/* * Copyright (c) 2001-2002 by David Brownell * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifndef __LINUX_EHCI_HCD_H #define __LINUX_EHCI_HCD_H /* definitions used for the EHCI driver */ /* * __hc32 and __hc16 are "Host Controller" types, they may be equivalent to * __leXX (normally) or __beXX (given EHCI_BIG_ENDIAN_DESC), depending on * the host controller implementation. * * To facilitate the strongest possible byte-order checking from "sparse" * and so on, we use __leXX unless that's not practical. */ #ifdef CONFIG_USB_EHCI_BIG_ENDIAN_DESC typedef __u32 __bitwise __hc32; typedef __u16 __bitwise __hc16; #else #define __hc32 __le32 #define __hc16 __le16 #endif /* statistics can be kept for tuning/monitoring */ #ifdef CONFIG_DYNAMIC_DEBUG #define EHCI_STATS #endif struct ehci_stats { /* irq usage */ unsigned long normal; unsigned long error; unsigned long iaa; unsigned long lost_iaa; /* termination of urbs from core */ unsigned long complete; unsigned long unlink; }; /* * Scheduling and budgeting information for periodic transfers, for both * high-speed devices and full/low-speed devices lying behind a TT. */ struct ehci_per_sched { struct usb_device *udev; /* access to the TT */ struct usb_host_endpoint *ep; struct list_head ps_list; /* node on ehci_tt's ps_list */ u16 tt_usecs; /* time on the FS/LS bus */ u16 cs_mask; /* C-mask and S-mask bytes */ u16 period; /* actual period in frames */ u16 phase; /* actual phase, frame part */ u8 bw_phase; /* same, for bandwidth reservation */ u8 phase_uf; /* uframe part of the phase */ u8 usecs, c_usecs; /* times on the HS bus */ u8 bw_uperiod; /* period in microframes, for bandwidth reservation */ u8 bw_period; /* same, in frames */ }; #define NO_FRAME 29999 /* frame not assigned yet */ /* ehci_hcd->lock guards shared data against other CPUs: * ehci_hcd: async, unlink, periodic (and shadow), ... * usb_host_endpoint: hcpriv * ehci_qh: qh_next, qtd_list * ehci_qtd: qtd_list * * Also, hold this lock when talking to HC registers or * when updating hw_* fields in shared qh/qtd/... structures. */ #define EHCI_MAX_ROOT_PORTS 15 /* see HCS_N_PORTS */ /* * ehci_rh_state values of EHCI_RH_RUNNING or above mean that the * controller may be doing DMA. Lower values mean there's no DMA. */ enum ehci_rh_state { EHCI_RH_HALTED, EHCI_RH_SUSPENDED, EHCI_RH_RUNNING, EHCI_RH_STOPPING }; /* * Timer events, ordered by increasing delay length. * Always update event_delays_ns[] and event_handlers[] (defined in * ehci-timer.c) in parallel with this list. */ enum ehci_hrtimer_event { EHCI_HRTIMER_POLL_ASS, /* Poll for async schedule off */ EHCI_HRTIMER_POLL_PSS, /* Poll for periodic schedule off */ EHCI_HRTIMER_POLL_DEAD, /* Wait for dead controller to stop */ EHCI_HRTIMER_UNLINK_INTR, /* Wait for interrupt QH unlink */ EHCI_HRTIMER_FREE_ITDS, /* Wait for unused iTDs and siTDs */ EHCI_HRTIMER_ACTIVE_UNLINK, /* Wait while unlinking an active QH */ EHCI_HRTIMER_START_UNLINK_INTR, /* Unlink empty interrupt QHs */ EHCI_HRTIMER_ASYNC_UNLINKS, /* Unlink empty async QHs */ EHCI_HRTIMER_IAA_WATCHDOG, /* Handle lost IAA interrupts */ EHCI_HRTIMER_DISABLE_PERIODIC, /* Wait to disable periodic sched */ EHCI_HRTIMER_DISABLE_ASYNC, /* Wait to disable async sched */ EHCI_HRTIMER_IO_WATCHDOG, /* Check for missing IRQs */ EHCI_HRTIMER_NUM_EVENTS /* Must come last */ }; #define EHCI_HRTIMER_NO_EVENT 99 struct ehci_hcd { /* one per controller */ /* timing support */ enum ehci_hrtimer_event