/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include "amdgpu.h" #include "gmc_v9_0.h" #include "amdgpu_atomfirmware.h" #include "amdgpu_gem.h" #include "hdp/hdp_4_0_offset.h" #include "hdp/hdp_4_0_sh_mask.h" #include "gc/gc_9_0_sh_mask.h" #include "dce/dce_12_0_offset.h" #include "dce/dce_12_0_sh_mask.h" #include "vega10_enum.h" #include "mmhub/mmhub_1_0_offset.h" #include "athub/athub_1_0_offset.h" #include "oss/osssys_4_0_offset.h" #include "soc15.h" #include "soc15_common.h" #include "umc/umc_6_0_sh_mask.h" #include "gfxhub_v1_0.h" #include "mmhub_v1_0.h" #include "gfxhub_v1_1.h" #include "ivsrcid/vmc/irqsrcs_vmc_1_0.h" /* add these here since we already include dce12 headers and these are for DCN */ #define mmHUBP0_DCSURF_PRI_VIEWPORT_DIMENSION 0x055d #define mmHUBP0_DCSURF_PRI_VIEWPORT_DIMENSION_BASE_IDX 2 #define HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION__PRI_VIEWPORT_WIDTH__SHIFT 0x0 #define HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION__PRI_VIEWPORT_HEIGHT__SHIFT 0x10 #define HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION__PRI_VIEWPORT_WIDTH_MASK 0x00003FFFL #define HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION__PRI_VIEWPORT_HEIGHT_MASK 0x3FFF0000L /* XXX Move this macro to VEGA10 header file, which is like vid.h for VI.*/ #define AMDGPU_NUM_OF_VMIDS 8 static const u32 golden_settings_vega10_hdp[] = { 0xf64, 0x0fffffff, 0x00000000, 0xf65, 0x0fffffff, 0x00000000, 0xf66, 0x0fffffff, 0x00000000, 0xf67, 0x0fffffff, 0x00000000, 0xf68, 0x0fffffff, 0x00000000, 0xf6a, 0x0fffffff, 0x00000000, 0xf6b, 0x0fffffff, 0x00000000, 0xf6c, 0x0fffffff, 0x00000000, 0xf6d, 0x0fffffff, 0x00000000, 0xf6e, 0x0fffffff, 0x00000000, }; static const struct soc15_reg_golden golden_settings_mmhub_1_0_0[] = { SOC15_REG_GOLDEN_VALUE(MMHUB, 0, mmDAGB1_WRCLI2, 0x00000007, 0xfe5fe0fa), SOC15_REG_GOLDEN_VALUE(MMHUB, 0, mmMMEA1_DRAM_WR_CLI2GRP_MAP0, 0x00000030, 0x55555565) }; static const struct soc15_reg_golden golden_settings_athub_1_0_0[] = { SOC15_REG_GOLDEN_VALUE(ATHUB, 0, mmRPB_ARB_CNTL, 0x0000ff00, 0x00000800), SOC15_REG_GOLDEN_VALUE(ATHUB, 0, mmRPB_ARB_CNTL2, 0x00ff00ff, 0x00080008) }; /* Ecc related register addresses, (BASE + reg offset) */ /* Universal Memory Controller caps (may be fused). */ /* UMCCH:UmcLocalCap */ #define UMCLOCALCAPS_ADDR0 (0x00014306 + 0x00000000) #define UMCLOCALCAPS_ADDR1 (0x00014306 + 0x00000800) #define UMCLOCALCAPS_ADDR2 (0x00014306 + 0x00001000) #define UMCLOCALCAPS_ADDR3 (0x00014306 + 0x00001800) #define UMCLOCALCAPS_ADDR4 (0x00054306 + 0x00000000) #define UMCLOCALCAPS_ADDR5 (0x00054306 + 0x00000800) #define UMCLOCALCAPS_ADDR6 (0x00054306 + 0x00001000) #define UMCLOCALCAPS_ADDR7 (0x00054306 + 0x00001800) #define UMCLOCALCAPS_ADDR8 (0x00094306 + 0x00000000) #define UMCLOCALCAPS_ADDR9 (0x00094306 + 0x00000800) #define UMCLOCALCAPS_ADDR10 (0x00094306 + 0x00001000) #define UMCLOCALCAPS_ADDR11 (0x00094306 + 0x00001800) #define UMCLOCALCAPS_ADDR12 (0x000d4306 + 0x00000000) #define UMCLOCALCAPS_ADDR13 (0x000d4306 + 0x00000800) #define UMCLOCALCAPS_ADDR14 (0x000d4306 + 0x00001000) #define UMCLOCALCAPS_ADDR15 (0x000d4306 + 0x00001800) /* Universal Memory Controller Channel config. */ /* UMCCH:UMC_CONFIG */ #define UMCCH_UMC_CONFIG_ADDR0 (0x00014040 + 0x00000000) #define UMCCH_UMC_CONFIG_ADDR1 (0x00014040 + 0x00000800) #define UMCCH_UMC_CONFIG_ADDR2 (0x00014040 + 0x00001000) #define UMCCH_UMC_CONFIG_ADDR3 (0x00014040 + 0x00001800) #define UMCCH_UMC_CONFIG_ADDR4 (0x00054040 + 0x00000000) #define UMCCH_UMC_CONFIG_ADDR5 (0x00054040 + 0x00000800) #define UMCCH_UMC_CONFIG_ADDR6 (0x00054040 + 0x00001000) #define UMCCH_UMC_CONFIG_ADDR7 (0x00054040 + 0x00001800) #define UMCCH_UMC_CONFIG_ADDR8 (0x00094040 + 0x00000000) #define UMCCH_UMC_CONFIG_ADDR9 (0x00094040 + 0x00000800) #define UMCCH_UMC_CONFIG_ADDR10 (0x00094040 + 0x00001000) #define UMCCH_UMC_CONFIG_ADDR11 (0x00094040 + 0x00001800) #define UMCCH_UMC_CONFIG_ADDR12 (0x000d4040 + 0x00000000) #define UMCCH_UMC_CONFIG_ADDR13 (0x000d4040 + 0x00000800) #define UMCCH_UMC_CONFIG_ADDR14 (0x000d4040 + 0x00001000) #define UMCCH_UMC_CONFIG_ADDR15 (0x000d4040 + 0x00001800) /* Universal Memory Controller Channel Ecc config. */ /* UMCCH:EccCtrl */ #define UMCCH_ECCCTRL_ADDR0 (0x00014053 + 0x00000000) #define UMCCH_ECCCTRL_ADDR1 (0x00014053 + 0x00000800) #define UMCCH_ECCCTRL_ADDR2 (0x00014053 + 0x00001000) #define UMCCH_ECCCTRL_ADDR3 (0x00014053 + 0x00001800) #define UMCCH_ECCCTRL_ADDR4 (0x00054053 + 0x00000000) #define UMCCH_ECCCTRL_ADDR5 (0x00054053 + 0x00000800) #define UMCCH_ECCCTRL_ADDR6 (0x00054053 + 0x00001000) #define UMCCH_ECCCTRL_ADDR7 (0x00054053 + 0x00001800) #define UMCCH_ECCCTRL_ADDR8 (0x00094053 + 0x00000000) #define UMCCH_ECCCTRL_ADDR9 (0x00094053 + 0x00000800) #define UMCCH_ECCCTRL_ADDR10 (0x00094053 + 0x00001000) #define UMCCH_ECCCTRL_ADDR11 (0x00094053 + 0x00001800) #define UMCCH_ECCCTRL_ADDR12 (0x000d4053 + 0x00000000) #define UMCCH_ECCCTRL_ADDR13 (0x000d4053 + 0x00000800) #define UMCCH_ECCCTRL_ADDR14 (0x000d4053 + 0x00001000) #define UMCCH_ECCCTRL_ADDR15 (0x000d4053 + 0x00001800) static const uint32_t ecc_umclocalcap_addrs[] = { UMCLOCALCAPS_ADDR0, UMCLOCALCAPS_ADDR1, UMCLOCALCAPS_ADDR2, UMCLOCALCAPS_ADDR3, UMCLOCALCAPS_ADDR4, UMCLOCALCAPS_ADDR5, UMCLOCALCAPS_ADDR6, UMCLOCALCAPS_ADDR7, UMCLOCALCAPS_ADDR8, UMCLOCALCAPS_ADDR9, UMCLOCALCAPS_ADDR10, UMCLOCALCAPS_ADDR11, UMCLOCALCAPS_ADDR12, UMCLOCALCAPS_ADDR13, UMCLOCALCAPS_ADDR14, UMCLOCALCAPS_ADDR15, }; static const uint32_t ecc_umcch_umc_config_addrs[] = { UMCCH_UMC_CONFIG_ADDR0, UMCCH_UMC_CONFIG_ADDR1, UMCCH_UMC_CONFIG_ADDR2, UMCCH_UMC_CONFIG_ADDR3, UMCCH_UMC_CONFIG_ADDR4, UMCCH_UMC_CONFIG_ADDR5, UMCCH_UMC_CONFIG_ADDR6, UMCCH_UMC_CONFIG_ADDR7, UMCCH_UMC_CONFIG_ADDR8, UMCCH_UMC_CONFIG_ADDR9, UMCCH_UMC_CONFIG_ADDR10, UMCCH_UMC_CONFIG_ADDR11, UMCCH_UMC_CONFIG_ADDR12, UMCCH_UMC_CONFIG_ADDR13, UMCCH_UMC_CONFIG_ADDR14, UMCCH_UMC_CONFIG_ADDR15, }; static const uint32_t ecc_umcch_eccctrl_addrs[] = { UMCCH_ECCCTRL_ADDR0, UMCCH_ECCCTRL_ADDR1, UMCCH_ECCCTRL_ADDR2, UMCCH_ECCCTRL_ADDR3, UMCCH_ECCCTRL_ADDR4, UMCCH_ECCCTRL_ADDR5, UMCCH_ECCCTRL_ADDR6, UMCCH_ECCCTRL_ADDR7, UMCCH_ECCCTRL_ADDR8, UMCCH_ECCCTRL_ADDR9, UMCCH_ECCCTRL_ADDR10, UMCCH_ECCCTRL_ADDR11, UMCCH_ECCCTRL_ADDR12, UMCCH_ECCCTRL_ADDR13, UMCCH_ECCCTRL_ADDR14, UMCCH_ECCCTRL_ADDR15, }; static int gmc_v9_0_vm_fault_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { struct amdgpu_vmhub *hub; u32 tmp, reg, bits, i, j; bits = VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK; switch (state) { case AMDGPU_IRQ_STATE_DISABLE: for (j = 0; j < AMDGPU_MAX_VMHUBS; j++) { hub = &adev->vmhub[j]; for (i = 0; i < 16; i++) { reg = hub->vm_context0_cntl + i; tmp = RREG32(reg); tmp &= ~bits; WREG32(reg, tmp); } } break; case AMDGPU_IRQ_STATE_ENABLE: for (j = 0; j < AMDGPU_MAX_VMHUBS; j++) { hub = &adev->vmhub[j]; for (i = 0; i < 16; i++) { reg = hub->vm_context0_cntl + i; tmp = RREG32(reg); tmp |= bits; WREG32(reg, tmp); } } default: break; } return 0; } /** * vega10_ih_prescreen_iv - prescreen an interrupt vector * * @adev: amdgpu_device pointer * * Returns true if the interrupt vector should be further processed. */ static bool gmc_v9_0_prescreen_iv(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry, uint64_t addr) { struct amdgpu_vm *vm; u64 key; int r; /* No PASID, can't identify faulting process */ if (!entry->pasid) return true; /* Not a retry fault */ if (!(entry->src_data[1] & 0x80)) return true; /* Track retry faults in per-VM fault FIFO. */ spin_lock(&adev->vm_manager.pasid_lock); vm = idr_find(&adev->vm_manager.pasid_idr, entry->pasid); if (!vm) { /* VM not found, process it normally */ spin_unlock(&adev->vm_manager.pasid_lock); return true; } key = AMDGPU_VM_FAULT(entry->pasid, addr); r = amdgpu_vm_add_fault(vm->fault_hash, key); /* Hash table is full or the fault is already being processed, * ignore further page faults */ if (r != 0) { spin_unlock(&adev->vm_manager.pasid_lock); return false; } /* No locking required with single writer and single reader */ r = kfifo_put(&vm->faults, key); if (!r) { /* FIFO is full. Ignore it until there is space */ amdgpu_vm_clear_fault(vm->fault_hash, key); spin_unlock(&adev->vm_manager.pasid_lock); return false; } spin_unlock(&adev->vm_manager.pasid_lock); /* It's the first fault for this address, process it normally */ return true; } static int gmc_v9_0_process_interrupt(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { struct amdgpu_vmhub *hub = &adev->vmhub[entry->vmid_src]; bool retry_fault = !!