/* * net/dsa/dsa2.c - Hardware switch handling, binding version 2 * Copyright (c) 2008-2009 Marvell Semiconductor * Copyright (c) 2013 Florian Fainelli * Copyright (c) 2016 Andrew Lunn * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include "dsa_priv.h" static LIST_HEAD(dsa_switch_trees); static DEFINE_MUTEX(dsa2_mutex); static const struct devlink_ops dsa_devlink_ops = { }; static struct dsa_switch_tree *dsa_get_dst(u32 tree) { struct dsa_switch_tree *dst; list_for_each_entry(dst, &dsa_switch_trees, list) if (dst->tree == tree) { kref_get(&dst->refcount); return dst; } return NULL; } static void dsa_free_dst(struct kref *ref) { struct dsa_switch_tree *dst = container_of(ref, struct dsa_switch_tree, refcount); list_del(&dst->list); kfree(dst); } static void dsa_put_dst(struct dsa_switch_tree *dst) { kref_put(&dst->refcount, dsa_free_dst); } static struct dsa_switch_tree *dsa_add_dst(u32 tree) { struct dsa_switch_tree *dst; dst = kzalloc(sizeof(*dst), GFP_KERNEL); if (!dst) return NULL; dst->tree = tree; INIT_LIST_HEAD(&dst->list); list_add_tail(&dsa_switch_trees, &dst->list); kref_init(&dst->refcount); return dst; } static void dsa_dst_add_ds(struct dsa_switch_tree *dst, struct dsa_switch *ds, u32 index) { kref_get(&dst->refcount); dst->ds[index] = ds; } static void dsa_dst_del_ds(struct dsa_switch_tree *dst, struct dsa_switch *ds, u32 index) { dst->ds[index] = NULL; kref_put(&dst->refcount, dsa_free_dst); } /* For platform data configurations, we need to have a valid name argument to * differentiate a disabled port from an enabled one */ static bool dsa_port_is_valid(struct dsa_port *port) { return !!(port->dn || port->name); } static bool dsa_port_is_dsa(struct dsa_port *port) { if (port->name && !strcmp(port->name, "dsa")) return true; else return !!of_parse_phandle(port->dn, "link", 0); } static bool dsa_port_is_cpu(struct dsa_port *port) { if (port->name && !strcmp(port->name, "cpu")) return true; else return !!of_parse_phandle(port->dn, "ethernet", 0); } static bool dsa_ds_find_port_dn(struct dsa_switch *ds, struct device_node *port) { u32 index; for (index = 0; index < ds->num_ports; index++) if (ds->ports[index].dn == port) return true; return false; } static struct dsa_switch *dsa_dst_find_port_dn(struct dsa_switch_tree *dst, struct device_node *port) { struct dsa_switch *ds; u32 index; for (index = 0; index < DSA_MAX_SWITCHES; index++) { ds = dst->ds[index]; if (!ds) continue; if (dsa_ds_find_port_dn(ds, port)) return ds; } return NULL; } static int dsa_port_complete(struct dsa_switch_tree *dst, struct dsa_switch *src_ds, struct dsa_port *port, u32 src_port) { struct device_node *link; int index; struct dsa_switch *dst_ds; for (index = 0;; index++) { link = of_parse_phandle(port->dn, "link", index); if (!link) break; dst_ds = dsa_dst_find_port_dn(dst, link); of_node_put(link); if (!dst_ds) return 1; src_ds->rtable[dst_ds->index] = src_port; } return 0; } /* A switch is complete if all the DSA ports phandles point to ports * known in the tree. A return value of 1 means the tree is not * complete. This is not an error condition. A value of 0 is * success. */ static int dsa_ds_complete(struct dsa_switch_tree *dst, struct dsa_switch *ds) { struct dsa_port *port; u32 index; int err; for (index = 0; index < ds->num_ports; index++) { port = &ds->ports[index]; if (!dsa_port_is_valid(port)) continue; if (!dsa_port_is_dsa(port)) continue; err = dsa_port_complete(dst, ds, port, index); if (err != 0) return err; ds->dsa_port_mask |= BIT(index); } return 0; } /* A tree is complete if all the DSA ports phandles point to ports * known in the tree. A return value of 1 means the tree is not * complete. This is not an error condition. A value of 0 is * success. */ static int dsa_dst_complete(struct dsa_switch_tree *dst) { struct dsa_switch *ds; u32 index; int err; for (index = 0; index < DSA_MAX_SWITCHES; index++) { ds = dst->ds[index]; if (!ds) continue; err = dsa_ds_complete(dst, ds); if (err != 0) return err; } return 0; } static int dsa_dsa_port_apply(struct dsa_port *port) { struct dsa_switch *ds = port->ds; int err; err = dsa_cpu_dsa_setup(port); if (err) { dev_warn(ds->dev, "Failed to setup dsa port %d: %d\n", port->index, err); return err; } memset(&port->devlink_port, 0, sizeof(port->devlink_port)); return devlink_port_register(ds->devlink, &port->devlink_port, port->index); } static void dsa_dsa_port_unapply(struct dsa_port *port) { devlink_port_unregister(&port->devlink_port); dsa_cpu_dsa_destroy(port); } static int dsa_cpu_port_apply(struct dsa_port *port) { struct dsa_switch *ds = port->ds; int err; err = dsa_cpu_dsa_setup(port); if (err) { dev_warn(ds->dev, "Failed to setup cpu port %d: %d\n", port->index, err); return err; } memset(&port->devlink_port, 0, sizeof(port->devlink_port)); err = devlink_port_register(ds->devlink, &port->devlink_port, port->index); return err; } static void dsa_cpu_port_unapply(struct dsa_port *port) { devlink_port_unregister(&port->devlink_port); dsa_cpu_dsa_destroy(port); port->ds->cpu_port_mask &= ~BIT(port->index); } static int dsa_user_port_apply(struct dsa_port *port) { struct dsa_switch *ds = port->ds; const char *name = port->name; int err; if (port->dn) name = of_get_property(port->dn, "label", NULL); if (!name) name = "eth%d"; err = dsa_slave_create(port, name); if (err) { dev_warn(ds->dev, "Failed to create slave %d: %d\n", port->index, err); port->netdev = NULL; return err; } memset(&port->devlink_port, 0, sizeof(port->devlink_port)); err = devlink_port_register(ds->devlink, &port->devlink_port, port->index); if (err) return err; devlink_port_type_eth_set(&port->devlink_port, port->netdev); return 0; } static void dsa_user_port_unapply(struct dsa_port *port) { devlink_port_unregister(&port->devlink_port); if (port->netdev) { dsa_slave_destroy(port->netdev); port->netdev = NULL; port->ds->enabled_port_mask &= ~(1 << port->index); } } static int dsa_ds_apply(struct dsa_switch_tree *dst, struct dsa_switch *ds) { struct dsa_port *port; u32 index; int err; /* Initialize ds->phys_mii_mask before registering the slave MDIO bus * driver and before ops->setup() has run, since the switch drivers and * the slave MDIO bus driver rely on these values for probing PHY * devices or not */ ds->phys_mii_mask = ds->enabled_port_mask; /* Add the switch to devlink before calling setup, so that setup can * add dpipe tables */ ds->devlink = devlink_alloc(&dsa_devlink_ops, 0); if (!ds->devlink) return -ENOMEM; err = devlink_register(ds->devlink, ds->dev); if (err) return err; err = ds->ops->setup(ds); if (err < 0) return err; err = dsa_switch_register_notifier(ds); if (err) return err; if (ds->ops->set_addr) { err = ds->ops->set_addr(ds, dst->cpu_dp->netdev->dev_addr); if (err < 0) return err; } if (!ds->slave_mii_bus && ds->ops->phy_read) { ds->slave_mii_bus = devm_mdiobus_alloc(ds->dev); if (!ds->slave_mii_bus) return -ENOMEM; dsa_slave_mii_bus_init(ds); err = mdiobus_register(ds->slave_mii_bus); if (err < 0) return err; } for (index = 0; index < ds->num_ports; index++) { port = &ds->ports[index]; if (!dsa_port_is_valid(port)) continue; if (dsa_port_is_dsa(port)) { err = dsa_dsa_port_apply(port); if (err) return err; continue; } if (dsa_port_is_cpu(port)) { err = dsa_cpu_port_apply(port); if (err) return err; continue; } err = dsa_user_port_apply(port); if (err) continue; } return 0; } static void dsa_ds_unapply(struct dsa_switch_tree *dst, struct dsa_switch *ds) { struct dsa_port *port; u32 index; for (index = 0; index < ds->num_ports; index++) { port = &ds->ports[index]; if (!dsa_port_is_valid(port)) continue; if (dsa_port_is_dsa(port)) { dsa_dsa_port_unapply(port); continue; } if (dsa_port_is_cpu(port)) { dsa_cpu_port_unapply(port); continue; } dsa_user_port_unapply(port); } if (ds->slave_mii_bus && ds->ops->phy_read) mdiobus_unregister(ds->slave_mii_bus); dsa_switch_unregister_notifier(ds); if (ds->devlink) { devlink_unregister(ds->devlink); devlink_free(ds->devlink); ds->devlink = NULL; } } static int dsa_dst_apply(struct dsa_switch_tree *dst) { struct dsa_switch *ds; u32 index; int err; for (index = 0; index < DSA_MAX_SWITCHES; index++) { ds = dst->ds[index]; if (!ds) continue; err = dsa_ds_apply(dst, ds); if (err) return err; } /* If we use a tagging format that doesn't have an ethertype * field, make sure that all packets from this point on get * sent to the tag format's receive function. */ wmb(); dst->cpu_dp->netdev->dsa_ptr = dst; err = dsa_master_ethtool_setup(dst->cpu_dp->netdev); if (err) return err; dst->applied = true; return 0; } static void dsa_dst_unapply(struct dsa_switch_tree *dst) { struct dsa_switch *ds; u32 index; if (!dst->applied) return; dsa_master_ethtool_restore(dst->cpu_dp->netdev); dst->cpu_dp->netdev->dsa_ptr = NULL; /* If we used a tagging format that doesn't have an ethertype * field, make sure that all packets from this point get sent * without the tag and go through the regular receive path. */ wmb(); for (index = 0; index < DSA_MAX_SWITCHES; index++) { ds = dst->ds[index]; if (!ds) continue; dsa_ds_unapply(dst, ds); } dst->cpu_dp = NULL; pr_info("DSA: tree %d unapplied\n", dst->tree); dst->applied = false; } static int dsa_cpu_parse(struct dsa_port *port, u32 index, struct dsa_switch_tree *dst, struct dsa_switch *ds) { const struct dsa_device_ops *tag_ops; enum dsa_tag_protocol tag_protocol; struct net_device *ethernet_dev; struct device_node *ethernet; if (port->dn) { ethernet = of_parse_phandle(port->dn, "ethernet", 0); if (!ethernet) return -EINVAL; ethernet_dev = of_find_net_device_by_node(ethernet); } else { ethernet_dev = dsa_dev_to_net_device(ds->cd->netdev[index]); dev_put(ethernet_dev); } if (!ethernet_dev) return -EPROBE_DEFER; if (!dst->cpu_dp) { dst->cpu_dp = port; dst->cpu_dp->netdev = ethernet_dev; } /* Initialize cpu_port_mask now for drv->setup() * to have access to a correct value, just like what * net/dsa/dsa.c::dsa_switch_setup_one does. */ ds->cpu_port_mask |= BIT(index); tag_protocol = ds->ops->get_tag_protocol(ds); tag_ops = dsa_resolve_tag_protocol(tag_protocol); if (IS_ERR(tag_ops)) { dev_warn(ds->dev, "No tagger for this switch\n"); ds->cpu_port_mask &= ~BIT(index); return PTR_ERR(tag_ops); } dst->tag_ops = tag_ops; dst->rcv = dst->tag_ops->rcv; return 0; } static int dsa_ds_parse(struct dsa_switch_tree *dst, struct dsa_switch *ds) { struct dsa_port *port; u32 index; int err; for (index = 0; index < ds->num_ports; index++) { port = &ds->ports[index]; if (!dsa_port_is_valid(port) || dsa_port_is_dsa(port)) continue; if (dsa_port_is_cpu(port)) { err = dsa_cpu_parse(port, index, dst, ds); if (err) return err; } else { /* Initialize enabled_port_mask now for drv->setup() * to have access to a correct value, just like what * net/dsa/dsa.c::dsa_switch_setup_one does. */ ds->enabled_port_mask |= BIT(index); } } pr_info("DSA: switch %d %d parsed\n", dst->tree, ds->index); return 0; } static int dsa_dst_parse(struct dsa_switch_tree *dst) { struct dsa_switch *ds; struct dsa_port *dp; u32 index; int port; int err; for (index = 0; index < DSA_MAX_SWITCHES; index++) { ds = dst->ds[index]; if (!ds) continue; err = dsa_ds_parse(dst, ds); if (err) return err; } if (!dst->cpu_dp) { pr_warn("Tree has no master device\n"); return -EINVAL; } /* Assign the default CPU port to all ports of the fabric */ for (index = 0; index < DSA_MAX_SWITCHES; index++) { ds = dst->ds[index]; if (!ds) continue; for (port = 0; port < ds->num_ports; port++) { dp = &ds->ports[port]; if (!dsa_port_is_valid(dp) || dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) continue; dp->cpu_dp = dst->cpu_dp; } } pr_info("DSA: tree %d parsed\n", dst->tree); return 0; } static int