DMA buffer * each ring/block may need up to 8 bytes for alignment, hence the * additional bytes tacked onto the end. */ ring_header->size = size = sizeof(struct atl1c_tpd_desc) * tpd_ring->count * 2 + sizeof(struct atl1c_rx_free_desc) * rx_desc_count + sizeof(struct atl1c_recv_ret_status) * rx_desc_count + sizeof(struct atl1c_hw_stats) + 8 * 4 + 8 * 2 * num_rx_queues; ring_header->desc = pci_alloc_consistent(pdev, ring_header->size, &ring_header->dma); if (unlikely(!ring_header->desc)) { dev_err(&pdev->dev, "pci_alloc_consistend failed\n"); goto err_nomem; } memset(ring_header->desc, 0, ring_header->size); /* init TPD ring */ tpd_ring[0].dma = roundup(ring_header->dma, 8); offset = tpd_ring[0].dma - ring_header->dma; for (i = 0; i < AT_MAX_TRANSMIT_QUEUE; i++) { tpd_ring[i].dma = ring_header->dma + offset; tpd_ring[i].desc = (u8 *) ring_header->desc + offset; tpd_ring[i].size = sizeof(struct atl1c_tpd_desc) * tpd_ring[i].count; offset += roundup(tpd_ring[i].size, 8); } /* init RFD ring */ for (i = 0; i < num_rx_queues; i++) { rfd_ring[i].dma = ring_header->dma + offset; rfd_ring[i].desc = (u8 *) ring_header->desc + offset; rfd_ring[i].size = sizeof(struct atl1c_rx_free_desc) * rfd_ring[i].count; offset += roundup(rfd_ring[i].size, 8); } /* init RRD ring */ for (i = 0; i < num_rx_queues; i++) { rrd_ring[i].dma = ring_header->dma + offset; rrd_ring[i].desc = (u8 *) ring_header->desc + offset; rrd_ring[i].size = sizeof(struct atl1c_recv_ret_status) * rrd_ring[i].count; offset += roundup(rrd_ring[i].size, 8); } adapter->smb.dma = ring_header->dma + offset; adapter->smb.smb = (u8 *)ring_header->desc + offset; return 0; err_nomem: kfree(tpd_ring->buffer_info); return -ENOMEM; } static void atl1c_configure_des_ring(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; struct atl1c_rfd_ring *rfd_ring = (struct atl1c_rfd_ring *) adapter->rfd_ring; struct atl1c_rrd_ring *rrd_ring = (struct atl1c_rrd_ring *) adapter->rrd_ring; struct atl1c_tpd_ring *tpd_ring = (struct atl1c_tpd_ring *) adapter->tpd_ring; struct atl1c_cmb *cmb = (struct atl1c_cmb *) &adapter->cmb; struct atl1c_smb *smb = (struct atl1c_smb *) &adapter->smb; int i; /* TPD */ AT_WRITE_REG(hw, REG_TX_BASE_ADDR_HI, (u32)((tpd_ring[atl1c_trans_normal].dma & AT_DMA_HI_ADDR_MASK) >> 32)); /* just enable normal priority TX queue */ AT_WRITE_REG(hw, REG_NTPD_HEAD_ADDR_LO, (u32)(tpd_ring[atl1c_trans_normal].dma & AT_DMA_LO_ADDR_MASK)); AT_WRITE_REG(hw, REG_HTPD_HEAD_ADDR_LO, (u32)(tpd_ring[atl1c_trans_high].dma & AT_DMA_LO_ADDR_MASK)); AT_WRITE_REG(hw, REG_TPD_RING_SIZE, (u32)(tpd_ring[0].count & TPD_RING_SIZE_MASK)); /* RFD */ AT_WRITE_REG(hw, REG_RX_BASE_ADDR_HI, (u32)((rfd_ring[0].dma & AT_DMA_HI_ADDR_MASK) >> 32)); for (i = 0; i < adapter->num_rx_queues; i++) AT_WRITE_REG(hw, atl1c_rfd_addr_lo_regs[i], (u32)(rfd_ring[i].dma & AT_DMA_LO_ADDR_MASK)); AT_WRITE_REG(hw, REG_RFD_RING_SIZE, rfd_ring[0].count & RFD_RING_SIZE_MASK); AT_WRITE_REG(hw, REG_RX_BUF_SIZE, adapter->rx_buffer_len & RX_BUF_SIZE_MASK); /* RRD */ for (i = 0; i < adapter->num_rx_queues; i++) AT_WRITE_REG(hw, atl1c_rrd_addr_lo_regs[i], (u32)(rrd_ring[i].dma & AT_DMA_LO_ADDR_MASK)); AT_WRITE_REG(hw, REG_RRD_RING_SIZE, (rrd_ring[0].count & RRD_RING_SIZE_MASK)); /* CMB */ AT_WRITE_REG(hw, REG_CMB_BASE_ADDR_LO, cmb->dma & AT_DMA_LO_ADDR_MASK); /* SMB */ AT_WRITE_REG(hw, REG_SMB_BASE_ADDR_HI, (u32)((smb->dma & AT_DMA_HI_ADDR_MASK) >> 32)); AT_WRITE_REG(hw, REG_SMB_BASE_ADDR_LO, (u32)(smb->dma & AT_DMA_LO_ADDR_MASK)); /* Load all of base address above */ AT_WRITE_REG(hw, REG_LOAD_PTR, 1); } static void atl1c_configure_tx(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; u32 dev_ctrl_data; u32 max_pay_load; u16 tx_offload_thresh; u32 txq_ctrl_data; u32 extra_size = 0; /* Jumbo frame threshold in QWORD unit */ extra_size = ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN; tx_offload_thresh = MAX_TX_OFFLOAD_THRESH; AT_WRITE_REG(hw, REG_TX_TSO_OFFLOAD_THRESH, (tx_offload_thresh >> 3) & TX_TSO_OFFLOAD_THRESH_MASK); AT_READ_REG(hw, REG_DEVICE_CTRL, &dev_ctrl_data); max_pay_load = (dev_ctrl_data >> DEVICE_CTRL_MAX_PAYLOAD_SHIFT) & DEVICE_CTRL_MAX_PAYLOAD_MASK; hw->dmaw_block = min(max_pay_load, hw->dmaw_block); max_pay_load = (dev_ctrl_data >> DEVICE_CTRL_MAX_RREQ_SZ_SHIFT) & DEVICE_CTRL_MAX_RREQ_SZ_MASK; hw->dmar_block = min(max_pay_load, hw->dmar_block); txq_ctrl_data = (hw->tpd_burst & TXQ_NUM_TPD_BURST_MASK) << TXQ_NUM_TPD_BURST_SHIFT; if (hw->ctrl_flags & ATL1C_TXQ_MODE_ENHANCE) txq_ctrl_data |= TXQ_CTRL_ENH_MODE; txq_ctrl_data |= (atl1c_pay_load_size[hw->dmar_block] & TXQ_TXF_BURST_NUM_MASK) << TXQ_TXF_BURST_NUM_SHIFT; AT_WRITE_REG(hw, REG_TXQ_CTRL, txq_ctrl_data); } static void atl1c_configure_rx(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; u32 rxq_ctrl_data; rxq_ctrl_data = (hw->rfd_burst & RXQ_RFD_BURST_NUM_MASK) << RXQ_RFD_BURST_NUM_SHIFT; if (hw->ctrl_flags & ATL1C_RX_IPV6_CHKSUM) rxq_ctrl_data |= IPV6_CHKSUM_CTRL_EN; if (hw->rss_type == atl1c_rss_ipv4) rxq_ctrl_data |= RSS_HASH_IPV4; if (hw->rss_type == atl1c_rss_ipv4_tcp) rxq_ctrl_data |= RSS_HASH_IPV4_TCP; if (hw->rss_type == atl1c_rss_ipv6) rxq_ctrl_data |= RSS_HASH_IPV6; if (hw->rss_type == atl1c_rss_ipv6_tcp) rxq_ctrl_data |= RSS_HASH_IPV6_TCP; if (hw->rss_type != atl1c_rss_disable) rxq_ctrl_data |= RRS_HASH_CTRL_EN; rxq_ctrl_data |= (hw->rss_mode & RSS_MODE_MASK) << RSS_MODE_SHIFT; rxq_ctrl_data |= (hw->rss_hash_bits & RSS_HASH_BITS_MASK) << RSS_HASH_BITS_SHIFT; if (hw->ctrl_flags & ATL1C_ASPM_CTRL_MON) rxq_ctrl_data |= (ASPM_THRUPUT_LIMIT_100M & ASPM_THRUPUT_LIMIT_MASK) << ASPM_THRUPUT_LIMIT_SHIFT; AT_WRITE_REG(hw, REG_RXQ_CTRL, rxq_ctrl_data); } static void atl1c_configure_rss(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; AT_WRITE_REG(hw, REG_IDT_TABLE, hw->indirect_tab); AT_WRITE_REG(hw, REG_BASE_CPU_NUMBER, hw->base_cpu); } static void atl1c_configure_dma(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; u32 dma_ctrl_data; dma_ctrl_data = DMA_CTRL_DMAR_REQ_PRI; if (hw->ctrl_flags & ATL1C_CMB_ENABLE) dma_ctrl_data |= DMA_CTRL_CMB_EN; if (hw->ctrl_flags & ATL1C_SMB_ENABLE) dma_ctrl_data |= DMA_CTRL_SMB_EN; else dma_ctrl_data |= MAC_CTRL_SMB_DIS; switch (hw->dma_order) { case atl1c_dma_ord_in: dma_ctrl_data |= DMA_CTRL_DMAR_IN_ORDER; break; case atl1c_dma_ord_enh: dma_ctrl_data |= DMA_CTRL_DMAR_ENH_ORDER; break; case atl1c_dma_ord_out: dma_ctrl_data |= DMA_CTRL_DMAR_OUT_ORDER; break; default: break; } dma_ctrl_data |= (((u32)hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK) << DMA_CTRL_DMAR_BURST_LEN_SHIFT; dma_ctrl_data |= (((u32)hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK) << DMA_CTRL_DMAW_BURST_LEN_SHIFT; dma_ctrl_data |= (((u32)hw->dmar_dly_cnt) & DMA_CTRL_DMAR_DLY_CNT_MASK) << DMA_CTRL_DMAR_DLY_CNT_SHIFT; dma_ctrl_data |= (((u32)hw->dmaw_dly_cnt) & DMA_CTRL_DMAW_DLY_CNT_MASK) << DMA_CTRL_DMAW_DLY_CNT_SHIFT; AT_WRITE_REG(hw, REG_DMA_CTRL, dma_ctrl_data); } /* * Stop the mac, transmit and receive units * hw - Struct containing variables accessed by shared code * return : 0 or idle status (if error) */ static int atl1c_stop_mac(struct atl1c_hw *hw) { u32 data; AT_READ_REG(hw, REG_RXQ_CTRL, &data); data &= ~(RXQ1_CTRL_EN | RXQ2_CTRL_EN | RXQ3_CTRL_EN | RXQ_CTRL_EN); AT_WRITE_REG(hw, REG_RXQ_CTRL, data); AT_READ_REG(hw, REG_TXQ_CTRL, &data); data &= ~TXQ_CTRL_EN; AT_WRITE_REG(hw, REG_TWSI_CTRL, data); atl1c_wait_until_idle(hw); AT_READ_REG(hw, REG_MAC_CTRL, &data); data &= ~(MAC_CTRL_TX_EN | MAC_CTRL_RX_EN); AT_WRITE_REG(hw, REG_MAC_CTRL, data); return (int)atl1c_wait_until_idle(hw); } static void atl1c_enable_rx_ctrl(struct atl1c_hw *hw) { u32 data; AT_READ_REG(hw, REG_RXQ_CTRL, &data); switch (hw->adapter->num_rx_queues) { case 4: data |= (RXQ3_CTRL_EN | RXQ2_CTRL_EN | RXQ1_CTRL_EN); break; case 3: data |= (RXQ2_CTRL_EN | RXQ1_CTRL_EN); break; case 2: data |= RXQ1_CTRL_EN; break; default: break; } data |= RXQ_CTRL_EN; AT_WRITE_REG(hw, REG_RXQ_CTRL, data); } static void atl1c_enable_tx_ctrl(struct atl1c_hw *hw) { u32 data; AT_READ_REG(hw, REG_TXQ_CTRL, &data); data |= TXQ_CTRL_EN; AT_WRITE_REG(hw, REG_TXQ_CTRL, data); } /* * Reset the transmit and receive units; mask and clear all interrupts. * hw - Struct containing variables accessed by shared code * return : 0 or idle status (if error) */ static int atl1c_reset_mac(struct atl1c_hw *hw) { struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter; struct pci_dev *pdev = adapter->pdev; int ret; AT_WRITE_REG(hw, REG_IMR, 0); AT_WRITE_REG(hw, REG_ISR, ISR_DIS_INT); ret = atl1c_stop_mac(hw); if (ret) return ret; /* * Issue Soft Reset to the MAC. This will reset the chip's * transmit, receive, DMA. It will not effect * the current PCI configuration. The global reset bit is self- * clearing, and should clear within a microsecond. */ AT_WRITE_REGW(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST); AT_WRITE_FLUSH(hw); msleep(10); /* Wait at least 10ms for All module to be Idle */ if (atl1c_wait_until_idle(hw)) { dev_err(&pdev->dev, "MAC state machine can't be idle since" " disabled for 10ms second\n"); return -1; } return 0; } static void atl1c_disable_l0s_l1(struct atl1c_hw *hw) { u32 pm_ctrl_data; AT_READ_REG(hw, REG_PM_CTRL, &pm_ctrl_data); pm_ctrl_data &= ~(PM_CTRL_L1_ENTRY_TIMER_MASK << PM_CTRL_L1_ENTRY_TIMER_SHIFT); pm_ctrl_data &= ~PM_CTRL_CLK_SWH_L1; pm_ctrl_data &= ~PM_CTRL_ASPM_L0S_EN; pm_ctrl_data &= ~PM_CTRL_ASPM_L1_EN; pm_ctrl_data &= ~PM_CTRL_MAC_ASPM_CHK; pm_ctrl_data &= ~PM_CTRL_SERDES_PD_EX_L1; pm_ctrl_data |= PM_CTRL_SERDES_BUDS_RX_L1_EN; pm_ctrl_data |= PM_CTRL_SERDES_PLL_L1_EN; pm_ctrl_data |= PM_CTRL_SERDES_L1_EN; AT_WRITE_REG(hw, REG_PM_CTRL, pm_ctrl_data); } /* * Set ASPM state. * Enable/disable L0s/L1 depend on link state. */ static void atl1c_set_aspm(struct atl1c_hw *hw, bool linkup) { u32 pm_ctrl_data; AT_READ_REG(hw, REG_PM_CTRL, &pm_ctrl_data); pm_ctrl_data &= ~PM_CTRL_SERDES_PD_EX_L1; pm_ctrl_data &= ~(PM_CTRL_L1_ENTRY_TIMER_MASK << PM_CTRL_L1_ENTRY_TIMER_SHIFT); pm_ctrl_data |= PM_CTRL_MAC_ASPM_CHK; if (linkup) { pm_ctrl_data |= PM_CTRL_SERDES_PLL_L1_EN; pm_ctrl_data &= ~PM_CTRL_CLK_SWH_L1; pm_ctrl_data |= PM_CTRL_SERDES_BUDS_RX_L1_EN; pm_ctrl_data |= PM_CTRL_SERDES_L1_EN; } else { pm_ctrl_data &= ~PM_CTRL_SERDES_BUDS_RX_L1_EN; pm_ctrl_data &= ~PM_CTRL_SERDES_L1_EN; pm_ctrl_data &= ~PM_CTRL_ASPM_L0S_EN; pm_ctrl_data &= ~PM_CTRL_SERDES_PLL_L1_EN; pm_ctrl_data |= PM_CTRL_CLK_SWH_L1; if (hw->ctrl_flags & ATL1C_ASPM_L1_SUPPORT) pm_ctrl_data |= PM_CTRL_ASPM_L1_EN; else pm_ctrl_data &= ~PM_CTRL_ASPM_L1_EN; } AT_WRITE_REG(hw, REG_PM_CTRL, pm_ctrl_data); } static void atl1c_setup_mac_ctrl(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; u32 mac_ctrl_data; mac_ctrl_data = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN; mac_ctrl_data |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW); if (adapter->link_duplex == FULL_DUPLEX) { hw->mac_duplex = true; mac_ctrl_data |= MAC_CTRL_DUPLX; } if (adapter->link_speed == SPEED_1000) hw->mac_speed = atl1c_mac_speed_1000; else hw->mac_speed = atl1c_mac_speed_10_100; mac_ctrl_data |= (hw->mac_speed & MAC_CTRL_SPEED_MASK) << MAC_CTRL_SPEED_SHIFT; mac_ctrl_data |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD); mac_ctrl_data |= ((hw->preamble_len & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); if (adapter->vlgrp) mac_ctrl_data |= MAC_CTRL_RMV_VLAN; mac_ctrl_data |= MAC_CTRL_BC_EN; if (netdev->flags & IFF_PROMISC) mac_ctrl_data |= MAC_CTRL_PROMIS_EN; if (netdev->flags & IFF_ALLMULTI) mac_ctrl_data |= MAC_CTRL_MC_ALL_EN; mac_ctrl_data |= MAC_CTRL_SINGLE_PAUSE_EN; AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data); } /* * atl1c_configure - Configure Transmit&Receive Unit after Reset * @adapter: board private structure * * Configure the Tx /Rx unit of the MAC after a reset. */ static int atl1c_configure(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; u32 master_ctrl_data = 0; u32 intr_modrt_data; /* clear interrupt status */ AT_WRITE_REG(hw, REG_ISR, 0xFFFFFFFF); /* Clear any WOL status */ AT_WRITE_REG(hw, REG_WOL_CTRL, 0); /* set Interrupt Clear Timer * HW will enable self to assert interrupt event to system after * waiting x-time for software to notify it accept interrupt. */ AT_WRITE_REG(hw, REG_INT_RETRIG_TIMER, hw->ict & INT_RETRIG_TIMER_MASK); atl1c_configure_des_ring(adapter); if (hw->ctrl_flags & ATL1C_INTR_MODRT_ENABLE) { intr_modrt_data = (hw->tx_imt & IRQ_MODRT_TIMER_MASK) << IRQ_MODRT_TX_TIMER_SHIFT; intr_modrt_data |= (hw->rx_imt & IRQ_MODRT_TIMER_MASK) << IRQ_MODRT_RX_TIMER_SHIFT; AT_WRITE_REG(hw, REG_IRQ_MODRT_TIMER_INIT, intr_modrt_data); master_ctrl_data |= MASTER_CTRL_TX_ITIMER_EN | MASTER_CTRL_RX_ITIMER_EN; } if (hw->ctrl_flags & ATL1C_INTR_CLEAR_ON_READ) master_ctrl_data |= MASTER_CTRL_INT_RDCLR; AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl_data); if (hw->ctrl_flags & ATL1C_CMB_ENABLE) { AT_WRITE_REG(hw, REG_CMB_TPD_THRESH, hw->cmb_tpd & CMB_TPD_THRESH_MASK); AT_WRITE_REG(hw, REG_CMB_TX_TIMER, hw->cmb_tx_timer & CMB_TX_TIMER_MASK); } if (hw->ctrl_flags & ATL1C_SMB_ENABLE) AT_WRITE_REG(hw, REG_SMB_STAT_TIMER, hw->smb_timer & SMB_STAT_TIMER_MASK); /* set MTU */ AT_WRITE_REG(hw, REG_MTU, hw->max_frame_size + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN); /* HDS, disable */ AT_WRITE_REG(hw, REG_HDS_CTRL, 0); atl1c_configure_tx(adapter); atl1c_configure_rx(adapter); atl1c_configure_rss(adapter); atl1c_configure_dma(adapter); return 0; } static void atl1c_update_hw_stats(struct atl1c_adapter *adapter) { u16 hw_reg_addr = 0; unsigned long *stats_item = NULL; u32 data; /* update rx status */ hw_reg_addr = REG_MAC_RX_STATUS_BIN; stats_item = &adapter->hw_stats.rx_ok; while (hw_reg_addr <= REG_MAC_RX_STATUS_END) { AT_READ_REG(&adapter->hw, hw_reg_addr, &data); *stats_item += data; stats_item++; hw_reg_addr += 4; } /* update tx status */ hw_reg_addr = REG_MAC_TX_STATUS_BIN; stats_item = &adapter->hw_stats.tx_ok; while (hw_reg_addr <= REG_MAC_TX_STATUS_END) { AT_READ_REG(&adapter->hw, hw_reg_addr, &data); *stats_item += data; stats_item++; hw_reg_addr += 4; } } /* * atl1c_get_stats - Get System Network Statistics * @netdev: network interface device structure * * Returns the address of the device statistics structure. * The statistics are actually updated from the timer callback. */ static struct net_device_stats *atl1c_get_stats(struct net_device *netdev) { struct atl1c_adapter *adapter = netdev_priv(netdev); struct atl1c_hw_stats *hw_stats = &adapter->hw_stats; struct net_device_stats *net_stats = &adapter->net_stats; atl1c_update_hw_stats(adapter); net_stats->rx_packets = hw_stats->rx_ok; net_stats->tx_packets = hw_stats->tx_ok; net_stats->rx_bytes = hw_stats->rx_byte_cnt; net_stats->tx_bytes = hw_stats->tx_byte_cnt; net_stats->multicast = hw_stats->rx_mcast; net_stats->collisions = hw_stats->tx_1_col + hw_stats->tx_2_col * 2 + hw_stats->tx_late_col + hw_stats->tx_abort_col; net_stats->rx_errors = hw_stats->rx_frag + hw_stats->rx_fcs_err + hw_stats->rx_len_err + hw_stats->rx_sz_ov + hw_stats->rx_rrd_ov + hw_stats->rx_align_err; net_stats->rx_fifo_errors = hw_stats->rx_rxf_ov; net_stats->rx_length_errors = hw_stats->rx_len_err; net_stats->rx_crc_errors = hw_stats->rx_fcs_err; net_stats->rx_frame_errors = hw_stats->rx_align_err; net_stats->rx_over_errors = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov; net_stats->rx_missed_errors = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov; net_stats->tx_errors = hw_stats->tx_late_col + hw_stats->tx_abort_col + hw_stats->tx_underrun + hw_stats->tx_trunc; net_stats->tx_fifo_errors = hw_stats->tx_underrun; net_stats->tx_aborted_errors = hw_stats->tx_abort_col; net_stats->tx_window_errors = hw_stats->tx_late_col; return &adapter->net_stats; } static inline void atl1c_clear_phy_int(struct atl1c_adapter *adapter) { u16 phy_data; spin_lock(&adapter->mdio_lock); atl1c_read_phy_reg(&adapter->hw, MII_ISR, &phy_data); spin_unlock(&adapter->mdio_lock); } static bool atl1c_clean_tx_irq(struct atl1c_adapter *adapter, enum atl1c_trans_queue type) { struct atl1c_tpd_ring *tpd_ring = (struct atl1c_tpd_ring *) &adapter->tpd_ring[type]; struct atl1c_buffer *buffer_info; struct pci_dev *pdev = adapter->pdev; u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean); u16 hw_next_to_clean; u16 shift; u32 data; if (type == atl1c_trans_high) shift = MB_HTPD_CONS_IDX_SHIFT; else shift = MB_NTPD_CONS_IDX_SHIFT; AT_READ_REG(&adapter->hw, REG_MB_PRIO_CONS_IDX, &data); hw_next_to_clean = (data >> shift) & MB_PRIO_PROD_IDX_MASK; while (next_to_clean != hw_next_to_clean) { buffer_info = &tpd_ring->buffer_info[next_to_clean]; atl1c_clean_buffer(pdev, buffer_info, 1); if (++next_to_clean == tpd_ring->count) next_to_clean = 0; atomic_set(&tpd_ring->next_to_clean, next_to_clean); } if (netif_queue_stopped(adapter->netdev) && netif_carrier_ok(adapter->netdev)) { netif_wake_queue(adapter->netdev); } return true; } /* * atl1c_intr - Interrupt Handler * @irq: interrupt number * @data: pointer to a network interface device structure * @pt_regs: CPU registers structure */ static irqreturn_t atl1c_intr(int irq, void *data) { struct net_device *netdev = data; struct atl1c_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; struct atl1c_hw *hw = &adapter->hw; int max_ints = AT_MAX_INT_WORK; int handled = IRQ_NONE; u32 status; u32 reg_data; do { AT_READ_REG(hw, REG_ISR, ®_data); status = reg_data & hw->intr_mask; if (status == 0 || (status & ISR_DIS_INT) != 0) { if (max_ints != AT_MAX_INT_WORK) handled = IRQ_HANDLED; break; } /* link event */ if (status & ISR_GPHY) atl1c_clear_phy_int(adapter); /* Ack ISR */ AT_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT); if (status & ISR_RX_PKT) { if (likely(napi_schedule_prep(&adapter->napi))) { hw->intr_mask &= ~ISR_RX_PKT; AT_WRITE_REG(hw, REG_IMR, hw->intr_mask); __napi_schedule(&adapter->napi); } } if (status & ISR_TX_PKT) atl1c_clean_tx_irq(adapter, atl1c_trans_normal); handled = IRQ_HANDLED; /* check if PCIE PHY Link down */ if (status & ISR_ERROR) { if (netif_msg_hw(adapter)) dev_err(&pdev->dev, "atl1c hardware error (status = 0x%x)\n", status & ISR_ERROR); /* reset MAC */ hw->intr_mask &= ~ISR_ERROR; AT_WRITE_REG(hw, REG_IMR, hw->intr_mask); schedule_work(&adapter->reset_task); break; } if (status & ISR_OVER) if (netif_msg_intr(adapter)) dev_warn(&pdev->dev, "TX/RX overflow (status = 0x%x)\n", status & ISR_OVER); /* link event */ if (status & (ISR_GPHY | ISR_MANUAL)) { adapter->net_stats.tx_carrier_errors++; atl1c_link_chg_event(adapter); break; } } while (--max_ints > 0); /* re-enable Interrupt*/ AT_WRITE_REG(&adapter->hw, REG_ISR, 0); return handled; } static inline void atl1c_rx_checksum(struct atl1c_adapter *adapter, struct sk_buff *skb, struct atl1c_recv_ret_status *prrs) { /* * The pid field in RRS in not correct sometimes, so we * cannot figure out if the packet is fragmented or not, * so we tell the KERNEL CHECKSUM_NONE */ skb->ip_summed = CHECKSUM_NONE; } static int atl1c_alloc_rx_buffer(struct atl1c_adapter *adapter, const int ringid) { struct atl1c_rfd_ring *rfd_ring = &adapter->rfd_ring[ringid]; struct pci_dev *pdev = adapter->pdev; struct atl1c_buffer *buffer_info, *next_info; struct sk_buff *skb; void *vir_addr = NULL; u16 num_alloc = 0; u16 rfd_next_to_use, next_next; struct atl1c_rx_free_desc *rfd_desc; next_next = rfd_next_to_use = rfd_ring->next_to_use; if (++next_next == rfd_ring->count) next_next = 0; buffer_info = &rfd_ring->buffer_info[rfd_next_to_use]; next_info = &rfd_ring->buffer_info[next_next]; while (next_info->flags & ATL1C_BUFFER_FREE) { rfd_desc = ATL1C_RFD_DESC(rfd_ring, rfd_next_to_use); skb = dev_alloc_skb(adapter->rx_buffer_len); if (unlikely(!skb)) { if (netif_msg_rx_err(adapter)) dev_warn(&pdev->dev, "alloc rx buffer failed\n"); break; } /* * Make buffer alignment 2 beyond a 16 byte boundary * this will result in a 16 byte aligned IP header after * the 14 byte MAC header is removed */ vir_addr = skb->data; ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_BUSY); buffer_info->skb = skb; buffer_info->length = adapter->rx_buffer_len; buffer_info->dma = pci_map_single(pdev, vir_addr, buffer_info->length, PCI_DMA_FROMDEVICE); ATL1C_SET_PCIMAP_TYPE(buffer_info, ATL1C_PCIMAP_SINGLE); rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma); rfd_next_to_use = next_next; if (++next_next == rfd_ring->count) next_next = 0; buffer_info = &rfd_ring->buffer_info[rfd_next_to_use]; next_info = &rfd_ring->buffer_info[next_next]; num_alloc++; } if (num_alloc) { /* TODO: update mailbox here */ wmb(); rfd_ring->next_to_use = rfd_next_to_use; AT_WRITE_REG(&adapter->hw, atl1c_rfd_prod_idx_regs[ringid], rfd_ring->next_to_use & MB_RFDX_PROD_IDX_MASK); } return num_alloc; } static void atl1c_clean_rrd(struct atl1c_rrd_ring *rrd_ring, struct atl1c_recv_ret_status *rrs, u16 num) { u16 i; /* the relationship between rrd and rfd is one map one */ for (i = 0; i < num; i++, rrs = ATL1C_RRD_DESC(rrd_ring, rrd_ring->next_to_clean)) { rrs->word3 &= ~RRS_RXD_UPDATED; if (++rrd_ring->next_to_clean == rrd_ring->count) rrd_ring->next_to_clean = 0; } } static void atl1c_clean_rfd(struct atl1c_rfd_ring *rfd_ring, struct atl1c_recv_ret_status *rrs, u16 num) { u16 i; u16 rfd_index; struct atl1c_buffer *buffer_info = rfd_ring->buffer_info; rfd_index = (rrs->word0 >> RRS_RX_RFD_INDEX_SHIFT) & RRS_RX_RFD_INDEX_MASK; for (i = 0; i < num; i++) { buffer_info[rfd_index].skb = NULL; ATL1C_SET_BUFFER_STATE(&buffer_info[rfd_index], ATL1C_BUFFER_FREE); if (++rfd_index == rfd_ring->count) rfd_index = 0; } rfd_ring->next_to_clean = rfd_index; } static void atl1c_clean_rx_irq(struct atl1c_adapter *adapter, u8 que, int *work_done, int work_to_do) { u16 rfd_num, rfd_index; u16 count = 0; u16 length; struct pci_dev *pdev = adapter->pdev; struct net_device *netdev = adapter->netdev; struct atl1c_rfd_ring *rfd_ring = &adapter->rfd_ring[que]; struct atl1c_rrd_ring *rrd_ring = &adapter->rrd_ring[que]; struct sk_buff *skb; struct atl1c_recv_ret_status *rrs; struct atl1c_buffer *buffer_info; while (1) { if (*work_done >= work_to_do) break; rrs = ATL1C_RRD_DESC(rrd_ring, rrd_ring->next_to_clean); if (likely(RRS_RXD_IS_VALID(rrs->word3))) { rfd_num = (rrs->word0 >> RRS_RX_RFD_CNT_SHIFT) & RRS_RX_RFD_CNT_MASK; if (unlikely(rfd_num != 1)) /* TODO support mul rfd*/ if (netif_msg_rx_err(adapter)) dev_warn(&pdev->dev, "Multi rfd not support yet!\n"); goto rrs_checked; } else { break; } rrs_checked: atl1c_clean_rrd(rrd_ring, rrs, rfd_num); if (rrs->word3 & (RRS_RX_ERR_SUM | RRS_802_3_LEN_ERR)) { atl1c_clean_rfd(rfd_ring, rrs, rfd_num); if (netif_msg_rx_err(adapter)) dev_warn(&pdev->dev, "wrong packet! rrs word3 is %x\n", rrs->word3); continue; } length = le16_to_cpu((rrs->word3 >> RRS_PKT_SIZE_SHIFT) & RRS_PKT_SIZE_MASK); /* Good Receive */ if (likely(rfd_num == 1)) { rfd_index = (rrs->word0 >> RRS_RX_RFD_INDEX_SHIFT) & RRS_RX_RFD_INDEX_MASK; buffer_info = &rfd_ring->buffer_info[rfd_index]; pci_unmap_single(pdev, buffer_info->dma, buffer_info->length, PCI_DMA_FROMDEVICE); skb = buffer_info->skb; } else { /* TODO */ if (netif_msg_rx_err(adapter)) dev_warn(&pdev->dev, "Multi rfd not support yet!\n"); break; } atl1c_clean_rfd(rfd_ring, rrs, rfd_num); skb_put(skb, length - ETH_FCS_LEN); skb->protocol = eth_type_trans(skb, netdev); skb->dev = netdev; atl1c_rx_checksum(adapter, skb, rrs); if (unlikely(adapter->vlgrp) && rrs->word3 & RRS_VLAN_INS) { u16 vlan; AT_TAG_TO_VLAN(rrs->vlan_tag, vlan); vlan = le16_to_cpu(vlan); vlan_hwaccel_receive_skb(skb, adapter->vlgrp, vlan); } else netif_receive_skb(skb); (*work_done)++; count++; } if (count) atl1c_alloc_rx_buffer(adapter, que); } /* * atl1c_clean - NAPI Rx polling callback * @adapter: board private structure */ static int atl1c_clean(struct napi_struct *napi, int budget) { struct atl1c_adapter *adapter = container_of(napi, struct atl1c_adapter, napi); int work_done = 0; /* Keep link state information with original netdev */ if (!netif_carrier_ok(adapter->netdev)) goto quit_polling; /* just enable one RXQ */ atl1c_clean_rx_irq(adapter, 0, &work_done, budget); if (work_done < budget) { quit_polling: napi_complete(napi); adapter->hw.intr_mask |= ISR_RX_PKT; AT_WRITE_REG(&adapter->hw, REG_IMR, adapter->hw.intr_mask); } return work_done; } #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void