(entry->src_data[1] & 0x80); uint32_t status = 0; u64 addr; addr = (u64)entry->src_data[0] << 12; addr |= ((u64)entry->src_data[1] & 0xf) << 44; if (!gmc_v9_0_prescreen_iv(adev, entry, addr)) return 1; /* This also prevents sending it to KFD */ if (!amdgpu_sriov_vf(adev)) { status = RREG32(hub->vm_l2_pro_fault_status); WREG32_P(hub->vm_l2_pro_fault_cntl, 1, ~1); } if (printk_ratelimit()) { struct amdgpu_task_info task_info; memset(&task_info, 0, sizeof(struct amdgpu_task_info)); amdgpu_vm_get_task_info(adev, entry->pasid, &task_info); dev_err(adev->dev, "[%s] %s page fault (src_id:%u ring:%u vmid:%u " "pasid:%u, for process %s pid %d thread %s pid %d)\n", entry->vmid_src ? "mmhub" : "gfxhub", retry_fault ? "retry" : "no-retry", entry->src_id, entry->ring_id, entry->vmid, entry->pasid, task_info.process_name, task_info.tgid, task_info.task_name, task_info.pid); dev_err(adev->dev, " in page starting at address 0x%016llx from %d\n", addr, entry->client_id); if (!amdgpu_sriov_vf(adev)) dev_err(adev->dev, "VM_L2_PROTECTION_FAULT_STATUS:0x%08X\n", status); } return 0; } static const struct amdgpu_irq_src_funcs gmc_v9_0_irq_funcs = { .set = gmc_v9_0_vm_fault_interrupt_state, .process = gmc_v9_0_process_interrupt, }; static void gmc_v9_0_set_irq_funcs(struct amdgpu_device *adev) { adev->gmc.vm_fault.num_types = 1; adev->gmc.vm_fault.funcs = &gmc_v9_0_irq_funcs; } static uint32_t gmc_v9_0_get_invalidate_req(unsigned int vmid, uint32_t flush_type) { u32 req = 0; req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, PER_VMID_INVALIDATE_REQ, 1 << vmid); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, FLUSH_TYPE, flush_type); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PTES, 1); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PDE0, 1); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PDE1, 1); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L2_PDE2, 1); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, INVALIDATE_L1_PTES, 1); req = REG_SET_FIELD(req, VM_INVALIDATE_ENG0_REQ, CLEAR_PROTECTION_FAULT_STATUS_ADDR, 0); return req; } /* * GART * VMID 0 is the physical GPU addresses as used by the kernel. * VMIDs 1-15 are used for userspace clients and are handled * by the amdgpu vm/hsa code. */ /** * gmc_v9_0_flush_gpu_tlb - tlb flush with certain type * * @adev: amdgpu_device pointer * @vmid: vm instance to flush * @flush_type: the flush type * * Flush the TLB for the requested page table using certain type. */ static void gmc_v9_0_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid, uint32_t flush_type) { const unsigned eng = 17; unsigned i, j; for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { struct amdgpu_vmhub *hub = &adev->vmhub[i]; u32 tmp = gmc_v9_0_get_invalidate_req(vmid, flush_type); /* This is necessary for a HW workaround under SRIOV as well * as GFXOFF under bare metal */ if (adev->gfx.kiq.ring.sched.ready && (amdgpu_sriov_runtime(adev) || !amdgpu_sriov_vf(adev)) && !adev->in_gpu_reset) { uint32_t req = hub->vm_inv_eng0_req + eng; uint32_t ack = hub->vm_inv_eng0_ack + eng; amdgpu_virt_kiq_reg_write_reg_wait(adev, req, ack, tmp, 1 << vmid); continue; } spin_lock(&adev->gmc.invalidate_lock); WREG32_NO_KIQ(hub->vm_inv_eng0_req + eng, tmp); for (j = 0; j < adev->usec_timeout; j++) { tmp = RREG32_NO_KIQ(hub->vm_inv_eng0_ack + eng); if (tmp & (1 << vmid)) break; udelay(1); } spin_unlock(&adev->gmc.invalidate_lock); if (j < adev->usec_timeout) continue; DRM_ERROR("Timeout waiting for VM flush ACK!