next_hrtimer_event; unsigned enabled_hrtimer_events; ktime_t hr_timeouts[EHCI_HRTIMER_NUM_EVENTS]; struct hrtimer hrtimer; int PSS_poll_count; int ASS_poll_count; int died_poll_count; /* glue to PCI and HCD framework */ struct ehci_caps __iomem *caps; struct ehci_regs __iomem *regs; struct ehci_dbg_port __iomem *debug; __u32 hcs_params; /* cached register copy */ spinlock_t lock; enum ehci_rh_state rh_state; /* general schedule support */ bool scanning:1; bool need_rescan:1; bool intr_unlinking:1; bool iaa_in_progress:1; bool async_unlinking:1; bool shutdown:1; struct ehci_qh *qh_scan_next; /* async schedule support */ struct ehci_qh *async; struct ehci_qh *dummy; /* For AMD quirk use */ struct list_head async_unlink; struct list_head async_idle; unsigned async_unlink_cycle; unsigned async_count; /* async activity count */ __hc32 old_current; /* Test for QH becoming */ __hc32 old_token; /* inactive during unlink */ /* periodic schedule support */ #define DEFAULT_I_TDPS 1024 /* some HCs can do less */ unsigned periodic_size; __hc32 *periodic; /* hw periodic table */ dma_addr_t periodic_dma; struct list_head intr_qh_list; unsigned i_thresh; /* uframes HC might cache */ union ehci_shadow *pshadow; /* mirror hw periodic table */ struct list_head intr_unlink_wait; struct list_head intr_unlink; unsigned intr_unlink_wait_cycle; unsigned intr_unlink_cycle; unsigned now_frame; /* frame from HC hardware */ unsigned last_iso_frame; /* last frame scanned for iso */ unsigned intr_count; /* intr activity count */ unsigned isoc_count; /* isoc activity count */ unsigned periodic_count; /* periodic activity count */ unsigned uframe_periodic_max; /* max periodic time per uframe */ /* list of itds & sitds completed while now_frame was still active */ struct list_head cached_itd_list; struct ehci_itd *last_itd_to_free; struct list_head cached_sitd_list; struct ehci_sitd *last_sitd_to_free; /* per root hub port */ unsigned long reset_done[EHCI_MAX_ROOT_PORTS]; /* bit vectors (one bit per port) */ unsigned long bus_suspended; /* which ports were already suspended at the start of a bus suspend */ unsigned long companion_ports; /* which ports are dedicated to the companion controller */ unsigned long owned_ports; /* which ports are owned by the companion during a bus suspend */ unsigned long port_c_suspend; /* which ports have the change-suspend feature turned on */ unsigned long suspended_ports; /* which ports are suspended */ unsigned long resuming_ports; /* which ports have started to resume */ /* per-HC memory pools (could be per-bus, but ...) */ struct dma_pool *qh_pool; /* qh per active urb */ struct dma_pool *qtd_pool; /* one or more per qh */ struct dma_pool *itd_pool; /* itd per iso urb */ struct dma_pool *sitd_pool; /* sitd per split iso urb */ unsigned random_frame; unsigned long next_statechange; ktime_t last_periodic_enable; u32 command; /* SILICON QUIRKS */ unsigned no_selective_suspend:1; unsigned has_fsl_port_bug:1; /* FreeScale */ unsigned has_fsl_hs_errata:1; /* Freescale HS quirk */ unsigned big_endian_mmio:1; unsigned big_endian_desc:1; unsigned big_endian_capbase:1; unsigned has_amcc_usb23:1; unsigned need_io_watchdog:1; unsigned amd_pll_fix:1; unsigned use_dummy_qh:1; /* AMD Frame List table quirk*/ unsigned has_synopsys_hc_bug:1; /* Synopsys HC */ unsigned frame_index_bug:1; /* MosChip (AKA NetMos) */ unsigned need_oc_pp_cycle:1; /* MPC834X port power */ unsigned imx28_write_fix:1; /* For Freescale i.MX28 */ /* required