/* * DMA driver for Xilinx ZynqMP DMA Engine * * Copyright (C) 2016 Xilinx, Inc. All rights reserved. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../dmaengine.h" /* Register Offsets */ #define ZYNQMP_DMA_ISR 0x100 #define ZYNQMP_DMA_IMR 0x104 #define ZYNQMP_DMA_IER 0x108 #define ZYNQMP_DMA_IDS 0x10C #define ZYNQMP_DMA_CTRL0 0x110 #define ZYNQMP_DMA_CTRL1 0x114 #define ZYNQMP_DMA_DATA_ATTR 0x120 #define ZYNQMP_DMA_DSCR_ATTR 0x124 #define ZYNQMP_DMA_SRC_DSCR_WRD0 0x128 #define ZYNQMP_DMA_SRC_DSCR_WRD1 0x12C #define ZYNQMP_DMA_SRC_DSCR_WRD2 0x130 #define ZYNQMP_DMA_SRC_DSCR_WRD3 0x134 #define ZYNQMP_DMA_DST_DSCR_WRD0 0x138 #define ZYNQMP_DMA_DST_DSCR_WRD1 0x13C #define ZYNQMP_DMA_DST_DSCR_WRD2 0x140 #define ZYNQMP_DMA_DST_DSCR_WRD3 0x144 #define ZYNQMP_DMA_SRC_START_LSB 0x158 #define ZYNQMP_DMA_SRC_START_MSB 0x15C #define ZYNQMP_DMA_DST_START_LSB 0x160 #define ZYNQMP_DMA_DST_START_MSB 0x164 #define ZYNQMP_DMA_RATE_CTRL 0x18C #define ZYNQMP_DMA_IRQ_SRC_ACCT 0x190 #define ZYNQMP_DMA_IRQ_DST_ACCT 0x194 #define ZYNQMP_DMA_CTRL2 0x200 /* Interrupt registers bit field definitions */ #define ZYNQMP_DMA_DONE BIT(10) #define ZYNQMP_DMA_AXI_WR_DATA BIT(9) #define ZYNQMP_DMA_AXI_RD_DATA BIT(8) #define ZYNQMP_DMA_AXI_RD_DST_DSCR BIT(7) #define ZYNQMP_DMA_AXI_RD_SRC_DSCR BIT(6) #define ZYNQMP_DMA_IRQ_DST_ACCT_ERR BIT(5) #define ZYNQMP_DMA_IRQ_SRC_ACCT_ERR BIT(4) #define ZYNQMP_DMA_BYTE_CNT_OVRFL BIT(3) #define ZYNQMP_DMA_DST_DSCR_DONE BIT(2) #define ZYNQMP_DMA_INV_APB BIT(0) /* Control 0 register bit field definitions */ #define ZYNQMP_DMA_OVR_FETCH BIT(7) #define ZYNQMP_DMA_POINT_TYPE_SG BIT(6) #define ZYNQMP_DMA_RATE_CTRL_EN BIT(3) /* Control 1 register bit field definitions */ #define ZYNQMP_DMA_SRC_ISSUE GENMASK(4, 0) /* Data Attribute register bit field definitions */ #define ZYNQMP_DMA_ARBURST GENMASK(27, 26) #define ZYNQMP_DMA_ARCACHE GENMASK(25, 22) #define ZYNQMP_DMA_ARCACHE_OFST 22 #define ZYNQMP_DMA_ARQOS GENMASK(21, 18) #define ZYNQMP_DMA_ARQOS_OFST 18 #define ZYNQMP_DMA_ARLEN GENMASK(17, 14) #define ZYNQMP_DMA_ARLEN_OFST 14 #define ZYNQMP_DMA_AWBURST GENMASK(13, 12) #define ZYNQMP_DMA_AWCACHE GENMASK(11, 8) #define ZYNQMP_DMA_AWCACHE_OFST 8 #define ZYNQMP_DMA_AWQOS GENMASK(7, 4) #define ZYNQMP_DMA_AWQOS_OFST 4 #define ZYNQMP_DMA_AWLEN GENMASK(3, 0) #define ZYNQMP_DMA_AWLEN_OFST 0 /* Descriptor Attribute register bit field definitions */ #define ZYNQMP_DMA_AXCOHRNT BIT(8) #define ZYNQMP_DMA_AXCACHE GENMASK(7, 4) #define ZYNQMP_DMA_AXCACHE_OFST 4 #define ZYNQMP_DMA_AXQOS GENMASK(3, 0) #define ZYNQMP_DMA_AXQOS_OFST 0 /* Control register 2 bit field definitions */ #define ZYNQMP_DMA_ENABLE BIT(0) /* Buffer Descriptor definitions */ #define ZYNQMP_DMA_DESC_CTRL_STOP 0x10 #define ZYNQMP_DMA_DESC_CTRL_COMP_INT 0x4 #define ZYNQMP_DMA_DESC_CTRL_SIZE_256 0x2 #define ZYNQMP_DMA_DESC_CTRL_COHRNT 0x1 /* Interrupt Mask specific definitions */ #define ZYNQMP_DMA_INT_ERR (ZYNQMP_DMA_AXI_RD_DATA | \ ZYNQMP_DMA_AXI_WR_DATA | \ ZYNQMP_DMA_AXI_RD_DST_DSCR | \ ZYNQMP_DMA_AXI_RD_SRC_DSCR | \ ZYNQMP_DMA_INV_APB) #define ZYNQMP_DMA_INT_OVRFL (ZYNQMP_DMA_BYTE_CNT_OVRFL | \ ZYNQMP_DMA_IRQ_SRC_ACCT_ERR | \ ZYNQMP_DMA_IRQ_DST_ACCT_ERR) #define ZYNQMP_DMA_INT_DONE (ZYNQMP_DMA_DONE | ZYNQMP_DMA_DST_DSCR_DONE) #define ZYNQMP_DMA_INT_EN_DEFAULT_MASK (ZYNQMP_DMA_INT_DONE | \ ZYNQMP_DMA_INT_ERR | \ ZYNQMP_DMA_INT_OVRFL | \ ZYNQMP_DMA_DST_DSCR_DONE) /* Max number of descriptors per channel */ #define ZYNQMP_DMA_NUM_DESCS 32 /* Max transfer size per descriptor */ #define ZYNQMP_DMA_MAX_TRANS_LEN 0x40000000 /* Reset values for data attributes */ #define ZYNQMP_DMA_AXCACHE_VAL 0xF #define ZYNQMP_DMA_ARLEN_RST_VAL 0xF #define ZYNQMP_DMA_AWLEN_RST_VAL 0xF #define