\n"); } } static uint64_t gmc_v9_0_emit_flush_gpu_tlb(struct amdgpu_ring *ring, unsigned vmid, uint64_t pd_addr) { struct amdgpu_device *adev = ring->adev; struct amdgpu_vmhub *hub = &adev->vmhub[ring->funcs->vmhub]; uint32_t req = gmc_v9_0_get_invalidate_req(vmid, 0); unsigned eng = ring->vm_inv_eng; amdgpu_ring_emit_wreg(ring, hub->ctx0_ptb_addr_lo32 + (2 * vmid), lower_32_bits(pd_addr)); amdgpu_ring_emit_wreg(ring, hub->ctx0_ptb_addr_hi32 + (2 * vmid), upper_32_bits(pd_addr)); amdgpu_ring_emit_reg_write_reg_wait(ring, hub->vm_inv_eng0_req + eng, hub->vm_inv_eng0_ack + eng, req, 1 << vmid); return pd_addr; } static void gmc_v9_0_emit_pasid_mapping(struct amdgpu_ring *ring, unsigned vmid, unsigned pasid) { struct amdgpu_device *adev = ring->adev; uint32_t reg; if (ring->funcs->vmhub == AMDGPU_GFXHUB) reg = SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid; else reg = SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid; amdgpu_ring_emit_wreg(ring, reg, pasid); } /** * gmc_v9_0_set_pte_pde - update the page tables using MMIO * * @adev: amdgpu_device pointer * @cpu_pt_addr: cpu address of the page table * @gpu_page_idx: entry in the page table to update * @addr: dst addr to write into pte/pde * @flags: access flags * * Update the page tables using the CPU. */ static int gmc_v9_0_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr, uint32_t gpu_page_idx, uint64_t addr, uint64_t flags) { void __iomem *ptr = (void *)cpu_pt_addr; uint64_t value; /* * PTE format on VEGA 10: * 63:59 reserved * 58:57 mtype * 56 F * 55 L * 54 P * 53 SW * 52 T * 50:48 reserved * 47:12 4k physical page base address * 11:7 fragment * 6 write * 5 read * 4 exe * 3 Z * 2 snooped * 1 system * 0 valid * * PDE format on VEGA 10: * 63:59 block fragment size * 58:55 reserved * 54 P * 53:48 reserved * 47:6 physical base address of PD or PTE * 5:3 reserved * 2 C * 1 system * 0 valid */ /* * The following is for PTE only. GART does not have PDEs. */ value = addr & 0x0000FFFFFFFFF000ULL; value |= flags; writeq(value, ptr + (gpu_page_idx * 8)); return 0; } static uint64_t gmc_v9_0_get_vm_pte_flags(struct amdgpu_device *adev, uint32_t flags) { uint64_t pte_flag = 0; if (flags & AMDGPU_VM_PAGE_EXECUTABLE) pte_flag |= AMDGPU_PTE_EXECUTABLE; if (flags & AMDGPU_VM_PAGE_READABLE) pte_flag |= AMDGPU_PTE_READABLE; if (flags & AMDGPU_VM_PAGE_WRITEABLE) pte_flag |= AMDGPU_PTE_WRITEABLE; switch (flags & AMDGPU_VM_MTYPE_MASK) { case AMDGPU_VM_MTYPE_DEFAULT: pte_flag |= AMDGPU_PTE_MTYPE(MTYPE_NC); break; case AMDGPU_VM_MTYPE_NC: pte_flag |= AMDGPU_PTE_MTYPE(MTYPE_NC); break; case AMDGPU_VM_MTYPE_WC: pte_flag |= AMDGPU_PTE_MTYPE(MTYPE_WC); break; case AMDGPU_VM_MTYPE_CC: pte_flag |= AMDGPU_PTE_MTYPE(MTYPE_CC); break; case AMDGPU_VM_MTYPE_UC: pte_flag |= AMDGPU_PTE_MTYPE(MTYPE_UC); break; default: pte_flag |= AMDGPU_PTE_MTYPE(MTYPE_NC); break; } if (flags & AMDGPU_VM_PAGE_PRT) pte_flag |= AMDGPU_PTE_PRT; return pte_flag; } static void gmc_v9_0_get_vm_pde(struct amdgpu_device *adev, int level, uint64_t *addr, uint64_t *flags) { if (!(*flags & AMDGPU_PDE_PTE) && !(*flags & AMDGPU_PTE_SYSTEM)) *addr = adev->vm_manager.vram_base_offset + *addr - adev->gmc.vram_start; BUG_ON(*addr & 0xFFFF00000000003FULL); if (!adev->gmc.translate_further) return; if (level == AMDGPU_VM_PDB1) { /* Set the block fragment size */ if (!(*flags & AMDGPU_PDE_PTE)) *flags |= AMDGPU_PDE_BFS(0x9); } else if (level == AMDGPU_VM_PDB0) { if (*flags & AMDGPU_PDE_PTE) *flags &= ~AMDGPU_PDE_PTE; else *flags |= AMDGPU_PTE_TF; } } static const struct amdgpu_gmc_funcs gmc_v9_0_gmc_funcs = { .flush_gpu_tlb = gmc_v9_0_flush_gpu_tlb, .emit_flush_gpu_tlb = gmc_v9_0_emit_flush_gpu_tlb, .emit_pasid_mapping = gmc_v9_0_emit_pasid_mapping, .set_pte_pde = gmc_v9_0_set_pte_pde, .get_vm_pte_flags = gmc_v9_0_get_vm_pte_flags, .get_vm_pde = gmc_v9_0_get_vm_pde }; static void gmc_v9_0_set_gmc_funcs(struct amdgpu_device *adev) { adev->gmc.gmc_funcs = &gmc_v9_0_gmc_funcs; } static