for usb32 quirk */ #define OHCI_CTRL_HCFS (3 << 6) #define OHCI_USB_OPER (2 << 6) #define OHCI_USB_SUSPEND (3 << 6) #define OHCI_HCCTRL_OFFSET 0x4 #define OHCI_HCCTRL_LEN 0x4 __hc32 *ohci_hcctrl_reg; unsigned has_hostpc:1; unsigned has_tdi_phy_lpm:1; unsigned has_ppcd:1; /* support per-port change bits */ u8 sbrn; /* packed release number */ /* irq statistics */ #ifdef EHCI_STATS struct ehci_stats stats; # define COUNT(x) ((x)++) #else # define COUNT(x) #endif /* debug files */ #ifdef CONFIG_DYNAMIC_DEBUG struct dentry *debug_dir; #endif /* bandwidth usage */ #define EHCI_BANDWIDTH_SIZE 64 #define EHCI_BANDWIDTH_FRAMES (EHCI_BANDWIDTH_SIZE >> 3) u8 bandwidth[EHCI_BANDWIDTH_SIZE]; /* us allocated per uframe */ u8 tt_budget[EHCI_BANDWIDTH_SIZE]; /* us budgeted per uframe */ struct list_head tt_list; /* platform-specific data -- must come last */ unsigned long priv[0] __aligned(sizeof(s64)); }; /* convert between an HCD pointer and the corresponding EHCI_HCD */ static inline struct ehci_hcd *hcd_to_ehci(struct usb_hcd *hcd) { return (struct ehci_hcd *) (hcd->hcd_priv); } static inline struct usb_hcd *ehci_to_hcd(struct ehci_hcd *ehci) { return container_of((void *) ehci, struct usb_hcd, hcd_priv); } /*-------------------------------------------------------------------------*/ #include /*-------------------------------------------------------------------------*/ #define QTD_NEXT(ehci, dma) cpu_to_hc32(ehci, (u32)dma) /* * EHCI Specification 0.95 Section 3.5 * QTD: describe data transfer components (buffer, direction, ...) * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram". * * These are associated only with "QH" (Queue Head) structures, * used with control, bulk, and interrupt transfers. */ struct ehci_qtd { /* first part defined by EHCI spec */ __hc32 hw_next; /* see EHCI 3.5.1 */ __hc32 hw_alt_next; /* see EHCI 3.5.2 */ __hc32 hw_token; /* see EHCI 3.5.3 */ #define QTD_TOGGLE (1 << 31) /* data toggle */ #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff) #define QTD_IOC (1 << 15) /* interrupt on complete */ #define QTD_CERR(tok) (((tok)>>10) & 0x3) #define QTD_PID(tok) (((tok)>>8) & 0x3) #define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */ #define QTD_STS_HALT (1 << 6) /* halted on error */ #define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */ #define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */ #define QTD_STS_XACT (1 << 3) /* device gave illegal response */ #define QTD_STS_MMF (1 << 2) /* incomplete split transaction */ #define QTD_STS_STS (1 << 1) /* split transaction state */ #define QTD_STS_PING (1 << 0) /* issue PING? */ #define ACTIVE_BIT(ehci) cpu_to_hc32(ehci, QTD_STS_ACTIVE) #define HALT_BIT(ehci) cpu_to_hc32(ehci, QTD_STS_HALT) #define STATUS_BIT(ehci) cpu_to_hc32(ehci, QTD_STS_STS) __hc32 hw_buf[5]; /* see EHCI 3.5.4 */ __hc32 hw_buf_hi[5]; /* Appendix B */ /* the rest is HCD-private */ dma_addr_t qtd_dma; /* qtd address */ struct list_head qtd_list; /* sw qtd list */ struct urb *urb; /* qtd's urb */ size_t length; /* length of buffer */ } __aligned(32); /* mask NakCnt+T in qh->hw_alt_next */ #define QTD_MASK(ehci) cpu_to_hc32(ehci, ~0x1f) #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1) /*-------------------------------------------------------------------------*/ /* type tag from {qh,itd,sitd,fstn}->hw_next */ #define Q_NEXT_TYPE(ehci, dma) ((dma) & cpu_to_hc32(ehci, 3 << 1)) /* * Now the following defines are not converted using the * cpu_to_le32() macro