/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Copyright IBM Corp. 2007 * * Authors: Hollis Blanchard * Christian Ehrhardt */ #include #include #include #include #include #include #include #include #include #include #include #include #include "timing.h" #include "../mm/mmu_decl.h" #define CREATE_TRACE_POINTS #include "trace.h" int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) { return !(v->arch.shared->msr & MSR_WE) || !!(v->arch.pending_exceptions); } int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) { int nr = kvmppc_get_gpr(vcpu, 11); int r; unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); unsigned long r2 = 0; if (!(vcpu->arch.shared->msr & MSR_SF)) { /* 32 bit mode */ param1 &= 0xffffffff; param2 &= 0xffffffff; param3 &= 0xffffffff; param4 &= 0xffffffff; } switch (nr) { case HC_VENDOR_KVM | KVM_HC_PPC_MAP_MAGIC_PAGE: { vcpu->arch.magic_page_pa = param1; vcpu->arch.magic_page_ea = param2; r = HC_EV_SUCCESS; break; } case HC_VENDOR_KVM | KVM_HC_FEATURES: r = HC_EV_SUCCESS; #if defined(CONFIG_PPC_BOOK3S) /* XXX Missing magic page on BookE */ r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); #endif /* Second return value is in r4 */ kvmppc_set_gpr(vcpu, 4, r2); break; default: r = HC_EV_UNIMPLEMENTED; break; } return r; } int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) { enum emulation_result er; int r; er = kvmppc_emulate_instruction(run, vcpu); switch (er) { case EMULATE_DONE: /* Future optimization: only reload non-volatiles if they were * actually modified. */ r = RESUME_GUEST_NV; break; case EMULATE_DO_MMIO: run->exit_reason = KVM_EXIT_MMIO; /* We must reload nonvolatiles because "update" load/store * instructions modify register state. */ /* Future optimization: only reload non-volatiles if they were * actually modified. */ r = RESUME_HOST_NV; break; case EMULATE_FAIL: /* XXX Deliver Program interrupt to guest. */ printk(KERN_EMERG "%s: emulation failed (%08x)\n", __func__, kvmppc_get_last_inst(vcpu)); r = RESUME_HOST; break; default: BUG(); } return r; } int kvm_arch_hardware_enable(void *garbage) { return 0; } void kvm_arch_hardware_disable(void *garbage) { } int kvm_arch_hardware_setup(void) { return 0; } void kvm_arch_hardware_unsetup(void) { } void kvm_arch_check_processor_compat(void *rtn) { *(int *)rtn = kvmppc_core_check_processor_compat(); } struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm; kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); if (!kvm) return ERR_PTR(-ENOMEM); return kvm; } static void kvmppc_free_vcpus(struct kvm *kvm) { unsigned int i; struct kvm_vcpu *vcpu; kvm_for_each_vcpu(i, vcpu, kvm) kvm_arch_vcpu_free(vcpu); mutex_lock(&kvm->lock); for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) kvm->vcpus[i] = NULL; atomic_set(&kvm->online_vcpus, 0); mutex_unlock(&kvm->lock); } void kvm_arch_sync_events(struct kvm *kvm) { } void kvm_arch_destroy_vm(struct kvm *kvm) { kvmppc_free_vcpus(kvm); kvm_free_physmem(kvm); cleanup_srcu_struct(&kvm->srcu); kfree(kvm); } int kvm_dev_ioctl_check_extension(long ext) { int r; switch (ext) { case KVM_CAP_PPC_SEGSTATE: case KVM_CAP_PPC_PAIRED_SINGLES: case KVM_CAP_PPC_UNSET_IRQ: case KVM_CAP_ENABLE_CAP: case KVM_CAP_PPC_OSI: r = 1; break; case KVM_CAP_COALESCED_MMIO: r = KVM_COALESCED_MMIO_PAGE_OFFSET; break; default: r = 0; break; } return r; } long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { return -EINVAL; } int kvm_arch_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, struct kvm_memory_slot old, struct kvm_userspace_memory_region *mem, int user_alloc) { return 0; } void kvm_arch_commit_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, struct kvm_memory_slot old, int user_alloc) { return; } void kvm_arch_flush_shadow(struct kvm *kvm) { } struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) { struct kvm_vcpu *vcpu; vcpu = kvmppc_core_vcpu_create(kvm, id); if (!IS_ERR(vcpu)) kvmppc_create_vcpu_debugfs(vcpu, id); return vcpu; } void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) { /* Make sure we're not using the vcpu anymore */ hrtimer_cancel(&vcpu->arch.dec_timer); tasklet_kill(&vcpu->arch.tasklet); kvmppc_remove_vcpu_debugfs(vcpu); kvmppc_core_vcpu_free(vcpu); } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { kvm_arch_vcpu_free(vcpu); } int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) { return kvmppc_core_pending_dec(vcpu); } static void kvmppc_decrementer_func(unsigned long data) { struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data; kvmppc_core_queue_dec(vcpu); if (waitqueue_active(&vcpu->wq)) { wake_up_interruptible(&vcpu->wq); vcpu->stat.halt_wakeup++; } } /* * low level hrtimer wake routine. Because this runs in hardirq context * we schedule a tasklet to do the real work. */ enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) { struct kvm_vcpu *vcpu; vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); tasklet_schedule(&vcpu->arch.tasklet); return HRTIMER_NORESTART; } int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) { hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); tasklet_init(&vcpu->arch.tasklet, kvmppc_decrementer_func, (ulong)vcpu); vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; return 0; } void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) { kvmppc_mmu_destroy(vcpu); } void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { kvmppc_core_vcpu_load(vcpu, cpu); } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { kvmppc_core_vcpu_put(vcpu); } int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { return -EINVAL; } static void kvmppc_complete_dcr_load(struct kvm_vcpu *vcpu, struct kvm_run *run) { kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, run->dcr.data); } static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, struct kvm_run *run) { u64 uninitialized_var(gpr); if (run->mmio.len > sizeof(gpr)) { printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); return; } if (vcpu->arch.mmio_is_bigendian) { switch (run->mmio.len) { case 8: gpr = *(u64 *)run->mmio.data; break; case 4: gpr = *(u32 *)run->mmio.data; break; case 2: gpr = *(u16 *)run->mmio.data; break; case 1: gpr = *(u8 *)run->mmio.data; break; } } else { /* Convert BE data from userland back to LE. */ switch (run->mmio.len) { case 4: gpr = ld_le32((u32 *)run->mmio.data); break; case 2: gpr = ld_le16((u16 *)run->mmio.data); break; case 1: gpr = *(u8 *)run->mmio.data; break; } } if (vcpu->arch.mmio_sign_extend) { switch (run->mmio.len) { #ifdef CONFIG_PPC64 case 4: gpr = (s64)(s32)gpr; break; #endif case 2: gpr = (s64)(s16)gpr; break; case 1: gpr = (s64)(s8)gpr; break; } } kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); switch (vcpu->arch.io_gpr & KVM_REG_EXT_MASK) { case KVM_REG_GPR: kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); break; case KVM_REG_FPR: vcpu->arch.fpr[vcpu->arch.io_gpr & KVM_REG_MASK] = gpr; break; #ifdef CONFIG_PPC_BOOK3S case KVM_REG_QPR: vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_REG_MASK] = gpr; break; case KVM_REG_FQPR: vcpu->arch.fpr[vcpu->arch.io_gpr & KVM_REG_MASK] = gpr; vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_REG_MASK] = gpr; break; #endif default: BUG(); } } int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, unsigned int rt, unsigned int bytes, int is_bigendian) { if (bytes > sizeof(run->mmio.data)) { printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, run->mmio.len); } run->mmio.phys_addr = vcpu->arch.paddr_accessed; run->mmio.len = bytes; run->mmio.is_write = 0; vcpu->arch.io_gpr = rt; vcpu->arch.mmio_is_bigendian = is_bigendian; vcpu->mmio_needed = 1; vcpu->mmio_is_write = 0; vcpu->arch.mmio_sign_extend = 0; return EMULATE_DO_MMIO; } /* Same as above, but sign extends */ int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, unsigned int rt, unsigned int bytes, int is_bigendian) { int r; r = kvmppc_handle_load(run, vcpu, rt, bytes, is_bigendian); vcpu->arch.mmio_sign_extend = 1; return r; } int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, u64 val, unsigned int bytes, int is_bigendian) { void *data = run->mmio.data; if (bytes > sizeof(run->mmio.data)) { printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, run->mmio.len); } run->mmio.phys_addr = vcpu->arch.paddr_accessed; run->mmio.len = bytes; run->mmio.is_write = 1; vcpu->mmio_needed = 1; vcpu->mmio_is_write = 1; /* Store the value at the lowest bytes in 'data'. */ if (is_bigendian) { switch (bytes) { case 8: *(u64 *)data = val; break; case 4: *(u32 *)data = val; break; case 2: *(u16 *)data = val; break; case 1: *(u8 *)data = val; break; } } else { /* Store LE value into 'data'. */ switch (bytes) { case 4: st_le32(data, val); break; case 2: st_le16(data, val); break; case 1: *(u8 *)data = val; break; } } return EMULATE_DO_MMIO; } int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) { int r; sigset_t sigsaved; if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); if (vcpu->mmio_needed) { if (!vcpu->mmio_is_write) kvmppc_complete_mmio_load(vcpu, run); vcpu->mmio_needed = 0; } else if (vcpu->arch.dcr_needed) { if (!vcpu->arch.dcr_is_write) kvmppc_complete_dcr_load(vcpu, run); vcpu->arch.dcr_needed = 0; } else if (vcpu->arch.osi_needed) { u64 *gprs = run->osi.gprs; int i; for (i = 0; i < 32; i++) kvmppc_set_gpr(vcpu, i, gprs[i]); vcpu->arch.osi_needed = 0; } kvmppc_core_deliver_interrupts(vcpu); local_irq_disable(); kvm_guest_enter(); r = __kvmppc_vcpu_run(run, vcpu); kvm_guest_exit(); local_irq_enable(); if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &sigsaved, NULL); return r; } int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) { if (irq->irq == KVM_INTERRUPT_UNSET) kvmppc_core_dequeue_external(vcpu, irq); else kvmppc_core_queue_external(vcpu, irq); if (waitqueue_active(&vcpu->wq)) { wake_up_interruptible(&vcpu->wq); vcpu->stat.halt_wakeup++; } return 0; } static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, struct kvm_enable_cap *cap) { int r; if (cap->flags) return -EINVAL; switch (cap->cap) { case KVM_CAP_PPC_OSI: r = 0; vcpu->arch.osi_enabled = true; break; default: r = -EINVAL; break; } return r; } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { return -EINVAL; } long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; long r; switch (ioctl) { case KVM_INTERRUPT: { struct kvm_interrupt irq; r = -EFAULT; if (copy_from_user(&irq, argp, sizeof(irq))) goto out; r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); goto out; } case KVM_ENABLE_CAP: { struct kvm_enable_cap cap; r = -EFAULT; if (copy_from_user(&cap, argp, sizeof(cap))) goto out; r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); break; } default: r = -EINVAL; } out: return r; } long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { long r; switch (ioctl) { default: r = -ENOTTY; } return r; } int kvm_arch_init(void *opaque) { return 0; } void kvm_arch_exit(void) { }