int gmc_v9_0_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; gmc_v9_0_set_gmc_funcs(adev); gmc_v9_0_set_irq_funcs(adev); adev->gmc.shared_aperture_start = 0x2000000000000000ULL; adev->gmc.shared_aperture_end = adev->gmc.shared_aperture_start + (4ULL << 30) - 1; adev->gmc.private_aperture_start = 0x1000000000000000ULL; adev->gmc.private_aperture_end = adev->gmc.private_aperture_start + (4ULL << 30) - 1; return 0; } static int gmc_v9_0_ecc_available(struct amdgpu_device *adev) { uint32_t reg_val; uint32_t reg_addr; uint32_t field_val; size_t i; uint32_t fv2; size_t lost_sheep; DRM_DEBUG("ecc: gmc_v9_0_ecc_available()\n"); lost_sheep = 0; for (i = 0; i < ARRAY_SIZE(ecc_umclocalcap_addrs); ++i) { reg_addr = ecc_umclocalcap_addrs[i]; DRM_DEBUG("ecc: " "UMCCH_UmcLocalCap[%zu]: reg_addr: 0x%08x\n", i, reg_addr); reg_val = RREG32(reg_addr); field_val = REG_GET_FIELD(reg_val, UMCCH0_0_UmcLocalCap, EccDis); DRM_DEBUG("ecc: " "reg_val: 0x%08x, " "EccDis: 0x%08x, ", reg_val, field_val); if (field_val) { DRM_ERROR("ecc: UmcLocalCap:EccDis is set.\n"); ++lost_sheep; } } for (i = 0; i < ARRAY_SIZE(ecc_umcch_umc_config_addrs); ++i) { reg_addr = ecc_umcch_umc_config_addrs[i]; DRM_DEBUG("ecc: " "UMCCH0_0_UMC_CONFIG[%zu]: reg_addr: 0x%08x", i, reg_addr); reg_val = RREG32(reg_addr); field_val = REG_GET_FIELD(reg_val, UMCCH0_0_UMC_CONFIG, DramReady); DRM_DEBUG("ecc: " "reg_val: 0x%08x, " "DramReady: 0x%08x\n", reg_val, field_val); if (!field_val) { DRM_ERROR("ecc: UMC_CONFIG:DramReady is not set.\n"); ++lost_sheep; } } for (i = 0; i < ARRAY_SIZE(ecc_umcch_eccctrl_addrs); ++i) { reg_addr = ecc_umcch_eccctrl_addrs[i]; DRM_DEBUG("ecc: " "UMCCH_EccCtrl[%zu]: reg_addr: 0x%08x, ", i, reg_addr); reg_val = RREG32(reg_addr); field_val = REG_GET_FIELD(reg_val, UMCCH0_0_EccCtrl, WrEccEn); fv2 = REG_GET_FIELD(reg_val, UMCCH0_0_EccCtrl, RdEccEn); DRM_DEBUG("ecc: " "reg_val: 0x%08x, " "WrEccEn: 0x%08x, " "RdEccEn: 0x%08x\n", reg_val, field_val, fv2); if (!field_val) { DRM_DEBUG("ecc: WrEccEn is not set\n"); ++lost_sheep; } if (!fv2) { DRM_DEBUG("ecc: RdEccEn is not set\n"); ++lost_sheep; } } DRM_DEBUG("ecc: lost_sheep: %zu\n", lost_sheep); return lost_sheep == 0; } static bool gmc_v9_0_keep_stolen_memory(struct amdgpu_device *adev) { /* * TODO: * Currently there is a bug where some memory client outside * of the driver writes to first 8M of VRAM on S3 resume, * this overrides GART which by default gets placed in first 8M and * causes VM_FAULTS once GTT is accessed. * Keep the stolen memory reservation until the while this is not solved. * Also check code in gmc_v9_0_get_vbios_fb_size and gmc_v9_0_late_init */ switch (adev->asic_type) { case CHIP_VEGA10: return true; case CHIP_RAVEN: case CHIP_VEGA12: case CHIP_VEGA20: default: return false; } } static int gmc_v9_0_allocate_vm_inv_eng(struct amdgpu_device *adev) { struct amdgpu_ring *ring; unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {GFXHUB_FREE_VM_INV_ENGS_BITMAP, MMHUB_FREE_VM_INV_ENGS_BITMAP}; unsigned i; unsigned vmhub, inv_eng; for (i = 0; i < adev->num_rings; ++i) { ring = adev->rings[i]; vmhub = ring->funcs->vmhub; inv_eng = ffs(vm_inv_engs[vmhub]); if (!inv_eng) { dev_err(adev->dev, "no VM inv eng for ring %s\n", ring->name); return -EINVAL; } ring->vm_inv_eng = inv_eng - 1; change_bit(inv_eng - 1, (unsigned long *)(&vm_inv_engs[vmhub])); dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n", ring->name, ring->vm_inv_eng, ring->funcs->vmhub); } return 0; } static int gmc_v9_0_late_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; if (!gmc_v9_0_keep_stolen_memory(adev)) amdgpu_bo_late_init(adev); r = gmc_v9_0_allocate_vm_inv_eng(adev); if (r) return r; if (adev->asic_type == CHIP_VEGA10 && !amdgpu_sriov_vf(adev)) { r = gmc_v9_0_ecc_available(adev); if (r == 1) { DRM_INFO("ECC is active.\n"); } else if (r == 0) { DRM_INFO("ECC is not present.