ZYNQMP_DMA_SRC_ISSUE_RST_VAL 0x1F #define ZYNQMP_DMA_IDS_DEFAULT_MASK 0xFFF /* Bus width in bits */ #define ZYNQMP_DMA_BUS_WIDTH_64 64 #define ZYNQMP_DMA_BUS_WIDTH_128 128 #define ZDMA_PM_TIMEOUT 100 #define ZYNQMP_DMA_DESC_SIZE(chan) (chan->desc_size) #define to_chan(chan) container_of(chan, struct zynqmp_dma_chan, \ common) #define tx_to_desc(tx) container_of(tx, struct zynqmp_dma_desc_sw, \ async_tx) /** * struct zynqmp_dma_desc_ll - Hw linked list descriptor * @addr: Buffer address * @size: Size of the buffer * @ctrl: Control word * @nxtdscraddr: Next descriptor base address * @rsvd: Reserved field and for Hw internal use. */ struct zynqmp_dma_desc_ll { u64 addr; u32 size; u32 ctrl; u64 nxtdscraddr; u64 rsvd; }; __aligned(64) /** * struct zynqmp_dma_desc_sw - Per Transaction structure * @src: Source address for simple mode dma * @dst: Destination address for simple mode dma * @len: Transfer length for simple mode dma * @node: Node in the channel descriptor list * @tx_list: List head for the current transfer * @async_tx: Async transaction descriptor * @src_v: Virtual address of the src descriptor * @src_p: Physical address of the src descriptor * @dst_v: Virtual address of the dst descriptor * @dst_p: Physical address of the dst descriptor */ struct zynqmp_dma_desc_sw { u64 src; u64 dst; u32 len; struct list_head node; struct list_head tx_list; struct dma_async_tx_descriptor async_tx; struct zynqmp_dma_desc_ll *src_v; dma_addr_t src_p; struct zynqmp_dma_desc_ll *dst_v; dma_addr_t dst_p; }; /** * struct zynqmp_dma_chan - Driver specific DMA channel structure * @zdev: Driver specific device structure * @regs: Control registers offset * @lock: Descriptor operation lock * @pending_list: Descriptors waiting * @free_list: Descriptors free * @active_list: Descriptors active * @sw_desc_pool: SW descriptor pool * @done_list: Complete descriptors * @common: DMA common channel * @desc_pool_v: Statically allocated descriptor base * @desc_pool_p: Physical allocated descriptor base * @desc_free_cnt: Descriptor available count * @dev: The dma device * @irq: Channel IRQ * @is_dmacoherent: Tells whether dma operations are coherent or not * @tasklet: Cleanup work after irq * @idle : Channel status; * @desc_size: Size of the low level descriptor * @err: Channel has errors * @bus_width: Bus width * @src_burst_len: Source burst length * @dst_burst_len: Dest burst length */ struct zynqmp_dma_chan { struct zynqmp_dma_device *zdev; void __iomem *regs; spinlock_t lock; struct list_head pending_list; struct list_head free_list; struct list_head active_list; struct zynqmp_dma_desc_sw *sw_desc_pool; struct list_head done_list; struct dma_chan common; void *desc_pool_v; dma_addr_t desc_pool_p; u32 desc_free_cnt; struct device *dev; int irq; bool is_dmacoherent; struct tasklet_struct tasklet; bool idle; u32 desc_size; bool err; u32 bus_width; u32 src_burst_len; u32 dst_burst_len; }; /** * struct zynqmp_dma_device - DMA device structure * @dev: Device Structure * @common: DMA device structure * @chan: Driver specific DMA channel * @clk_main: Pointer to main clock * @clk_apb: Pointer to apb clock */ struct zynqmp_dma_device { struct device *dev; struct dma_device common; struct zynqmp_dma_chan *chan; struct clk *clk_main; struct clk *clk_apb; }; static inline void zynqmp_dma_writeq(struct zynqmp_dma_chan *chan, u32 reg, u64 value) { lo_hi_writeq(value, chan->regs + reg); } /** * zynqmp_dma_update_desc_to_ctrlr - Updates descriptor to the controller * @chan: ZynqMP DMA DMA channel pointer * @desc: Transaction descriptor pointer */ static void zynqmp_dma_update_desc_to_ctrlr(struct zynqmp_dma_chan *chan, struct zynqmp_dma_desc_sw *desc) { dma_addr_t addr; addr = desc->src_p; zynqmp_dma_writeq(chan, ZYNQMP_DMA_SRC_START_LSB, addr); addr = desc->dst_p; zynqmp_dma_writeq(chan, ZYNQMP_DMA_DST_START_LSB, addr); } /** * zynqmp_dma_desc_config_eod - Mark the descriptor as end descriptor * @chan: ZynqMP DMA channel pointer * @desc: Hw descriptor pointer */ static void zynqmp_dma_desc_config_eod(struct zynqmp_dma_chan *chan, void *desc) { struct zynqmp_dma_desc_ll *hw = (struct zynqmp_dma_desc_ll *)desc; hw->ctrl |= ZYNQMP_DMA_DESC_CTRL_STOP; hw++; hw->ctrl |= ZYNQMP_DMA_DESC_CTRL_COMP_INT | ZYNQMP_DMA_DESC_CTRL_STOP; } /** * zynqmp_dma_config_sg_ll_desc - Configure the linked list descriptor * @chan: ZynqMP DMA channel pointer * @sdesc: Hw descriptor pointer * @src: Source buffer address * @dst: Destination buffer address * @len: Transfer length * @prev: Previous hw descriptor pointer */ static void zynqmp_dma_config_sg_ll_desc(struct zynqmp_dma_chan *chan, struct zynqmp_dma_desc_ll *sdesc, dma_addr_t src, dma_addr_t dst, size_t len, struct zynqmp_dma_desc_ll *prev) { struct zynqmp_dma_desc_ll *ddesc = sdesc + 1; sdesc->size = ddesc->size = len; sdesc->addr = src; ddesc->addr = dst; sdesc->ctrl = ddesc->ctrl = ZYNQMP_DMA_DESC_CTRL_SIZE_256; if (chan->is_dmacoherent) { sdesc->ctrl |= ZYNQMP_DMA_DESC_CTRL_COHRNT; ddesc->ctrl |= ZYNQMP_DMA_DESC_CTRL_COHRNT; } if (prev) { dma_addr_t addr = chan->desc_pool_p + ((uintptr_t)sdesc - (uintptr_t)chan->desc_pool_v); ddesc = prev + 1; prev->nxtdscraddr = addr; ddesc->nxtdscraddr = addr + ZYNQMP_DMA_DESC_SIZE(chan); } } /** * zynqmp_dma_init - Initialize the channel * @chan: ZynqMP DMA channel pointer */ static void zynqmp_dma_init(struct zynqmp_dma_chan *chan) { u32 val; writel(ZYNQMP_DMA_IDS_DEFAULT_MASK, chan->regs + ZYNQMP_DMA_IDS); val = readl(chan->regs + ZYNQMP_DMA_ISR); writel(val, chan->regs + ZYNQMP_DMA_ISR); if (chan->is_dmacoherent) { val = ZYNQMP_DMA_AXCOHRNT; val = (val & ~ZYNQMP_DMA_AXCACHE) | (ZYNQMP_DMA_AXCACHE_VAL << ZYNQMP_DMA_AXCACHE_OFST); writel(val, chan->regs + ZYNQMP_DMA_DSCR_ATTR); } val = readl(chan->regs + ZYNQMP_DMA_DATA_ATTR); if (chan->is_dmacoherent) { val = (val & ~ZYNQMP_DMA_ARCACHE) | (ZYNQMP_DMA_AXCACHE_VAL << ZYNQMP_DMA_ARCACHE_OFST); val = (val & ~ZYNQMP_DMA_AWCACHE) | (ZYNQMP_DMA_AXCACHE_VAL << ZYNQMP_DMA_AWCACHE_OFST); } writel(val, chan->regs + ZYNQMP_DMA_DATA_ATTR); /* Clearing the interrupt account rgisters */ val = readl(chan->regs + ZYNQMP_DMA_IRQ_SRC_ACCT); val = readl(chan->regs + ZYNQMP_DMA_IRQ_DST_ACCT); chan->idle = true; } /** * zynqmp_dma_tx_submit - Submit DMA transaction * @tx: Async transaction descriptor pointer * * Return: cookie value */ static dma_cookie_t zynqmp_dma_tx_submit(struct dma_async_tx_descriptor *tx) { struct zynqmp_dma_chan *chan = to_chan(tx->chan); struct zynqmp_dma_desc_sw *desc, *new; dma_cookie_t cookie; new = tx_to_desc(tx); spin_lock_bh(&chan->lock); cookie = dma_cookie_assign(tx); if (!list_empty(&chan->pending_list)) { desc = list_last_entry(&chan->pending_list, struct zynqmp_dma_desc_sw, node); if (!list_empty(&desc->tx_list)) desc = list_last_entry(&desc->tx_list, struct zynqmp_dma_desc_sw, node); desc->src_v->nxtdscraddr = new->src_p; desc->src_v->ctrl &= ~ZYNQMP_DMA_DESC_CTRL_STOP; desc->dst_v->nxtdscraddr = new->dst_p; desc->dst_v->ctrl &= ~ZYNQMP_DMA_DESC_CTRL_STOP; } list_add_tail(&new->node, &chan->pending_list); spin_unlock_bh(&chan->lock); return cookie; } /** * zynqmp_dma_get_descriptor - Get the sw descriptor from the pool * @chan: ZynqMP DMA channel pointer * * Return: The sw descriptor */ static struct zynqmp_dma_desc_sw * zynqmp_dma_get_descriptor(struct zynqmp_dma_chan *chan) { struct zynqmp_dma_desc_sw *desc; spin_lock_bh(&chan->lock); desc = list_first_entry(&chan->free_list, struct zynqmp_dma_desc_sw, node); list_del(&desc->node); spin_unlock_bh(&chan->lock); INIT_LIST_HEAD(&desc->tx_list); /* Clear the src and dst descriptor memory */ memset((void *)desc->src_v, 0, ZYNQMP_DMA_DESC_SIZE(chan)); memset((void *)desc->dst_v, 0, ZYNQMP_DMA_DESC_SIZE(chan)); return desc; } /** * zynqmp_dma_free_descriptor - Issue pending transactions * @chan: ZynqMP DMA channel pointer * @sdesc: Transaction descriptor pointer */ static void zynqmp_dma_free_descriptor(struct zynqmp_dma_chan *chan, struct zynqmp_dma_desc_sw *sdesc) { struct zynqmp_dma_desc_sw *child, *next; chan->desc_free_cnt++; list_add_tail(&sdesc->node, &chan->free_list); list_for_each_entry_safe(child, next, &sdesc->tx_list, node) { chan->desc_free_cnt++; list_move_tail(&child->node, &chan->free_list); } } /** * zynqmp_dma_free_desc_list - Free descriptors list * @chan: ZynqMP DMA channel pointer * @list: List to parse and delete the descriptor */ static void zynqmp_dma_free_desc_list(struct zynqmp_dma_chan *chan, struct list_head *list) { struct zynqmp_dma_desc_sw *desc, *next; list_for_each_entry_safe(desc, next, list, node) zynqmp_dma_free_descriptor(chan, desc); } /** * zynqmp_dma_alloc_chan_resources - Allocate channel resources * @dchan: DMA channel * * Return: Number of descriptors on success and failure value on error */ static int zynqmp_dma_alloc_chan_resources(struct dma_chan *dchan) { struct zynqmp_dma_chan *chan = to_chan(dchan); struct zynqmp_dma_desc_sw *desc; int i, ret; ret = pm_runtime_get_sync(chan->dev); if (ret < 0) return ret; chan->sw_desc_pool = kzalloc(sizeof(*desc) * ZYNQMP_DMA_NUM_DESCS, GFP_KERNEL); if (!chan->sw_desc_pool) return -ENOMEM; chan->idle = true; chan->desc_free_cnt = ZYNQMP_DMA_NUM_DESCS; INIT_LIST_HEAD(&chan->free_list); for (i = 0; i < ZYNQMP_DMA_NUM_DESCS; i++) { desc = chan->sw_desc_pool + i; dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); desc->async_tx.tx_submit = zynqmp_dma_tx_submit; list_add_tail(&desc->node, &chan->free_list); } chan->desc_pool_v = dma_zalloc_coherent(chan->dev, (2 * chan->desc_size * ZYNQMP_DMA_NUM_DESCS), &chan->desc_pool_p, GFP_KERNEL); if (!chan->desc_pool_v) return -ENOMEM; for (i = 0; i < ZYNQMP_DMA_NUM_DESCS; i++) { desc = chan->sw_desc_pool + i; desc->src_v = (struct zynqmp_dma_desc_ll *) (chan->desc_pool_v + (i * ZYNQMP_DMA_DESC_SIZE(chan) * 2)); desc->dst_v = (struct zynqmp_dma_desc_ll *) (desc->src_v + 1); desc->src_p = chan->desc_pool_p + (i * ZYNQMP_DMA_DESC_SIZE(chan) * 2); desc->dst_p = desc->src_p + ZYNQMP_DMA_DESC_SIZE(chan); } return ZYNQMP_DMA_NUM_DESCS; } /** * zynqmp_dma_start - Start DMA channel * @chan: ZynqMP DMA channel pointer */ static void zynqmp_dma_start(struct zynqmp_dma_chan *chan) { writel(ZYNQMP_DMA_INT_EN_DEFAULT_MASK, chan->regs + ZYNQMP_DMA_IER); chan->idle = false; writel(ZYNQMP_DMA_ENABLE, chan->regs + ZYNQMP_DMA_CTRL2); } /** * zynqmp_dma_handle_ovfl_int - Process the overflow interrupt * @chan: ZynqMP DMA channel pointer * @status: Interrupt status value */ static void zynqmp_dma_handle_ovfl_int(struct zynqmp_dma_chan *chan, u32 status) { u32 val; if (status & ZYNQMP_DMA_IRQ_DST_ACCT_ERR) val = readl(chan->regs + ZYNQMP_DMA_IRQ_DST_ACCT); if (status & ZYNQMP_DMA_IRQ_SRC_ACCT_ERR) val = readl(chan->regs + ZYNQMP_DMA_IRQ_SRC_ACCT); } static void zynqmp_dma_config(struct zynqmp_dma_chan *chan) { u32 val; val = readl(chan->regs + ZYNQMP_DMA_CTRL0); val |= ZYNQMP_DMA_POINT_TYPE_SG; writel(val, chan->regs + ZYNQMP_DMA_CTRL0); val = readl(chan->regs + ZYNQMP_DMA_DATA_ATTR); val = (val & ~ZYNQMP_DMA_ARLEN) | (chan->src_burst_len << ZYNQMP_DMA_ARLEN_OFST); val = (val & ~ZYNQMP_DMA_AWLEN) | (chan->dst_burst_len << ZYNQMP_DMA_AWLEN_OFST); writel(val, chan->regs + ZYNQMP_DMA_DATA_ATTR); } /** * zynqmp_dma_device_config - Zynqmp dma device configuration * @dchan: DMA channel * @config: DMA device config */ static int zynqmp_dma_device_config(struct dma_chan *dchan, struct dma_slave_config *config) { struct zynqmp_dma_chan *chan = to_chan(dchan); chan->src_burst_len = config->src_maxburst; chan->dst_burst_len = config->dst_maxburst; return 0; } /** * zynqmp_dma_start_transfer - Initiate the new transfer * @chan: ZynqMP DMA channel pointer */ static void zynqmp_dma_start_transfer(struct zynqmp_dma_chan *chan) { struct zynqmp_dma_desc_sw *desc; if (!chan->idle) return; zynqmp_dma_config(chan); desc = list_first_entry_or_null(&chan->pending_list, struct zynqmp_dma_desc_sw, node); if (!desc) return; list_splice_tail_init(&chan->pending_list, &chan->active_list); zynqmp_dma_update_desc_to_ctrlr(chan, desc); zynqmp_dma_start(chan); } /** * zynqmp_dma_chan_desc_cleanup - Cleanup the completed descriptors * @chan: ZynqMP DMA channel */ static void zynqmp_dma_chan_desc_cleanup(struct zynqmp_dma_chan *chan) { struct zynqmp_dma_desc_sw *desc, *next; list_for_each_entry_safe(desc, next, &chan->done_list, node) { dma_async_tx_callback callback; void *callback_param; list_del(&desc->node); callback = desc->async_tx.callback; callback_param = desc->async_tx.callback_param; if (callback) { spin_unlock(&chan->lock); callback(callback_param); spin_lock(&chan->lock); } /* Run any dependencies, then free the descriptor */ zynqmp_dma_free_descriptor(chan, desc); } } /** * zynqmp_dma_complete_descriptor - Mark the active descriptor as complete * @chan: ZynqMP DMA channel pointer */ static void zynqmp_dma_complete_descriptor(struct zynqmp_dma_chan *chan) { struct zynqmp_dma_desc_sw *desc; desc = list_first_entry_or_null(&chan->active_list, struct zynqmp_dma_desc_sw, node); if (!desc) return; list_del(&desc->node); dma_cookie_complete(&desc->async_tx); list_add_tail(&desc->node, &chan->done_list); } /** * zynqmp_dma_issue_pending - Issue pending transactions * @dchan: DMA channel pointer */ static void zynqmp_dma_issue_pending(struct dma_chan *dchan) { struct zynqmp_dma_chan *chan = to_chan(dchan); spin_lock_bh(&chan->lock); zynqmp_dma_start_transfer(chan); spin_unlock_bh(&chan->lock); } /** * zynqmp_dma_free_descriptors - Free channel descriptors * @dchan: DMA channel pointer */ static void zynqmp_dma_free_descriptors(struct zynqmp_dma_chan *chan) { zynqmp_dma_free_desc_list(chan, &chan->active_list); zynqmp_dma_free_desc_list(chan, &chan->pending_list); zynqmp_dma_free_desc_list(chan, &chan->done_list); } /** * zynqmp_dma_free_chan_resources - Free channel resources * @dchan: DMA channel pointer */ static void zynqmp_dma_free_chan_resources(struct dma_chan *dchan) { struct zynqmp_dma_chan *chan = to_chan(dchan); spin_lock_bh(&chan->lock); zynqmp_dma_free_descriptors(chan); spin_unlock_bh(&chan->lock); dma_free_coherent(chan->dev, (2 * ZYNQMP_DMA_DESC_SIZE(chan) * ZYNQMP_DMA_NUM_DESCS), chan->desc_pool_v, chan->desc_pool_p); kfree(chan->sw_desc_pool); pm_runtime_mark_last_busy(chan->dev); pm_runtime_put_autosuspend(chan->dev); } /** * zynqmp_dma_reset - Reset the channel * @chan: ZynqMP DMA channel pointer */ static void zynqmp_dma_reset(struct zynqmp_dma_chan *chan) { writel(ZYNQMP_DMA_IDS_DEFAULT_MASK, chan->regs + ZYNQMP_DMA_IDS); zynqmp_dma_complete_descriptor(chan); zynqmp_dma_chan_desc_cleanup(chan); zynqmp_dma_free_descriptors(chan); zynqmp_dma_init(chan); } /** * zynqmp_dma_irq_handler - ZynqMP DMA Interrupt handler * @irq: IRQ number * @data: Pointer to the ZynqMP DMA channel structure * * Return: IRQ_HANDLED/IRQ_NONE */ static irqreturn_t zynqmp_dma_irq_handler(int