anymore, since we have to support * "dynamic" switching between be and le support, so that the driver * can be used on one system with SoC EHCI controller using big-endian * descriptors as well as a normal little-endian PCI EHCI controller. */ /* values for that type tag */ #define Q_TYPE_ITD (0 << 1) #define Q_TYPE_QH (1 << 1) #define Q_TYPE_SITD (2 << 1) #define Q_TYPE_FSTN (3 << 1) /* next async queue entry, or pointer to interrupt/periodic QH */ #define QH_NEXT(ehci, dma) \ (cpu_to_hc32(ehci, (((u32) dma) & ~0x01f) | Q_TYPE_QH)) /* for periodic/async schedules and qtd lists, mark end of list */ #define EHCI_LIST_END(ehci) cpu_to_hc32(ehci, 1) /* "null pointer" to hw */ /* * Entries in periodic shadow table are pointers to one of four kinds * of data structure. That's dictated by the hardware; a type tag is * encoded in the low bits of the hardware's periodic schedule. Use * Q_NEXT_TYPE to get the tag. * * For entries in the async schedule, the type tag always says "qh". */ union ehci_shadow { struct ehci_qh *qh; /* Q_TYPE_QH */ struct ehci_itd *itd; /* Q_TYPE_ITD */ struct ehci_sitd *sitd; /* Q_TYPE_SITD */ struct ehci_fstn *fstn; /* Q_TYPE_FSTN */ __hc32 *hw_next; /* (all types) */ void *ptr; }; /*-------------------------------------------------------------------------*/ /* * EHCI Specification 0.95 Section 3.6 * QH: describes control/bulk/interrupt endpoints * See Fig 3-7 "Queue Head Structure Layout". * * These appear in both the async and (for interrupt) periodic schedules. */ /* first part defined by EHCI spec */ struct ehci_qh_hw { __hc32 hw_next; /* see EHCI 3.6.1 */ __hc32 hw_info1; /* see EHCI 3.6.2 */ #define QH_CONTROL_EP (1 << 27) /* FS/LS control endpoint */ #define QH_HEAD (1 << 15) /* Head of async reclamation list */ #define QH_TOGGLE_CTL (1 << 14) /* Data toggle control */ #define QH_HIGH_SPEED (2 << 12) /* Endpoint speed */ #define QH_LOW_SPEED (1 << 12) #define QH_FULL_SPEED (0 << 12) #define QH_INACTIVATE (1 << 7) /* Inactivate on next transaction */ __hc32 hw_info2; /* see EHCI 3.6.2 */ #define QH_SMASK 0x000000ff #define QH_CMASK 0x0000ff00 #define QH_HUBADDR 0x007f0000 #define QH_HUBPORT 0x3f800000 #define QH_MULT 0xc0000000 __hc32 hw_current; /* qtd list - see EHCI 3.6.4 */ /* qtd overlay (hardware parts of a struct ehci_qtd) */ __hc32 hw_qtd_next; __hc32 hw_alt_next; __hc32 hw_token; __hc32 hw_buf[5]; __hc32 hw_buf_hi[5]; } __aligned(32); struct ehci_qh { struct ehci_qh_hw *hw; /* Must come first */ /* the rest is HCD-private */ dma_addr_t qh_dma; /* address of qh */ union ehci_shadow qh_next; /* ptr to qh; or periodic */ struct list_head qtd_list; /* sw qtd list */ struct list_head intr_node; /* list of intr QHs */ struct ehci_qtd *dummy; struct list_head unlink_node; struct ehci_per_sched ps; /* scheduling info */ unsigned unlink_cycle; u8 qh_state; #define QH_STATE_LINKED 1 /* HC sees this */ #define QH_STATE_UNLINK 2 /* HC may still see this */ #define QH_STATE_IDLE 3 /* HC doesn't see this */ #define QH_STATE_UNLINK_WAIT 4 /* LINKED and on unlink q */ #define QH_STATE_COMPLETING 5 /* don't touch token.HALT */ u8 xacterrs; /* XactErr retry counter */ #define QH_XACTERR_MAX 32 /* XactErr retry limit */ u8 unlink_reason; #define QH_UNLINK_HALTED 0x01 /* Halt flag is set */ #define QH_UNLINK_SHORT_READ 0x02 /* Recover from a short read */ #define QH_UNLINK_DUMMY_OVERLAY 0x04 /* QH overlayed the dummy TD */ #define QH_UNLINK_SHUTDOWN 0x08 /* The HC isn't running */ #define QH_UNLINK_QUEUE_EMPTY 0x10 /* Reached end of the queue */ #define QH_UNLINK_REQUESTED 0x20 /* Disable, reset, or dequeue */ u8 gap_uf; /* uframes split/csplit gap */ unsigned is_out:1; /* bulk or intr OUT */ unsigned clearing_tt:1; /* Clear-TT-Buf in progress */ unsigned dequeue_during_giveback:1; unsigned should_be_inactive:1; }; /*-------------------------------------------------------------------------*/ /* description of one iso transaction (up to 3 KB data if highspeed) */ struct ehci_iso_packet { /* These will be copied to iTD when scheduling */ u64 bufp; /* itd->hw_bufp{,_hi}[pg] |= */ __hc32 transaction; /* itd->hw_transaction[i] |= */ u8 cross; /* buf crosses pages */ /* for full speed OUT splits */ u32 buf1; }; /* temporary schedule data for packets from iso urbs (both speeds) * each packet is one logical usb transaction to the device (not TT), * beginning at stream->next_uframe */ struct ehci_iso_sched { struct list_head td_list; unsigned span; unsigned first_packet; struct ehci_iso_packet packet[0]; }; /* * ehci_iso_stream - groups all (s)itds for this endpoint. * acts like a qh would, if EHCI had them for ISO. */ struct ehci_iso_stream { /* first field matches ehci_hq, but is NULL */ struct ehci_qh_hw *hw; u8 bEndpointAddress; u8 highspeed; struct list_head td_list; /* queued itds/sitds */ struct list_head free_list; /* list of unused itds/sitds */ /* output of (re)scheduling */ struct ehci_per_sched ps; /* scheduling info */ unsigned next_uframe; __hc32 splits; /* the rest is derived from the endpoint descriptor, * including the extra info for hw_bufp[0..2] */ u16 uperiod; /* period in uframes */ u16 maxp; unsigned bandwidth; /* This is used to initialize iTD's hw_bufp fields */ __hc32 buf0; __hc32 buf1; __hc32 buf2; /* this is used to initialize sITD's tt info */ __hc32 address; }; /*-------------------------------------------------------------------------*/ /* * EHCI Specification 0.95 Section 3.3 * Fig 3-4 "Isochronous Transaction Descriptor (iTD)" * * Schedule records for high speed iso xfers */ struct ehci_itd { /* first part defined by EHCI spec */ __hc32 hw_next; /* see EHCI 3.3.1 */ __hc32 hw_transaction[8]; /* see EHCI 3.3.2 */ #define EHCI_ISOC_ACTIVE (1<<31) /* activate transfer this slot */ #define EHCI_ISOC_BUF_ERR (1<<30) /* Data buffer error */ #define EHCI_ISOC_BABBLE (1<<29) /* babble detected */ #define EHCI_ISOC_XACTERR (1<<28) /* XactErr - transaction error */ #define EHCI_ITD_LENGTH(tok) (((tok)>>16) & 0x0fff) #define EHCI_ITD_IOC (1 << 15) /* interrupt on complete */ #define ITD_ACTIVE(ehci) cpu_to_hc32(ehci, EHCI_ISOC_ACTIVE) __hc32 hw_bufp[7]; /* see EHCI 3.3.3 */ __hc32 hw_bufp_hi[7]; /* Appendix B */ /* the rest is HCD-private */ dma_addr_t itd_dma; /* for this itd */ union ehci_shadow itd_next; /* ptr to periodic q entry */ struct urb *urb; struct ehci_iso_stream *stream; /* endpoint's queue */ struct list_head itd_list; /* list of stream's itds */ /* any/all hw_transactions here may be used by that urb */ unsigned frame; /* where scheduled */ unsigned pg; unsigned index[8]; /* in urb->iso_frame_desc */ } __aligned(32); /*-------------------------------------------------------------------------*/ /* * EHCI Specification 0.95 Section 3.4 * siTD, aka split-transaction isochronous Transfer Descriptor * ... describe full speed iso xfers through TT in hubs * see Figure 3-5 "Split-transaction Isochronous Transaction Descriptor (siTD) */ struct ehci_sitd { /* first part