\n"); adev->df_funcs->enable_ecc_force_par_wr_rmw(adev, false); } else { DRM_ERROR("gmc_v9_0_ecc_available() failed. r: %d\n", r); return r; } } return amdgpu_irq_get(adev, &adev->gmc.vm_fault, 0); } static void gmc_v9_0_vram_gtt_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) { u64 base = 0; if (!amdgpu_sriov_vf(adev)) base = mmhub_v1_0_get_fb_location(adev); /* add the xgmi offset of the physical node */ base += adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; amdgpu_gmc_vram_location(adev, &adev->gmc, base); amdgpu_gmc_gart_location(adev, mc); if (!amdgpu_sriov_vf(adev)) amdgpu_gmc_agp_location(adev, mc); /* base offset of vram pages */ adev->vm_manager.vram_base_offset = gfxhub_v1_0_get_mc_fb_offset(adev); /* XXX: add the xgmi offset of the physical node? */ adev->vm_manager.vram_base_offset += adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; } /** * gmc_v9_0_mc_init - initialize the memory controller driver params * * @adev: amdgpu_device pointer * * Look up the amount of vram, vram width, and decide how to place * vram and gart within the GPU's physical address space. * Returns 0 for success. */ static int gmc_v9_0_mc_init(struct amdgpu_device *adev) { int chansize, numchan; int r; if (amdgpu_emu_mode != 1) adev->gmc.vram_width = amdgpu_atomfirmware_get_vram_width(adev); if (!adev->gmc.vram_width) { /* hbm memory channel size */ if (adev->flags & AMD_IS_APU) chansize = 64; else chansize = 128; numchan = adev->df_funcs->get_hbm_channel_number(adev); adev->gmc.vram_width = numchan * chansize; } /* size in MB on si */ adev->gmc.mc_vram_size = adev->nbio_funcs->get_memsize(adev) * 1024ULL * 1024ULL; adev->gmc.real_vram_size = adev->gmc.mc_vram_size; if (!(adev->flags & AMD_IS_APU)) { r = amdgpu_device_resize_fb_bar(adev); if (r) return r; } adev->gmc.aper_base = pci_resource_start(adev->pdev, 0); adev->gmc.aper_size = pci_resource_len(adev->pdev, 0); #ifdef CONFIG_X86_64 if (adev->flags & AMD_IS_APU) { adev->gmc.aper_base = gfxhub_v1_0_get_mc_fb_offset(adev); adev->gmc.aper_size = adev->gmc.real_vram_size; } #endif /* In case the PCI BAR is larger than the actual amount of vram */ adev->gmc.visible_vram_size = adev->gmc.aper_size; if (adev->gmc.visible_vram_size > adev->gmc.real_vram_size) adev->gmc.visible_vram_size = adev->gmc.real_vram_size; /* set the gart size */ if (amdgpu_gart_size == -1) { switch (adev->asic_type) { case CHIP_VEGA10: /* all engines support GPUVM */ case CHIP_VEGA12: /* all engines support GPUVM */ case CHIP_VEGA20: default: adev->gmc.gart_size = 512ULL << 20; break; case CHIP_RAVEN: /* DCE SG support */ adev->gmc.gart_size = 1024ULL << 20; break; } } else { adev->gmc.gart_size = (u64)amdgpu_gart_size << 20; } gmc_v9_0_vram_gtt_location(adev, &adev->gmc); return 0; } static int gmc_v9_0_gart_init(struct amdgpu_device *adev) { int r; if (adev->gart.bo) { WARN(1, "VEGA10 PCIE GART already initialized\n"); return 0; } /* Initialize common gart structure */ r = amdgpu_gart_init(adev); if (r) return r; adev->gart.table_size = adev->gart.num_gpu_pages * 8; adev->gart.gart_pte_flags = AMDGPU_PTE_MTYPE(MTYPE_UC) | AMDGPU_PTE_EXECUTABLE; return amdgpu_gart_table_vram_alloc(adev); } static unsigned gmc_v9_0_get_vbios_fb_size(struct amdgpu_device *adev) { u32 d1vga_control = RREG32_SOC15(DCE, 0, mmD1VGA_CONTROL); unsigned size; /* * TODO Remove once GART corruption is resolved * Check related code in gmc_v9_0_sw_fini * */ if (gmc_v9_0_keep_stolen_memory(adev)) return 9 * 1024 * 1024; if (REG_GET_FIELD(d1vga_control, D1VGA_CONTROL, D1VGA_MODE_ENABLE)) { size = 9 * 1024 * 1024; /* reserve 8MB for vga emulator and 1 MB for FB */ } else { u32 viewport; switch (adev->asic_type) { case CHIP_RAVEN: viewport = RREG32_SOC15(DCE, 0, mmHUBP0_DCSURF_PRI_VIEWPORT_DIMENSION); size = (REG_GET_FIELD(viewport, HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION, PRI_VIEWPORT_HEIGHT) * REG_GET_FIELD(viewport, HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION, PRI_VIEWPORT_WIDTH) * 4); break; case CHIP_VEGA10: case CHIP_VEGA12: case CHIP_VEGA20: default: viewport = RREG32_SOC15(DCE, 0, mmSCL0_VIEWPORT_SIZE); size = (REG_GET_FIELD(viewport, SCL0_VIEWPORT_SIZE, VIEWPORT_HEIGHT) * REG_GET_FIELD(viewport, SCL0_VIEWPORT_SIZE, VIEWPORT_WIDTH) * 4); break; } } /* return 0 if the pre-OS buffer uses up most of vram */ if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024)) return 0; return size; } static int gmc_v9_0_sw_init(void *handle) { int r; int dma_bits; struct amdgpu_device *adev = (struct amdgpu_device *)handle; gfxhub_v1_0_init(adev); mmhub_v1_0_init(adev); spin_lock_init(&adev->gmc.invalidate_lock); adev->gmc.vram_type = amdgpu_atomfirmware_get_vram_type(adev); switch (adev->asic_type) { case CHIP_RAVEN: if (adev->rev_id == 0x0 || adev->rev_id == 0x1) { amdgpu_vm_adjust_size(adev, 256 * 1024, 9, 3, 48); } else { /* vm_size is 128TB + 512GB for legacy 3-level page support */ amdgpu_vm_adjust_size(adev, 128 * 1024 + 512, 9, 2, 48); adev->gmc.translate_further = adev->vm_manager.num_level > 1; } break; case CHIP_VEGA10: case CHIP_VEGA12: case CHIP_VEGA20: /* * To fulfill 4-level page support, * vm size is 256TB (48bit), maximum size of Vega10, * block size 512 (9bit) */ /* sriov restrict max_pfn below AMDGPU_GMC_HOLE */ if (amdgpu_sriov_vf(adev)) amdgpu_vm_adjust_size(adev, 256 * 1024, 9, 3, 47); else amdgpu_vm_adjust_size(adev, 256 * 1024, 9, 3, 48); break; default: break; } /* This interrupt is VMC page fault.*/ r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_VMC, VMC_1_0__SRCID__VM_FAULT, &adev->gmc.vm_fault); if (r) return r; r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_UTCL2, UTCL2_1_0__SRCID__FAULT, &adev->gmc.vm_fault); if (r) return r; /* Set the internal MC address mask * This is the max address of the GPU's * internal address space. */ adev->gmc.mc_mask = 0xffffffffffffULL; /* 48 bit MC */ /* set DMA mask + need_dma32 flags. * PCIE - can handle 44-bits. * IGP - can handle 44-bits * PCI - dma32 for legacy pci gart, 44 bits on vega10 */ adev->need_dma32 = false; dma_bits = adev->need_dma32 ? 32 : 44; r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits)); if (r) { adev->need_dma32 = true; dma_bits = 32; printk(KERN_WARNING "amdgpu: No suitable DMA available.\n"); } r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits)); if (r) { pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32)); printk(KERN_WARNING "amdgpu: No coherent DMA available.\n"); } adev->need_swiotlb = drm_need_swiotlb(dma_bits); if (adev->gmc.xgmi.supported) { r = gfxhub_v1_1_get_xgmi_info(adev); if (r) return r; } r = gmc_v9_0_mc_init(adev); if (r) return r; adev->gmc.stolen_size = gmc_v9_0_get_vbios_fb_size(adev); /* Memory manager */ r = amdgpu_bo_init(adev); if (r) return r; r = gmc_v9_0_gart_init(adev); if (r) return r; /* * number of VMs * VMID 0 is reserved for System * amdgpu graphics/compute will use VMIDs 1-7 * amdkfd will use VMIDs 8-15 */ adev->vm_manager.id_mgr[AMDGPU_GFXHUB].num_ids = AMDGPU_NUM_OF_VMIDS; adev->vm_manager.id_mgr[AMDGPU_MMHUB].num_ids = AMDGPU_NUM_OF_VMIDS; amdgpu_vm_manager_init(adev); return 0; } static int gmc_v9_0_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; amdgpu_gem_force_release(adev); amdgpu_vm_manager_fini(adev); if (gmc_v9_0_keep_stolen_memory(adev)) amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL); amdgpu_gart_table_vram_free(adev); amdgpu_bo_fini(adev); amdgpu_gart_fini(adev); return 0; } static void gmc_v9_0_init_golden_registers(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_VEGA10: case CHIP_VEGA20: soc15_program_register_sequence(adev, golden_settings_mmhub_1_0_0, ARRAY_SIZE(golden_settings_mmhub_1_0_0)); soc15_program_register_sequence(adev, golden_settings_athub_1_0_0, ARRAY_SIZE(golden_settings_athub_1_0_0)); break; case CHIP_VEGA12: break; case CHIP_RAVEN: soc15_program_register_sequence(adev, golden_settings_athub_1_0_0, ARRAY_SIZE(golden_settings_athub_1_0_0)); break; default: break; } } /** * gmc_v9_0_gart_enable - gart enable * * @adev: amdgpu_device pointer */ static int gmc_v9_0_gart_enable(struct amdgpu_device *adev) { int r; bool value; u32 tmp; amdgpu_device_program_register_sequence(adev, golden_settings_vega10_hdp, ARRAY_SIZE(golden_settings_vega10_hdp)); if (adev->gart.bo == NULL) { dev_err(adev->dev, "No VRAM object for PCIE GART.