irq, void *data) { struct zynqmp_dma_chan *chan = (struct zynqmp_dma_chan *)data; u32 isr, imr, status; irqreturn_t ret = IRQ_NONE; isr = readl(chan->regs + ZYNQMP_DMA_ISR); imr = readl(chan->regs + ZYNQMP_DMA_IMR); status = isr & ~imr; writel(isr, chan->regs + ZYNQMP_DMA_ISR); if (status & ZYNQMP_DMA_INT_DONE) { tasklet_schedule(&chan->tasklet); ret = IRQ_HANDLED; } if (status & ZYNQMP_DMA_DONE) chan->idle = true; if (status & ZYNQMP_DMA_INT_ERR) { chan->err = true; tasklet_schedule(&chan->tasklet); dev_err(chan->dev, "Channel %p has errors\n", chan); ret = IRQ_HANDLED; } if (status & ZYNQMP_DMA_INT_OVRFL) { zynqmp_dma_handle_ovfl_int(chan, status); dev_info(chan->dev, "Channel %p overflow interrupt\n", chan); ret = IRQ_HANDLED; } return ret; } /** * zynqmp_dma_do_tasklet - Schedule completion tasklet * @data: Pointer to the ZynqMP DMA channel structure */ static void zynqmp_dma_do_tasklet(unsigned long data) { struct zynqmp_dma_chan *chan = (struct zynqmp_dma_chan *)data; u32 count; spin_lock(&chan->lock); if (chan->err) { zynqmp_dma_reset(chan); chan->err = false; goto unlock; } count = readl(chan->regs + ZYNQMP_DMA_IRQ_DST_ACCT); while (count) { zynqmp_dma_complete_descriptor(chan); zynqmp_dma_chan_desc_cleanup(chan); count--; } if (chan->idle) zynqmp_dma_start_transfer(chan); unlock: spin_unlock(&chan->lock); } /** * zynqmp_dma_device_terminate_all - Aborts all transfers on a channel * @dchan: DMA channel pointer * * Return: Always '0' */ static int zynqmp_dma_device_terminate_all(struct dma_chan *dchan) { struct zynqmp_dma_chan *chan = to_chan(dchan); spin_lock_bh(&chan->lock); writel(ZYNQMP_DMA_IDS_DEFAULT_MASK, chan->regs + ZYNQMP_DMA_IDS); zynqmp_dma_free_descriptors(chan); spin_unlock_bh(&chan->lock); return 0; } /** * zynqmp_dma_prep_memcpy - prepare descriptors for memcpy transaction * @dchan: DMA channel * @dma_dst: Destination buffer address * @dma_src: Source buffer address * @len: Transfer length * @flags: transfer ack flags * * Return: Async transaction descriptor on success and NULL on failure */ static struct dma_async_tx_descriptor *zynqmp_dma_prep_memcpy( struct dma_chan *dchan, dma_addr_t dma_dst, dma_addr_t dma_src, size_t len, ulong flags) { struct zynqmp_dma_chan *chan; struct zynqmp_dma_desc_sw *new, *first = NULL; void *desc = NULL, *prev = NULL; size_t copy; u32 desc_cnt; chan = to_chan(dchan); desc_cnt = DIV_ROUND_UP(len, ZYNQMP_DMA_MAX_TRANS_LEN); spin_lock_bh(&chan->lock); if (desc_cnt > chan->desc_free_cnt) { spin_unlock_bh(&chan->lock); dev_dbg(chan->dev, "chan %p descs are not available\n", chan); return NULL; } chan->desc_free_cnt = chan->desc_free_cnt - desc_cnt; spin_unlock_bh(&chan->lock); do { /* Allocate and populate the descriptor */ new = zynqmp_dma_get_descriptor(chan); copy = min_t(size_t, len, ZYNQMP_DMA_MAX_TRANS_LEN); desc = (struct zynqmp_dma_desc_ll *)new->src_v; zynqmp_dma_config_sg_ll_desc(chan, desc, dma_src, dma_dst, copy, prev); prev = desc; len -= copy; dma_src += copy; dma_dst += copy; if (!first) first = new; else list_add_tail(&new->node, &first->tx_list); } while (len); zynqmp_dma_desc_config_eod(chan, desc); async_tx_ack(&first->async_tx); first->async_tx.flags = flags; return &first->async_tx; } /** * zynqmp_dma_chan_remove - Channel remove function * @chan: ZynqMP DMA channel pointer */ static void zynqmp_dma_chan_remove(struct zynqmp_dma_chan *chan) { if (!chan) return; devm_free_irq(chan->zdev->dev, chan->irq, chan); tasklet_kill(&chan->tasklet); list_del(&chan->common.device_node); } /** * zynqmp_dma_chan_probe - Per Channel Probing * @zdev: Driver specific device structure * @pdev: Pointer to the platform_device structure * * Return: '0' on success and failure