dsa_parse_ports_dn(struct device_node *ports, struct dsa_switch *ds) { struct device_node *port; int err; u32 reg; for_each_available_child_of_node(ports, port) { err = of_property_read_u32(port, "reg", ®); if (err) return err; if (reg >= ds->num_ports) return -EINVAL; ds->ports[reg].dn = port; } return 0; } static int dsa_parse_ports(struct dsa_chip_data *cd, struct dsa_switch *ds) { bool valid_name_found = false; unsigned int i; for (i = 0; i < DSA_MAX_PORTS; i++) { if (!cd->port_names[i]) continue; ds->ports[i].name = cd->port_names[i]; valid_name_found = true; } if (!valid_name_found && i == DSA_MAX_PORTS) return -EINVAL; return 0; } static int dsa_parse_member_dn(struct device_node *np, u32 *tree, u32 *index) { int err; *tree = *index = 0; err = of_property_read_u32_index(np, "dsa,member", 0, tree); if (err) { /* Does not exist, but it is optional */ if (err == -EINVAL) return 0; return err; } err = of_property_read_u32_index(np, "dsa,member", 1, index); if (err) return err; if (*index >= DSA_MAX_SWITCHES) return -EINVAL; return 0; } static int dsa_parse_member(struct dsa_chip_data *pd, u32 *tree, u32 *index) { if (!pd) return -ENODEV; /* We do not support complex trees with dsa_chip_data */ *tree = 0; *index = 0; return 0; } static struct device_node *dsa_get_ports(struct dsa_switch *ds, struct device_node *np) { struct device_node *ports; ports = of_get_child_by_name(np, "ports"); if (!ports) { dev_err(ds->dev, "no ports child node found\n"); return ERR_PTR(-EINVAL); } return ports; } static int _dsa_register_switch(struct dsa_switch *ds) { struct dsa_chip_data *pdata = ds->dev->platform_data; struct device_node *np = ds->dev->of_node; struct dsa_switch_tree *dst; struct device_node *ports; u32 tree, index; int i, err; if (np) { err = dsa_parse_member_dn(np, &tree, &index); if (err) return err; ports = dsa_get_ports(ds, np); if (IS_ERR(ports)) return PTR_ERR(ports); err = dsa_parse_ports_dn(ports, ds); if (err) return err; } else { err = dsa_parse_member(pdata, &tree, &index); if (err) return err; err = dsa_parse_ports(pdata, ds); if (err) return err; } dst = dsa_get_dst(tree); if (!dst) { dst = dsa_add_dst(tree); if (!dst) return -ENOMEM; } if (dst->ds[index]) { err = -EBUSY; goto out; } ds->dst = dst; ds->index = index; ds->cd = pdata; /* Initialize the routing table */ for (i = 0; i < DSA_MAX_SWITCHES; ++i) ds->rtable[i] = DSA_RTABLE_NONE; dsa_dst_add_ds(dst, ds, index); err = dsa_dst_complete(dst); if (err < 0) goto out_del_dst; if (err == 1) { /* Not all switches registered yet */ err = 0; goto out; } if (dst->applied) { pr_info("DSA: Disjoint trees?\n"); return -EINVAL; } err = dsa_dst_parse(dst); if (err) { if (err == -EPROBE_DEFER) { dsa_dst_del_ds(dst, ds, ds->index); return err; } goto out_del_dst; } err = dsa_dst_apply(dst); if (err) { dsa_dst_unapply(dst); goto out_del_dst; } dsa_put_dst(dst); return 0; out_del_dst: dsa_dst_del_ds(dst, ds, ds->index); out: dsa_put_dst(dst); return err; } struct dsa_switch *dsa_switch_alloc(struct device *dev, size_t n) { size_t size = sizeof(struct dsa_switch) + n * sizeof(struct dsa_port); struct dsa_switch *ds; int i; ds = devm_kzalloc(dev, size, GFP_KERNEL); if (!ds) return NULL; ds->dev = dev; ds->num_ports = n; for (i = 0; i < ds->num_ports; ++i) { ds->ports[i].index = i; ds->ports[i].ds = ds; } return ds; } EXPORT_SYMBOL_GPL(dsa_switch_alloc); int dsa_register_switch(struct dsa_switch *ds) { int err; mutex_lock(&dsa2_mutex); err = _dsa_register_switch(ds); mutex_unlock(&dsa2_mutex); return err; } EXPORT_SYMBOL_GPL(dsa_register_switch); static void _dsa_unregister_switch(struct dsa_switch *ds) { struct dsa_switch_tree *dst = ds->dst; dsa_dst_unapply(dst); dsa_dst_del_ds(dst, ds, ds->index); } void dsa_unregister_switch(struct dsa_switch *ds) { mutex_lock(&dsa2_mutex); _dsa_unregister_switch(ds); mutex_unlock(&dsa2_mutex); } EXPORT_SYMBOL_GPL(dsa_unregister_switch);