atl1c_netpoll(struct net_device *netdev) { struct atl1c_adapter *adapter = netdev_priv(netdev); disable_irq(adapter->pdev->irq); atl1c_intr(adapter->pdev->irq, netdev); enable_irq(adapter->pdev->irq); } #endif static inline u16 atl1c_tpd_avail(struct atl1c_adapter *adapter, enum atl1c_trans_queue type) { struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type]; u16 next_to_use = 0; u16 next_to_clean = 0; next_to_clean = atomic_read(&tpd_ring->next_to_clean); next_to_use = tpd_ring->next_to_use; return (u16)(next_to_clean > next_to_use) ? (next_to_clean - next_to_use - 1) : (tpd_ring->count + next_to_clean - next_to_use - 1); } /* * get next usable tpd * Note: should call atl1c_tdp_avail to make sure * there is enough tpd to use */ static struct atl1c_tpd_desc *atl1c_get_tpd(struct atl1c_adapter *adapter, enum atl1c_trans_queue type) { struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type]; struct atl1c_tpd_desc *tpd_desc; u16 next_to_use = 0; next_to_use = tpd_ring->next_to_use; if (++tpd_ring->next_to_use == tpd_ring->count) tpd_ring->next_to_use = 0; tpd_desc = ATL1C_TPD_DESC(tpd_ring, next_to_use); memset(tpd_desc, 0, sizeof(struct atl1c_tpd_desc)); return tpd_desc; } static struct atl1c_buffer * atl1c_get_tx_buffer(struct atl1c_adapter *adapter, struct atl1c_tpd_desc *tpd) { struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring; return &tpd_ring->buffer_info[tpd - (struct atl1c_tpd_desc *)tpd_ring->desc]; } /* Calculate the transmit packet descript needed*/ static u16 atl1c_cal_tpd_req(const struct sk_buff *skb) { u16 tpd_req; u16 proto_hdr_len = 0; tpd_req = skb_shinfo(skb)->nr_frags + 1; if (skb_is_gso(skb)) { proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); if (proto_hdr_len < skb_headlen(skb)) tpd_req++; if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) tpd_req++; } return tpd_req; } static int atl1c_tso_csum(struct atl1c_adapter *adapter, struct sk_buff *skb, struct atl1c_tpd_desc **tpd, enum atl1c_trans_queue type) { struct pci_dev *pdev = adapter->pdev; u8 hdr_len; u32 real_len; unsigned short offload_type; int err; if (skb_is_gso(skb)) { if (skb_header_cloned(skb)) { err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); if (unlikely(err)) return -1; } offload_type = skb_shinfo(skb)->gso_type; if (offload_type & SKB_GSO_TCPV4) { real_len = (((unsigned char *)ip_hdr(skb) - skb->data) + ntohs(ip_hdr(skb)->tot_len)); if (real_len < skb->len) pskb_trim(skb, real_len); hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb)); if (unlikely(skb->len == hdr_len)) { /* only xsum need */ if (netif_msg_tx_queued(adapter)) dev_warn(&pdev->dev, "IPV4 tso with zero data??\n"); goto check_sum; } else { ip_hdr(skb)->check = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic( ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); (*tpd)->word1 |= 1 << TPD_IPV4_PACKET_SHIFT; } } if (offload_type & SKB_GSO_TCPV6) { struct atl1c_tpd_ext_desc *etpd = *(struct atl1c_tpd_ext_desc **)(tpd); memset(etpd, 0, sizeof(struct atl1c_tpd_ext_desc)); *tpd = atl1c_get_tpd(adapter, type); ipv6_hdr(skb)->payload_len = 0; /* check payload == 0 byte ? */ hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb)); if (unlikely(skb->len == hdr_len)) { /* only xsum need */ if (netif_msg_tx_queued(adapter)) dev_warn(&pdev->dev, "IPV6 tso with zero data??\n"); goto check_sum; } else tcp_hdr(skb)->check = ~csum_ipv6_magic( &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); etpd->word1 |= 1 << TPD_LSO_EN_SHIFT; etpd->word1 |= 1 << TPD_LSO_VER_SHIFT; etpd->pkt_len = cpu_to_le32(skb->len); (*tpd)->word1 |= 1 << TPD_LSO_VER_SHIFT; } (*tpd)->word1 |= 1 << TPD_LSO_EN_SHIFT; (*tpd)->word1 |= (skb_transport_offset(skb) & TPD_TCPHDR_OFFSET_MASK) << TPD_TCPHDR_OFFSET_SHIFT; (*tpd)->word1 |= (skb_shinfo(skb)->gso_size & TPD_MSS_MASK) << TPD_MSS_SHIFT; return 0; } check_sum: if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { u8 css, cso; cso = skb_transport_offset(skb); if (unlikely(cso & 0x1)) { if (netif_msg_tx_err(adapter)) dev_err(&adapter->pdev->dev, "payload offset should not an event number\n"); return -1; } else { css = cso + skb->csum_offset; (*tpd)->word1 |= ((cso >> 1) & TPD_PLOADOFFSET_MASK) << TPD_PLOADOFFSET_SHIFT; (*tpd)->word1 |= ((css >> 1) & TPD_CCSUM_OFFSET_MASK) << TPD_CCSUM_OFFSET_SHIFT; (*tpd)->word1 |= 1 << TPD_CCSUM_EN_SHIFT; } } return 0; } static void atl1c_tx_map(struct atl1c_adapter *adapter, struct sk_buff *skb, struct atl1c_tpd_desc *tpd, enum atl1c_trans_queue type) { struct atl1c_tpd_desc *use_tpd = NULL; struct atl1c_buffer *buffer_info = NULL; u16 buf_len = skb_headlen(skb); u16 map_len = 0; u16 mapped_len = 0; u16 hdr_len = 0; u16 nr_frags; u16 f; int tso; nr_frags = skb_shinfo(skb)->nr_frags; tso = (tpd->word1 >> TPD_LSO_EN_SHIFT) & TPD_LSO_EN_MASK; if (tso) { /* TSO */ map_len = hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); use_tpd = tpd; buffer_info = atl1c_get_tx_buffer(adapter, use_tpd); buffer_info->length = map_len; buffer_info->dma = pci_map_single(adapter->pdev, skb->data, hdr_len, PCI_DMA_TODEVICE); ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_BUSY); ATL1C_SET_PCIMAP_TYPE(buffer_info, ATL1C_PCIMAP_SINGLE); mapped_len += map_len; use_tpd->buffer_addr = cpu_to_le64(buffer_info->dma); use_tpd->buffer_len = cpu_to_le16(buffer_info->length); } if (mapped_len < buf_len) { /* mapped_len == 0, means we should use the first tpd, which is given by caller */ if (mapped_len == 0) use_tpd = tpd; else { use_tpd = atl1c_get_tpd(adapter, type); memcpy(use_tpd, tpd, sizeof(struct atl1c_tpd_desc)); } buffer_info = atl1c_get_tx_buffer(adapter, use_tpd); buffer_info->length = buf_len - mapped_len; buffer_info->dma = pci_map_single(adapter->pdev, skb->data + mapped_len, buffer_info->length, PCI_DMA_TODEVICE); ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_BUSY); ATL1C_SET_PCIMAP_TYPE(buffer_info, ATL1C_PCIMAP_SINGLE); use_tpd->buffer_addr = cpu_to_le64(buffer_info->dma); use_tpd->buffer_len = cpu_to_le16(buffer_info->length); } for (f = 0; f < nr_frags; f++) { struct skb_frag_struct *frag; frag = &skb_shinfo(skb)->frags[f]; use_tpd = atl1c_get_tpd(adapter, type); memcpy(use_tpd, tpd, sizeof(struct atl1c_tpd_desc)); buffer_info = atl1c_get_tx_buffer(adapter, use_tpd); buffer_info->length = frag->size; buffer_info->dma = pci_map_page(adapter->pdev, frag->page, frag->page_offset, buffer_info->length, PCI_DMA_TODEVICE); ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_BUSY); ATL1C_SET_PCIMAP_TYPE(buffer_info, ATL1C_PCIMAP_PAGE); use_tpd->buffer_addr = cpu_to_le64(buffer_info->dma); use_tpd->buffer_len = cpu_to_le16(buffer_info->length); } /* The last tpd */ use_tpd->word1 |= 1 << TPD_EOP_SHIFT; /* The last buffer info contain the skb address, so it will be free after unmap */ buffer_info->skb = skb; } static void atl1c_tx_queue(struct atl1c_adapter *adapter, struct sk_buff *skb, struct atl1c_tpd_desc *tpd, enum atl1c_trans_queue type) { struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type]; u32 prod_data; AT_READ_REG(&adapter->hw, REG_MB_PRIO_PROD_IDX, &prod_data); switch (type) { case atl1c_trans_high: prod_data &= 0xFFFF0000; prod_data |= tpd_ring->next_to_use & 0xFFFF; break; case atl1c_trans_normal: prod_data &= 0x0000FFFF; prod_data |= (tpd_ring->next_to_use & 0xFFFF) << 16; break; default: break; } wmb(); AT_WRITE_REG(&adapter->hw, REG_MB_PRIO_PROD_IDX, prod_data); } static netdev_tx_t atl1c_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct atl1c_adapter *adapter = netdev_priv(netdev); unsigned long flags; u16 tpd_req = 1; struct atl1c_tpd_desc *tpd; enum atl1c_trans_queue type = atl1c_trans_normal; if (test_bit(__AT_DOWN, &adapter->flags)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } tpd_req = atl1c_cal_tpd_req(skb); if (!spin_trylock_irqsave(&adapter->tx_lock, flags)) { if (netif_msg_pktdata(adapter)) dev_info(&adapter->pdev->dev, "tx locked\n"); return NETDEV_TX_LOCKED; } if (skb->mark == 0x01) type = atl1c_trans_high; else type = atl1c_trans_normal; if (atl1c_tpd_avail(adapter, type) < tpd_req) { /* no enough descriptor, just stop queue */ netif_stop_queue(netdev); spin_unlock_irqrestore(&adapter->tx_lock, flags); return NETDEV_TX_BUSY; } tpd = atl1c_get_tpd(adapter, type); /* do TSO and check sum */ if (atl1c_tso_csum(adapter, skb, &tpd, type) != 0) { spin_unlock_irqrestore(&adapter->tx_lock, flags); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { u16 vlan = vlan_tx_tag_get(skb); __le16 tag; vlan = cpu_to_le16(vlan); AT_VLAN_TO_TAG(vlan, tag); tpd->word1 |= 1 << TPD_INS_VTAG_SHIFT; tpd->vlan_tag = tag; } if (skb_network_offset(skb) != ETH_HLEN) tpd->word1 |= 1 << TPD_ETH_TYPE_SHIFT; /* Ethernet frame */ atl1c_tx_map(adapter, skb, tpd, type); atl1c_tx_queue(adapter, skb, tpd, type); spin_unlock_irqrestore(&adapter->tx_lock, flags); return NETDEV_TX_OK; } static void atl1c_free_irq(struct atl1c_adapter *adapter) { struct net_device *netdev = adapter->netdev; free_irq(adapter->pdev->irq, netdev); if (adapter->have_msi) pci_disable_msi(adapter->pdev); } static int atl1c_request_irq(struct atl1c_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; struct net_device *netdev = adapter->netdev; int flags = 0; int err = 0; adapter->have_msi = true; err = pci_enable_msi(adapter->pdev); if (err) { if (netif_msg_ifup(adapter)) dev_err(&pdev->dev, "Unable to allocate MSI interrupt Error: %d\n", err); adapter->have_msi = false; } else netdev->irq = pdev->irq; if (!adapter->have_msi) flags |= IRQF_SHARED; err = request_irq(adapter->pdev->irq, atl1c_intr, flags, netdev->name, netdev); if (err) { if (netif_msg_ifup(adapter)) dev_err(&pdev->dev, "Unable to allocate interrupt Error: %d\n", err); if (adapter->have_msi) pci_disable_msi(adapter->pdev); return err; } if (netif_msg_ifup(adapter)) dev_dbg(&pdev->dev, "atl1c_request_irq OK\n"); return err; } int atl1c_up(struct atl1c_adapter *adapter) { struct net_device *netdev = adapter->netdev; int num; int err; int i; netif_carrier_off(netdev); atl1c_init_ring_ptrs(adapter); atl1c_set_multi(netdev); atl1c_restore_vlan(adapter); for (i = 0; i < adapter->num_rx_queues; i++) { num = atl1c_alloc_rx_buffer(adapter, i); if (unlikely(num == 0)) { err = -ENOMEM; goto err_alloc_rx; } } if (atl1c_configure(adapter)) { err = -EIO; goto err_up; } err = atl1c_request_irq(adapter); if (unlikely(err)) goto err_up; clear_bit(__AT_DOWN, &adapter->flags); napi_enable(&adapter->napi); atl1c_irq_enable(adapter); atl1c_check_link_status(adapter); netif_start_queue(netdev); return err; err_up: err_alloc_rx: atl1c_clean_rx_ring(adapter); return err; } void atl1c_down(struct atl1c_adapter *adapter) { struct net_device *netdev = adapter->netdev; atl1c_del_timer(adapter); atl1c_cancel_work(adapter); /* signal that we're down so the interrupt handler does not * reschedule our watchdog timer */ set_bit(__AT_DOWN, &adapter->flags); netif_carrier_off(netdev); napi_disable(&adapter->napi); atl1c_irq_disable(adapter); atl1c_free_irq(adapter); AT_WRITE_REG(&adapter->hw, REG_ISR, ISR_DIS_INT); /* reset MAC to disable all RX/TX */ atl1c_reset_mac(&adapter->hw); msleep(1); adapter->link_speed = SPEED_0; adapter->link_duplex = -1; atl1c_clean_tx_ring(adapter, atl1c_trans_normal); atl1c_clean_tx_ring(adapter, atl1c_trans_high); atl1c_clean_rx_ring(adapter); } /* * atl1c_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. */ static int atl1c_open(struct net_device *netdev) { struct atl1c_adapter *adapter = netdev_priv(netdev); int err; /* disallow open during test */ if (test_bit(__AT_TESTING, &adapter->flags)) return -EBUSY; /* allocate rx/tx dma buffer & descriptors */ err = atl1c_setup_ring_resources(adapter); if (unlikely(err)) return err; err = atl1c_up(adapter); if (unlikely(err)) goto err_up; if (adapter->hw.ctrl_flags & ATL1C_FPGA_VERSION) { u32 phy_data; AT_READ_REG(&adapter->hw, REG_MDIO_CTRL, &phy_data); phy_data |= MDIO_AP_EN; AT_WRITE_REG(&adapter->hw, REG_MDIO_CTRL, phy_data); } return 0; err_up: atl1c_free_irq(adapter); atl1c_free_ring_resources(adapter); atl1c_reset_mac(&adapter->hw); return err; } /* * atl1c_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. */ static