value on error */ static int zynqmp_dma_chan_probe(struct zynqmp_dma_device *zdev, struct platform_device *pdev) { struct zynqmp_dma_chan *chan; struct resource *res; struct device_node *node = pdev->dev.of_node; int err; chan = devm_kzalloc(zdev->dev, sizeof(*chan), GFP_KERNEL); if (!chan) return -ENOMEM; chan->dev = zdev->dev; chan->zdev = zdev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); chan->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(chan->regs)) return PTR_ERR(chan->regs); chan->bus_width = ZYNQMP_DMA_BUS_WIDTH_64; chan->dst_burst_len = ZYNQMP_DMA_AWLEN_RST_VAL; chan->src_burst_len = ZYNQMP_DMA_ARLEN_RST_VAL; err = of_property_read_u32(node, "xlnx,bus-width", &chan->bus_width); if (err < 0) { dev_err(&pdev->dev, "missing xlnx,bus-width property\n"); return err; } if (chan->bus_width != ZYNQMP_DMA_BUS_WIDTH_64 && chan->bus_width != ZYNQMP_DMA_BUS_WIDTH_128) { dev_err(zdev->dev, "invalid bus-width value"); return -EINVAL; } chan->is_dmacoherent = of_property_read_bool(node, "dma-coherent"); zdev->chan = chan; tasklet_init(&chan->tasklet, zynqmp_dma_do_tasklet, (ulong)chan); spin_lock_init(&chan->lock); INIT_LIST_HEAD(&chan->active_list); INIT_LIST_HEAD(&chan->pending_list); INIT_LIST_HEAD(&chan->done_list); INIT_LIST_HEAD(&chan->free_list); dma_cookie_init(&chan->common); chan->common.device = &zdev->common; list_add_tail(&chan->common.device_node, &zdev->common.channels); zynqmp_dma_init(chan); chan->irq = platform_get_irq(pdev, 0); if (chan->irq < 0) return -ENXIO; err = devm_request_irq(&pdev->dev, chan->irq, zynqmp_dma_irq_handler, 0, "zynqmp-dma", chan); if (err) return err; chan->desc_size = sizeof(struct zynqmp_dma_desc_ll); chan->idle = true; return 0; } /** * of_zynqmp_dma_xlate - Translation function * @dma_spec: Pointer to DMA specifier as found in the device tree * @ofdma: Pointer to DMA controller data * * Return: DMA channel pointer on success and NULL on error */ static struct dma_chan *of_zynqmp_dma_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct zynqmp_dma_device *zdev = ofdma->of_dma_data; return dma_get_slave_channel(&zdev->chan->common); } /** * zynqmp_dma_suspend - Suspend method for the driver * @dev: Address of the device structure * * Put the driver into low power mode. * Return: 0 on success and failure value on error */ static int __maybe_unused zynqmp_dma_suspend(struct device *dev) { if (!device_may_wakeup(dev)) return pm_runtime_force_suspend(dev); return 0; } /** * zynqmp_dma_resume - Resume from suspend * @dev: Address of the device structure * * Resume operation after suspend. * Return: 0 on success and failure value on error */ static int __maybe_unused zynqmp_dma_resume(struct device *dev) { if (!device_may_wakeup(dev)) return pm_runtime_force_resume(dev); return 0; } /** * zynqmp_dma_runtime_suspend - Runtime suspend method for the driver * @dev: Address of the device structure * * Put the driver into low power mode. * Return: 0 always */ static int __maybe_unused zynqmp_dma_runtime_suspend(struct device *dev) { struct zynqmp_dma_device *zdev = dev_get_drvdata(dev); clk_disable_unprepare(zdev->clk_main); clk_disable_unprepare(zdev->clk_apb); return 0; } /** * zynqmp_dma_runtime_resume - Runtime suspend method for the driver * @dev: Address of the device structure * * Put the driver into low power mode. * Return: 0 always */ static int __maybe_unused zynqmp_dma_runtime_resume(struct device *dev) { struct zynqmp_dma_device *zdev = dev_get_drvdata(dev); int err; err = clk_prepare_enable(zdev->clk_main); if (err) { dev_err(dev, "Unable to enable main clock.\n"); return err; } err = clk_prepare_enable(zdev->clk_apb); if (err) { dev_err(dev, "Unable to enable apb clock.