\n"); return -EINVAL; } r = amdgpu_gart_table_vram_pin(adev); if (r) return r; switch (adev->asic_type) { case CHIP_RAVEN: mmhub_v1_0_update_power_gating(adev, true); break; default: break; } r = gfxhub_v1_0_gart_enable(adev); if (r) return r; r = mmhub_v1_0_gart_enable(adev); if (r) return r; WREG32_FIELD15(HDP, 0, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 1); tmp = RREG32_SOC15(HDP, 0, mmHDP_HOST_PATH_CNTL); WREG32_SOC15(HDP, 0, mmHDP_HOST_PATH_CNTL, tmp); /* After HDP is initialized, flush HDP.*/ adev->nbio_funcs->hdp_flush(adev, NULL); if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS) value = false; else value = true; gfxhub_v1_0_set_fault_enable_default(adev, value); mmhub_v1_0_set_fault_enable_default(adev, value); gmc_v9_0_flush_gpu_tlb(adev, 0, 0); DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n", (unsigned)(adev->gmc.gart_size >> 20), (unsigned long long)amdgpu_bo_gpu_offset(adev->gart.bo)); adev->gart.ready = true; return 0; } static int gmc_v9_0_hw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; /* The sequence of these two function calls matters.*/ gmc_v9_0_init_golden_registers(adev); if (adev->mode_info.num_crtc) { /* Lockout access through VGA aperture*/ WREG32_FIELD15(DCE, 0, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 1); /* disable VGA render */ WREG32_FIELD15(DCE, 0, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0); } r = gmc_v9_0_gart_enable(adev); return r; } /** * gmc_v9_0_gart_disable - gart disable * * @adev: amdgpu_device pointer * * This disables all VM page table. */ static void gmc_v9_0_gart_disable(struct amdgpu_device *adev) { gfxhub_v1_0_gart_disable(adev); mmhub_v1_0_gart_disable(adev); amdgpu_gart_table_vram_unpin(adev); } static int gmc_v9_0_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (amdgpu_sriov_vf(adev)) { /* full access mode, so don't touch any GMC register */ DRM_DEBUG("For SRIOV client, shouldn't do anything.\n"); return 0; } amdgpu_irq_put(adev, &adev->gmc.vm_fault, 0); gmc_v9_0_gart_disable(adev); return 0; } static int gmc_v9_0_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return gmc_v9_0_hw_fini(adev); } static int gmc_v9_0_resume(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = gmc_v9_0_hw_init(adev); if (r) return r; amdgpu_vmid_reset_all(adev); return 0; } static bool gmc_v9_0_is_idle(void *handle) { /* MC is always ready in GMC v9.*/ return true; } static int gmc_v9_0_wait_for_idle(void *handle) { /* There is no need to wait for MC idle in GMC v9.*/ return 0; } static int gmc_v9_0_soft_reset(void *handle) { /* XXX for emulation.*/ return 0; } static int gmc_v9_0_set_clockgating_state(void *handle, enum amd_clockgating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return mmhub_v1_0_set_clockgating(adev, state); } static void gmc_v9_0_get_clockgating_state(void *handle, u32 *flags) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; mmhub_v1_0_get_clockgating(adev, flags); } static int gmc_v9_0_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } const struct amd_ip_funcs gmc_v9_0_ip_funcs = { .name = "gmc_v9_0", .early_init = gmc_v9_0_early_init, .late_init = gmc_v9_0_late_init, .sw_init = gmc_v9_0_sw_init, .sw_fini = gmc_v9_0_sw_fini, .hw_init = gmc_v9_0_hw_init, .hw_fini = gmc_v9_0_hw_fini, .suspend = gmc_v9_0_suspend, .resume = gmc_v9_0_resume, .is_idle = gmc_v9_0_is_idle, .wait_for_idle = gmc_v9_0_wait_for_idle, .soft_reset = gmc_v9_0_soft_reset, .set_clockgating_state = gmc_v9_0_set_clockgating_state, .set_powergating_state = gmc_v9_0_set_powergating_state, .get_clockgating_state = gmc_v9_0_get_clockgating_state, }; const struct amdgpu_ip_block_version gmc_v9_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_GMC, .major = 9, .minor = 0, .rev = 0, .funcs = &gmc_v9_0_ip_funcs, };