int atl1c_close(struct net_device *netdev) { struct atl1c_adapter *adapter = netdev_priv(netdev); WARN_ON(test_bit(__AT_RESETTING, &adapter->flags)); atl1c_down(adapter); atl1c_free_ring_resources(adapter); return 0; } static int atl1c_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1c_adapter *adapter = netdev_priv(netdev); struct atl1c_hw *hw = &adapter->hw; u32 ctrl; u32 mac_ctrl_data; u32 master_ctrl_data; u32 wol_ctrl_data = 0; u16 mii_bmsr_data; u16 save_autoneg_advertised; u16 mii_intr_status_data; u32 wufc = adapter->wol; u32 i; int retval = 0; if (netif_running(netdev)) { WARN_ON(test_bit(__AT_RESETTING, &adapter->flags)); atl1c_down(adapter); } netif_device_detach(netdev); atl1c_disable_l0s_l1(hw); retval = pci_save_state(pdev); if (retval) return retval; if (wufc) { AT_READ_REG(hw, REG_MASTER_CTRL, &master_ctrl_data); master_ctrl_data &= ~MASTER_CTRL_CLK_SEL_DIS; /* get link status */ atl1c_read_phy_reg(hw, MII_BMSR, (u16 *)&mii_bmsr_data); atl1c_read_phy_reg(hw, MII_BMSR, (u16 *)&mii_bmsr_data); save_autoneg_advertised = hw->autoneg_advertised; hw->autoneg_advertised = ADVERTISED_10baseT_Half; if (atl1c_restart_autoneg(hw) != 0) if (netif_msg_link(adapter)) dev_warn(&pdev->dev, "phy autoneg failed\n"); hw->phy_configured = false; /* re-init PHY when resume */ hw->autoneg_advertised = save_autoneg_advertised; /* turn on magic packet wol */ if (wufc & AT_WUFC_MAG) wol_ctrl_data = WOL_MAGIC_EN | WOL_MAGIC_PME_EN; if (wufc & AT_WUFC_LNKC) { for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) { msleep(100); atl1c_read_phy_reg(hw, MII_BMSR, (u16 *)&mii_bmsr_data); if (mii_bmsr_data & BMSR_LSTATUS) break; } if ((mii_bmsr_data & BMSR_LSTATUS) == 0) if (netif_msg_link(adapter)) dev_warn(&pdev->dev, "%s: Link may change" "when suspend\n", atl1c_driver_name); wol_ctrl_data |= WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN; /* only link up can wake up */ if (atl1c_write_phy_reg(hw, MII_IER, IER_LINK_UP) != 0) { if (netif_msg_link(adapter)) dev_err(&pdev->dev, "%s: read write phy " "register failed.\n", atl1c_driver_name); goto wol_dis; } } /* clear phy interrupt */ atl1c_read_phy_reg(hw, MII_ISR, &mii_intr_status_data); /* Config MAC Ctrl register */ mac_ctrl_data = MAC_CTRL_RX_EN; /* set to 10/100M halt duplex */ mac_ctrl_data |= atl1c_mac_speed_10_100 << MAC_CTRL_SPEED_SHIFT; mac_ctrl_data |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); if (adapter->vlgrp) mac_ctrl_data |= MAC_CTRL_RMV_VLAN; /* magic packet maybe Broadcast&multicast&Unicast frame */ if (wufc & AT_WUFC_MAG) mac_ctrl_data |= MAC_CTRL_BC_EN; if (netif_msg_hw(adapter)) dev_dbg(&pdev->dev, "%s: suspend MAC=0x%x\n", atl1c_driver_name, mac_ctrl_data); AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl_data); AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl_data); AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data); /* pcie patch */ AT_READ_REG(hw, REG_PCIE_PHYMISC, &ctrl); ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl); pci_enable_wake(pdev, pci_choose_state(pdev, state), 1); goto suspend_exit; } wol_dis: /* WOL disabled */ AT_WRITE_REG(hw, REG_WOL_CTRL, 0); /* pcie patch */ AT_READ_REG(hw, REG_PCIE_PHYMISC, &ctrl); ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl); atl1c_phy_disable(hw); hw->phy_configured = false; /* re-init PHY when resume */ pci_enable_wake(pdev, pci_choose_state(pdev, state), 0); suspend_exit: pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int atl1c_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1c_adapter *adapter = netdev_priv(netdev); pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); AT_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0); atl1c_phy_reset(&adapter->hw); atl1c_reset_mac(&adapter->hw); netif_device_attach(netdev); if (netif_running(netdev)) atl1c_up(adapter); return 0; } static void atl1c_shutdown(struct pci_dev *pdev) { atl1c_suspend(pdev, PMSG_SUSPEND); } static const struct net_device_ops atl1c_netdev_ops = { .ndo_open = atl1c_open, .ndo_stop = atl1c_close, .ndo_validate_addr = eth_validate_addr, .ndo_start_xmit = atl1c_xmit_frame, .ndo_set_mac_address = atl1c_set_mac_addr, .ndo_set_multicast_list = atl1c_set_multi, .ndo_change_mtu = atl1c_change_mtu, .ndo_do_ioctl = atl1c_ioctl, .ndo_tx_timeout = atl1c_tx_timeout, .ndo_get_stats = atl1c_get_stats, .ndo_vlan_rx_register = atl1c_vlan_rx_register, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = atl1c_netpoll, #endif }; static int atl1c_init_netdev(struct net_device *netdev, struct pci_dev *pdev) { SET_NETDEV_DEV(netdev, &pdev->dev); pci_set_drvdata(pdev, netdev); netdev->irq = pdev->irq; netdev->netdev_ops = &atl1c_netdev_ops; netdev->watchdog_timeo = AT_TX_WATCHDOG; atl1c_set_ethtool_ops(netdev); /* TODO: add when ready */ netdev->features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX | NETIF_F_TSO | NETIF_F_TSO6; return 0; } /* * atl1c_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in atl1c_pci_tbl * * Returns 0 on success, negative on failure * * atl1c_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. */ static int __devinit atl1c_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct atl1c_adapter *adapter; static int cards_found; int err = 0; /* enable device (incl. PCI PM wakeup and hotplug setup) */ err = pci_enable_device_mem(pdev); if (err) { dev_err(&pdev->dev, "cannot enable PCI device\n"); return err; } /* * The atl1c chip can DMA to 64-bit addresses, but it uses a single * shared register for the high 32 bits, so only a single, aligned, * 4 GB physical address range can be used at a time. * * Supporting 64-bit DMA on this hardware is more trouble than it's * worth. It is far easier to limit to 32-bit DMA than update * various kernel subsystems to support the mechanics required by a * fixed-high-32-bit system. */ if ((pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) || (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)) { dev_err(&pdev->dev, "No usable DMA configuration,aborting\n"); goto err_dma; } err = pci_request_regions(pdev, atl1c_driver_name); if (err) { dev_err(&pdev->dev, "cannot obtain PCI resources\n"); goto err_pci_reg; } pci_set_master(pdev); netdev = alloc_etherdev(sizeof(struct atl1c_adapter)); if (netdev == NULL) { err = -ENOMEM; dev_err(&pdev->dev, "etherdev alloc failed\n"); goto err_alloc_etherdev; } err = atl1c_init_netdev(netdev, pdev); if (err) { dev_err(&pdev->dev, "init netdevice failed\n"); goto err_init_netdev; } adapter = netdev_priv(netdev); adapter->bd_number = cards_found; adapter->netdev = netdev; adapter->pdev = pdev; adapter->hw.adapter = adapter; adapter->msg_enable = netif_msg_init(-1, atl1c_default_msg); adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (!adapter->hw.hw_addr) { err = -EIO; dev_err(&pdev->dev, "cannot map device registers\n"); goto err_ioremap; } netdev->base_addr = (unsigned long)adapter->hw.hw_addr; /* init mii data */ adapter->mii.dev = netdev; adapter->mii.mdio_read = atl1c_mdio_read; adapter->mii.mdio_write = atl1c_mdio_write; adapter->mii.phy_id_mask = 0x1f; adapter->mii.reg_num_mask = MDIO_REG_ADDR_MASK; netif_napi_add(netdev, &adapter->napi, atl1c_clean, 64); setup_timer(&adapter->phy_config_timer, atl1c_phy_config, (unsigned long)adapter); /* setup the private structure */ err = atl1c_sw_init(adapter); if (err) { dev_err(&pdev->dev, "net device private data init failed\n"); goto err_sw_init; } atl1c_reset_pcie(&adapter->hw, ATL1C_PCIE_L0S_L1_DISABLE | ATL1C_PCIE_PHY_RESET); /* Init GPHY as early as possible due to power saving issue */ atl1c_phy_reset(&adapter->hw); err = atl1c_reset_mac(&adapter->hw); if (err) { err = -EIO; goto err_reset; } device_init_wakeup(&pdev->dev, 1); /* reset the controller to * put the device in a known good starting state */ err = atl1c_phy_init(&adapter->hw); if (err) { err = -EIO; goto err_reset; } if (atl1c_read_mac_addr(&adapter->hw) != 0) { err = -EIO; dev_err(&pdev->dev, "get mac address failed\n"); goto err_eeprom; } memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len); if (netif_msg_probe(adapter)) dev_dbg(&pdev->dev, "mac address : %02x-%02x-%02x-%02x-%02x-%02x\n", adapter->hw.mac_addr[0], adapter->hw.mac_addr[1], adapter->hw.mac_addr[2], adapter->hw.mac_addr[3], adapter->hw.mac_addr[4], adapter->hw.mac_addr[5]); atl1c_hw_set_mac_addr(&adapter->hw); INIT_WORK(&adapter->reset_task, atl1c_reset_task); INIT_WORK(&adapter->link_chg_task, atl1c_link_chg_task); err = register_netdev(netdev); if (err) { dev_err(&pdev->dev, "register netdevice failed\n"); goto err_register; } if (netif_msg_probe(adapter)) dev_info(&pdev->dev, "version %s\n", ATL1C_DRV_VERSION); cards_found++; return 0; err_reset: err_register: err_sw_init: err_eeprom: iounmap(adapter->hw.hw_addr); err_init_netdev: err_ioremap: free_netdev(netdev); err_alloc_etherdev: pci_release_regions(pdev); err_pci_reg: err_dma: pci_disable_device(pdev); return err; } /* * atl1c_remove - Device Removal Routine * @pdev: PCI device information struct * * atl1c_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. */ static void __devexit atl1c_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1c_adapter *adapter = netdev_priv(netdev); unregister_netdev(netdev); atl1c_phy_disable(&adapter->hw); iounmap(adapter->hw.hw_addr); pci_release_regions(pdev); pci_disable_device(pdev); free_netdev(netdev); } /* * atl1c_io_error_detected - called when PCI error is detected * @pdev: Pointer to PCI device * @state: The current pci connection state * * This function is called after a PCI bus error affecting * this device has been detected. */ static pci_ers_result_t atl1c_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1c_adapter *adapter = netdev_priv(netdev); netif_device_detach(netdev); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; if (netif_running(netdev)) atl1c_down(adapter); pci_disable_device(pdev); /* Request a slot slot reset. */ return PCI_ERS_RESULT_NEED_RESET; } /* * atl1c_io_slot_reset - called after the pci bus has been reset. * @pdev: Pointer to PCI device * * Restart the card from scratch, as if from a cold-boot. Implementation * resembles the first-half of the e1000_resume routine. */ static pci_ers_result_t atl1c_io_slot_reset(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1c_adapter *adapter = netdev_priv(netdev); if (pci_enable_device(pdev)) { if (netif_msg_hw(adapter)) dev_err(&pdev->dev, "Cannot re-enable PCI device after reset\n"); return PCI_ERS_RESULT_DISCONNECT; } pci_set_master(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); atl1c_reset_mac(&adapter->hw); return PCI_ERS_RESULT_RECOVERED; } /* * atl1c_io_resume - called when traffic can start flowing again. * @pdev: Pointer to PCI device * * This callback is called when the error recovery driver tells us that * its OK to resume normal operation. Implementation resembles the * second-half of the atl1c_resume routine. */ static void atl1c_io_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1c_adapter *adapter = netdev_priv(netdev); if (netif_running(netdev)) { if (atl1c_up(adapter)) { if (netif_msg_hw(adapter)) dev_err(&pdev->dev, "Cannot bring device back up after reset\n"); return; } } netif_device_attach(netdev); } static struct pci_error_handlers atl1c_err_handler = { .error_detected = atl1c_io_error_detected, .slot_reset = atl1c_io_slot_reset, .resume = atl1c_io_resume, }; static struct pci_driver atl1c_driver = { .name = atl1c_driver_name, .id_table = atl1c_pci_tbl, .probe = atl1c_probe, .remove = __devexit_p(atl1c_remove), /* Power Managment Hooks */ .suspend = atl1c_suspend, .resume = atl1c_resume, .shutdown = atl1c_shutdown, .err_handler = &atl1c_err_handler }; /* * atl1c_init_module - Driver Registration Routine * * atl1c_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. */ static int __init atl1c_init_module(void) { return pci_register_driver(&atl1c_driver); } /* * atl1c_exit_module - Driver Exit Cleanup Routine * * atl1c_exit_module is called just before the driver is removed * from memory. */ static void __exit atl1c_exit_module(void) { pci_unregister_driver(&atl1c_driver); } module_init(atl1c_init_module); module_exit(atl1c_exit_module);