\n"); clk_disable_unprepare(zdev->clk_main); return err; } return 0; } static const struct dev_pm_ops zynqmp_dma_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(zynqmp_dma_suspend, zynqmp_dma_resume) SET_RUNTIME_PM_OPS(zynqmp_dma_runtime_suspend, zynqmp_dma_runtime_resume, NULL) }; /** * zynqmp_dma_probe - Driver probe function * @pdev: Pointer to the platform_device structure * * Return: '0' on success and failure value on error */ static int zynqmp_dma_probe(struct platform_device *pdev) { struct zynqmp_dma_device *zdev; struct dma_device *p; int ret; zdev = devm_kzalloc(&pdev->dev, sizeof(*zdev), GFP_KERNEL); if (!zdev) return -ENOMEM; zdev->dev = &pdev->dev; INIT_LIST_HEAD(&zdev->common.channels); dma_set_mask(&pdev->dev, DMA_BIT_MASK(44)); dma_cap_set(DMA_MEMCPY, zdev->common.cap_mask); p = &zdev->common; p->device_prep_dma_memcpy = zynqmp_dma_prep_memcpy; p->device_terminate_all = zynqmp_dma_device_terminate_all; p->device_issue_pending = zynqmp_dma_issue_pending; p->device_alloc_chan_resources = zynqmp_dma_alloc_chan_resources; p->device_free_chan_resources = zynqmp_dma_free_chan_resources; p->device_tx_status = dma_cookie_status; p->device_config = zynqmp_dma_device_config; p->dev = &pdev->dev; zdev->clk_main = devm_clk_get(&pdev->dev, "clk_main"); if (IS_ERR(zdev->clk_main)) { dev_err(&pdev->dev, "main clock not found.\n"); return PTR_ERR(zdev->clk_main); } zdev->clk_apb = devm_clk_get(&pdev->dev, "clk_apb"); if (IS_ERR(zdev->clk_apb)) { dev_err(&pdev->dev, "apb clock not found.\n"); return PTR_ERR(zdev->clk_apb); } platform_set_drvdata(pdev, zdev); pm_runtime_set_autosuspend_delay(zdev->dev, ZDMA_PM_TIMEOUT); pm_runtime_use_autosuspend(zdev->dev); pm_runtime_enable(zdev->dev); pm_runtime_get_sync(zdev->dev); if (!pm_runtime_enabled(zdev->dev)) { ret = zynqmp_dma_runtime_resume(zdev->dev); if (ret) return ret; } ret = zynqmp_dma_chan_probe(zdev, pdev); if (ret) { dev_err(&pdev->dev, "Probing channel failed\n"); goto err_disable_pm; } p->dst_addr_widths = BIT(zdev->chan->bus_width / 8); p->src_addr_widths = BIT(zdev->chan->bus_width / 8); dma_async_device_register(&zdev->common); ret = of_dma_controller_register(pdev->dev.of_node, of_zynqmp_dma_xlate, zdev); if (ret) { dev_err(&pdev->dev, "Unable to register DMA to DT\n"); dma_async_device_unregister(&zdev->common); goto free_chan_resources; } pm_runtime_mark_last_busy(zdev->dev); pm_runtime_put_sync_autosuspend(zdev->dev); dev_info(&pdev->dev, "ZynqMP DMA driver Probe success\n"); return 0; free_chan_resources: zynqmp_dma_chan_remove(zdev->chan); err_disable_pm: if (!pm_runtime_enabled(zdev->dev)) zynqmp_dma_runtime_suspend(zdev->dev); pm_runtime_disable(zdev->dev); return ret; } /** * zynqmp_dma_remove - Driver remove function * @pdev: Pointer to the platform_device structure * * Return: Always '0' */ static int zynqmp_dma_remove(struct platform_device *pdev) { struct zynqmp_dma_device *zdev = platform_get_drvdata(pdev); of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&zdev->common); zynqmp_dma_chan_remove(zdev->chan); pm_runtime_disable(zdev->dev); if (!pm_runtime_enabled(zdev->dev)) zynqmp_dma_runtime_suspend(zdev->dev); return 0; } static const struct of_device_id zynqmp_dma_of_match[] = { { .compatible = "xlnx,zynqmp-dma-1.0", }, {} }; MODULE_DEVICE_TABLE(of, zynqmp_dma_of_match); static struct platform_driver zynqmp_dma_driver = { .driver = { .name = "xilinx-zynqmp-dma", .of_match_table = zynqmp_dma_of_match, .pm = &zynqmp_dma_dev_pm_ops, }, .probe = zynqmp_dma_probe, .remove = zynqmp_dma_remove, }; module_platform_driver(zynqmp_dma_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Xilinx, Inc."); MODULE_DESCRIPTION("Xilinx ZynqMP DMA driver");