defined by EHCI spec */ __hc32 hw_next; /* uses bit field macros above - see EHCI 0.95 Table 3-8 */ __hc32 hw_fullspeed_ep; /* EHCI table 3-9 */ __hc32 hw_uframe; /* EHCI table 3-10 */ __hc32 hw_results; /* EHCI table 3-11 */ #define SITD_IOC (1 << 31) /* interrupt on completion */ #define SITD_PAGE (1 << 30) /* buffer 0/1 */ #define SITD_LENGTH(x) (((x) >> 16) & 0x3ff) #define SITD_STS_ACTIVE (1 << 7) /* HC may execute this */ #define SITD_STS_ERR (1 << 6) /* error from TT */ #define SITD_STS_DBE (1 << 5) /* data buffer error (in HC) */ #define SITD_STS_BABBLE (1 << 4) /* device was babbling */ #define SITD_STS_XACT (1 << 3) /* illegal IN response */ #define SITD_STS_MMF (1 << 2) /* incomplete split transaction */ #define SITD_STS_STS (1 << 1) /* split transaction state */ #define SITD_ACTIVE(ehci) cpu_to_hc32(ehci, SITD_STS_ACTIVE) __hc32 hw_buf[2]; /* EHCI table 3-12 */ __hc32 hw_backpointer; /* EHCI table 3-13 */ __hc32 hw_buf_hi[2]; /* Appendix B */ /* the rest is HCD-private */ dma_addr_t sitd_dma; union ehci_shadow sitd_next; /* ptr to periodic q entry */ struct urb *urb; struct ehci_iso_stream *stream; /* endpoint's queue */ struct list_head sitd_list; /* list of stream's sitds */ unsigned frame; unsigned index; } __aligned(32); /*-------------------------------------------------------------------------*/ /* * EHCI Specification 0.96 Section 3.7 * Periodic Frame Span Traversal Node (FSTN) * * Manages split interrupt transactions (using TT) that span frame boundaries * into uframes 0/1; see 4.12.2.2. In those uframes, a "save place" FSTN * makes the HC jump (back) to a QH to scan for fs/ls QH completions until * it hits a "restore" FSTN; then it returns to finish other uframe 0/1 work. */ struct ehci_fstn { __hc32 hw_next; /* any periodic q entry */ __hc32 hw_prev; /* qh or EHCI_LIST_END */ /* the rest is HCD-private */ dma_addr_t fstn_dma; union ehci_shadow fstn_next; /* ptr to periodic q entry */ } __aligned(32); /*-------------------------------------------------------------------------*/ /* * USB-2.0 Specification Sections 11.14 and 11.18 * Scheduling and budgeting split transactions using TTs * * A hub can have a single TT for all its ports, or multiple TTs (one for each * port). The bandwidth and budgeting information for the full/low-speed bus * below each TT is self-contained and independent of the other TTs or the * high-speed bus. * * "Bandwidth" refers to the number of microseconds on the FS/LS bus allocated * to an interrupt or isochronous endpoint for each frame. "Budget" refers to * the best-case estimate of the number of full-speed bytes allocated to an * endpoint for each microframe within an allocated frame. * * Removal of an endpoint invalidates a TT's budget. Instead of trying to * keep an up-to-date record, we recompute the budget when it is needed. */ struct ehci_tt { u16 bandwidth[EHCI_BANDWIDTH_FRAMES]; struct list_head tt_list; /* List of all ehci_tt's */ struct list_head ps_list; /* Items using this TT */ struct usb_tt *usb_tt; int tt_port; /* TT port number */ }; /*-------------------------------------------------------------------------*/ /* Prepare the PORTSC wakeup flags during controller suspend/resume */ #define ehci_prepare_ports_for_controller_suspend(ehci, do_wakeup) \ ehci_adjust_port_wakeup_flags(ehci, true, do_wakeup) #define ehci_prepare_ports_for_controller_resume(ehci) \ ehci_adjust_port_wakeup_flags(ehci, false, false) /*-------------------------------------------------------------------------*/ #ifdef CONFIG_USB_EHCI_ROOT_HUB_TT /* * Some EHCI controllers have a Transaction Translator built into the * root hub. This is a non-standard feature. Each controller will need * to add code to the following inline functions, and call them as * needed (mostly in root hub code). */ #define ehci_is_TDI(e) (ehci_to_hcd(e)->has_tt) /* Returns the speed of a device attached to a port on the root hub. */ static inline unsigned int ehci_port_speed(struct ehci_hcd *ehci, unsigned int portsc) { if (ehci_is_TDI(ehci)) { switch ((portsc >> (ehci->has_hostpc ? 25 : 26)) & 3) { case 0: return 0; case 1: return USB_PORT_STAT_LOW_SPEED; case 2: default: return USB_PORT_STAT_HIGH_SPEED; } } return USB_PORT_STAT_HIGH_SPEED; } #else #define ehci_is_TDI(e) (0) #define ehci_port_speed(ehci, portsc) USB_PORT_STAT_HIGH_SPEED #endif /*-------------------------------------------------------------------------*/ #ifdef CONFIG_PPC_83xx /* Some Freescale processors have an erratum in which the TT * port number in the queue head was 0..N-1 instead of 1..N. */ #define ehci_has_fsl_portno_bug(e) ((e)->has_fsl_port_bug) #else #define ehci_has_fsl_portno_bug(e) (0) #endif #define PORTSC_FSL_PFSC 24 /* Port Force Full-Speed Connect */ #if defined(CONFIG_PPC_85xx) /* Some Freescale processors have an erratum (USB A-005275) in which * incoming packets get corrupted in HS mode */ #define ehci_has_fsl_hs_errata(e) ((e)->has_fsl_hs_errata) #else #define ehci_has_fsl_hs_errata(e) (0) #endif /* * While most USB host controllers implement their registers in * little-endian format, a minority (celleb companion chip) implement * them in big endian format. * * This attempts to support either format at compile time without a * runtime penalty, or both formats with the additional overhead * of checking a flag bit. * * ehci_big_endian_capbase is a special quirk for controllers that * implement the HC capability registers as separate registers and not * as fields of a 32-bit register. */ #ifdef CONFIG_USB_EHCI_BIG_ENDIAN_MMIO #define ehci_big_endian_mmio(e) ((e)->big_endian_mmio) #define ehci_big_endian_capbase(e) ((e)->big_endian_capbase) #else #define ehci_big_endian_mmio(e) 0 #define ehci_big_endian_capbase(e) 0 #endif /* * Big-endian read/write functions are arch-specific. * Other arches can be added if/when they're needed. */ #if defined(CONFIG_ARM) && defined(CONFIG_ARCH_IXP4XX) #define readl_be(addr) __raw_readl((__force unsigned *)addr) #define writel_be(val, addr) __raw_writel(val, (__force unsigned *)addr) #endif static inline unsigned int ehci_readl(const struct ehci_hcd *ehci, __u32 __iomem *regs) { #ifdef CONFIG_USB_EHCI_BIG_ENDIAN_MMIO return ehci_big_endian_mmio(ehci) ? readl_be(regs) : readl(regs); #else return readl(regs); #endif } #ifdef CONFIG_SOC_IMX28 static inline void imx28_ehci_writel(const unsigned int val, volatile __u32 __iomem *addr) { __asm__ ("swp %0, %0, [%1]" : : "r"(val), "r"(addr)); } #else static inline void imx28_ehci_writel(const unsigned int val, volatile __u32 __iomem *addr) { } #endif static inline void ehci_writel(const struct ehci_hcd *ehci, const unsigned int val, __u32 __iomem *regs) { #ifdef CONFIG_USB_EHCI_BIG_ENDIAN_MMIO ehci_big_endian_mmio(ehci) ? writel_be(val, regs) : writel(val, regs); #else if (ehci->imx28_write_fix) imx28_ehci_writel(val, regs); else writel(val, regs); #endif } /* * On certain ppc-44x SoC there is a HW issue, that could only worked around with * explicit suspend/operate of OHCI. This function hereby makes sense only on that arch. * Other common bits are dependent on has_amcc_usb23 quirk flag. */ #ifdef CONFIG_44x static inline void set_ohci_hcfs(struct ehci_hcd *ehci, int operational) { u32 hc_control; hc_control = (readl_be(ehci->ohci_hcctrl_reg) & ~OHCI_CTRL_HCFS); if (operational) hc_control |= OHCI_USB_OPER; else hc_control |= OHCI_USB_SUSPEND; writel_be(hc_control, ehci->ohci_hcctrl_reg); (void) readl_be(ehci->ohci_hcctrl_reg); } #else static inline void set_ohci_hcfs(struct ehci_hcd *ehci, int operational) { } #endif /*-------------------------------------------------------------------------*/ /* * The AMCC 440EPx not only implements its EHCI registers in big-endian * format, but also its DMA data structures (descriptors). * * EHCI controllers accessed through PCI work normally (little-endian * everywhere), so we won't bother supporting a BE-only mode for now. */ #ifdef CONFIG_USB_EHCI_BIG_ENDIAN_DESC #define ehci_big_endian_desc(e) ((e)->big_endian_desc) /* cpu to ehci */ static inline __hc32 cpu_to_hc32(const struct ehci_hcd *ehci, const u32 x) { return ehci_big_endian_desc(ehci) ? (__force __hc32)cpu_to_be32(x) : (__force __hc32)cpu_to_le32(x); } /* ehci to cpu */ static inline u32 hc32_to_cpu(const struct ehci_hcd *ehci, const __hc32 x) { return ehci_big_endian_desc(ehci) ? be32_to_cpu((__force __be32)x) : le32_to_cpu((__force __le32)x); } static inline u32 hc32_to_cpup(const struct ehci_hcd *ehci, const __hc32 *x) { return ehci_big_endian_desc(ehci) ? be32_to_cpup((__force __be32 *)x) : le32_to_cpup((__force __le32 *)x); } #else /* cpu to ehci */ static inline __hc32 cpu_to_hc32(const struct ehci_hcd *ehci, const u32 x) { return cpu_to_le32(x); } /* ehci to cpu */ static inline u32 hc32_to_cpu(const struct ehci_hcd *ehci, const __hc32 x) { return le32_to_cpu(x); } static inline u32 hc32_to_cpup(const struct ehci_hcd *ehci, const __hc32 *x) { return le32_to_cpup(x); } #endif /*-------------------------------------------------------------------------*/ #define ehci_dbg(ehci, fmt, args...) \ dev_dbg(ehci_to_hcd(ehci)->self.controller, fmt, ## args) #define ehci_err(ehci, fmt, args...) \ dev_err(ehci_to_hcd(ehci)->self.controller, fmt, ## args) #define ehci_info(ehci, fmt, args...) \ dev_info(ehci_to_hcd(ehci)->self.controller, fmt, ## args) #define ehci_warn(ehci, fmt, args...) \ dev_warn(ehci_to_hcd(ehci)->self.controller, fmt, ## args) #ifndef CONFIG_DYNAMIC_DEBUG #define STUB_DEBUG_FILES #endif /*-------------------------------------------------------------------------*/ /* Declarations of things exported for use by ehci platform drivers */ struct ehci_driver_overrides { size_t extra_priv_size; int (*reset)(struct usb_hcd *hcd); int (*port_power)(struct usb_hcd *hcd, int portnum, bool enable); }; extern void ehci_init_driver(struct hc_driver *drv, const struct ehci_driver_overrides *over); extern int ehci_setup(struct usb_hcd *hcd); extern int ehci_handshake(struct ehci_hcd *ehci, void __iomem *ptr, u32 mask, u32 done, int usec); extern int ehci_reset(struct ehci_hcd *ehci); #ifdef CONFIG_PM extern int ehci_suspend(struct usb_hcd *hcd, bool do_wakeup); extern int ehci_resume(struct usb_hcd *hcd, bool force_reset); extern void ehci_adjust_port_wakeup_flags(struct ehci_hcd *ehci, bool suspending, bool do_wakeup); #endif /* CONFIG_PM */ extern int ehci_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength); #endif /* __LINUX_EHCI_HCD_H */