/* Intel(R) Gigabit Ethernet Linux driver * Copyright(c) 2007-2014 Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, see . * * The full GNU General Public License is included in this distribution in * the file called "COPYING". * * Contact Information: * e1000-devel Mailing List * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 */ /* ethtool support for igb */ #include #include #include #include #include #include #include #include #include #include #include #include #include "igb.h" struct igb_stats { char stat_string[ETH_GSTRING_LEN]; int sizeof_stat; int stat_offset; }; #define IGB_STAT(_name, _stat) { \ .stat_string = _name, \ .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \ .stat_offset = offsetof(struct igb_adapter, _stat) \ } static const struct igb_stats igb_gstrings_stats[] = { IGB_STAT("rx_packets", stats.gprc), IGB_STAT("tx_packets", stats.gptc), IGB_STAT("rx_bytes", stats.gorc), IGB_STAT("tx_bytes", stats.gotc), IGB_STAT("rx_broadcast", stats.bprc), IGB_STAT("tx_broadcast", stats.bptc), IGB_STAT("rx_multicast", stats.mprc), IGB_STAT("tx_multicast", stats.mptc), IGB_STAT("multicast", stats.mprc), IGB_STAT("collisions", stats.colc), IGB_STAT("rx_crc_errors", stats.crcerrs), IGB_STAT("rx_no_buffer_count", stats.rnbc), IGB_STAT("rx_missed_errors", stats.mpc), IGB_STAT("tx_aborted_errors", stats.ecol), IGB_STAT("tx_carrier_errors", stats.tncrs), IGB_STAT("tx_window_errors", stats.latecol), IGB_STAT("tx_abort_late_coll", stats.latecol), IGB_STAT("tx_deferred_ok", stats.dc), IGB_STAT("tx_single_coll_ok", stats.scc), IGB_STAT("tx_multi_coll_ok", stats.mcc), IGB_STAT("tx_timeout_count", tx_timeout_count), IGB_STAT("rx_long_length_errors", stats.roc), IGB_STAT("rx_short_length_errors", stats.ruc), IGB_STAT("rx_align_errors", stats.algnerrc), IGB_STAT("tx_tcp_seg_good", stats.tsctc), IGB_STAT("tx_tcp_seg_failed", stats.tsctfc), IGB_STAT("rx_flow_control_xon", stats.xonrxc), IGB_STAT("rx_flow_control_xoff", stats.xoffrxc), IGB_STAT("tx_flow_control_xon", stats.xontxc), IGB_STAT("tx_flow_control_xoff", stats.xofftxc), IGB_STAT("rx_long_byte_count", stats.gorc), IGB_STAT("tx_dma_out_of_sync", stats.doosync), IGB_STAT("tx_smbus", stats.mgptc), IGB_STAT("rx_smbus", stats.mgprc), IGB_STAT("dropped_smbus", stats.mgpdc), IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc), IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc), IGB_STAT("os2bmc_tx_by_host", stats.o2bspc), IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc), IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), }; #define IGB_NETDEV_STAT(_net_stat) { \ .stat_string = __stringify(_net_stat), \ .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \ .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \ } static const struct igb_stats igb_gstrings_net_stats[] = { IGB_NETDEV_STAT(rx_errors), IGB_NETDEV_STAT(tx_errors), IGB_NETDEV_STAT(tx_dropped), IGB_NETDEV_STAT(rx_length_errors), IGB_NETDEV_STAT(rx_over_errors), IGB_NETDEV_STAT(rx_frame_errors), IGB_NETDEV_STAT(rx_fifo_errors), IGB_NETDEV_STAT(tx_fifo_errors), IGB_NETDEV_STAT(tx_heartbeat_errors) }; #define IGB_GLOBAL_STATS_LEN \ (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)) #define IGB_NETDEV_STATS_LEN \ (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats)) #define IGB_RX_QUEUE_STATS_LEN \ (sizeof(struct igb_rx_queue_stats) / sizeof(u64)) #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */ #define IGB_QUEUE_STATS_LEN \ ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \ IGB_RX_QUEUE_STATS_LEN) + \ (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \ IGB_TX_QUEUE_STATS_LEN)) #define IGB_STATS_LEN \ (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN) static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { "Register test (offline)", "Eeprom test (offline)", "Interrupt test (offline)", "Loopback test (offline)", "Link test (on/offline)" }; #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN) static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags; u32 status; u32 speed; status = rd32(E1000_STATUS); if (hw->phy.media_type == e1000_media_type_copper) { ecmd->supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full| SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_Pause); ecmd->advertising = ADVERTISED_TP; if (hw->mac.autoneg == 1) { ecmd->advertising |= ADVERTISED_Autoneg; /* the e1000 autoneg seems to match ethtool nicely */ ecmd->advertising |= hw->phy.autoneg_advertised; } ecmd->port = PORT_TP; ecmd->phy_address = hw->phy.addr; ecmd->transceiver = XCVR_INTERNAL; } else { ecmd->supported = (SUPPORTED_FIBRE | SUPPORTED_1000baseKX_Full | SUPPORTED_Autoneg | SUPPORTED_Pause); ecmd->advertising = (ADVERTISED_FIBRE | ADVERTISED_1000baseKX_Full); if (hw->mac.type == e1000_i354) { if ((hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) && !(status & E1000_STATUS_2P5_SKU_OVER)) { ecmd->supported |= SUPPORTED_2500baseX_Full; ecmd->supported &= ~SUPPORTED_1000baseKX_Full; ecmd->advertising |= ADVERTISED_2500baseX_Full; ecmd->advertising &= ~ADVERTISED_1000baseKX_Full; } } if (eth_flags->e100_base_fx) { ecmd->supported |= SUPPORTED_100baseT_Full; ecmd->advertising |= ADVERTISED_100baseT_Full; } if (hw->mac.autoneg == 1) ecmd->advertising |= ADVERTISED_Autoneg; ecmd->port = PORT_FIBRE; ecmd->transceiver = XCVR_EXTERNAL; } if (hw->mac.autoneg != 1) ecmd->advertising &= ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause); switch (hw->fc.requested_mode) { case e1000_fc_full: ecmd->advertising |= ADVERTISED_Pause; break; case e1000_fc_rx_pause: ecmd->advertising |= (ADVERTISED_Pause | ADVERTISED_Asym_Pause); break; case e1000_fc_tx_pause: ecmd->advertising |= ADVERTISED_Asym_Pause; break; default: ecmd->advertising &= ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause); } if (status & E1000_STATUS_LU) { if ((status & E1000_STATUS_2P5_SKU) && !(status & E1000_STATUS_2P5_SKU_OVER)) { speed = SPEED_2500; } else if (status & E1000_STATUS_SPEED_1000) { speed = SPEED_1000; } else if (status & E1000_STATUS_SPEED_100) { speed = SPEED_100; } else { speed = SPEED_10; } if ((status & E1000_STATUS_FD) || hw->phy.media_type != e1000_media_type_copper) ecmd->duplex = DUPLEX_FULL; else ecmd->duplex = DUPLEX_HALF; } else { speed = SPEED_UNKNOWN; ecmd->duplex = DUPLEX_UNKNOWN; } ethtool_cmd_speed_set(ecmd, speed); if ((hw->phy.media_type == e1000_media_type_fiber) || hw->mac.autoneg) ecmd->autoneg = AUTONEG_ENABLE; else ecmd->autoneg = AUTONEG_DISABLE; /* MDI-X => 2; MDI =>1; Invalid =>0 */ if (hw->phy.media_type == e1000_media_type_copper) ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI; else ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; if (hw->phy.mdix == AUTO_ALL_MODES) ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; else ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; return 0; } static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; /* When SoL/IDER sessions are active, autoneg/speed/duplex * cannot be changed */ if (igb_check_reset_block(hw)) { dev_err(&adapter->pdev->dev, "Cannot change link characteristics when SoL/IDER is active.\n"); return -EINVAL; } /* MDI setting is only allowed when autoneg enabled because * some hardware doesn't allow MDI setting when speed or * duplex is forced. */ if (ecmd->eth_tp_mdix_ctrl) { if (hw->phy.media_type != e1000_media_type_copper) return -EOPNOTSUPP; if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && (ecmd->autoneg != AUTONEG_ENABLE)) { dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); return -EINVAL; } } while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) usleep_range(1000, 2000); if (ecmd->autoneg == AUTONEG_ENABLE) { hw->mac.autoneg = 1; if (hw->phy.media_type == e1000_media_type_fiber) { hw->phy.autoneg_advertised = ecmd->advertising | ADVERTISED_FIBRE | ADVERTISED_Autoneg; switch (adapter->link_speed) { case SPEED_2500: hw->phy.autoneg_advertised = ADVERTISED_2500baseX_Full; break; case SPEED_1000: hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full; break; case SPEED_100: hw->phy.autoneg_advertised = ADVERTISED_100baseT_Full; break; default: break; } } else { hw->phy.autoneg_advertised = ecmd->advertising | ADVERTISED_TP | ADVERTISED_Autoneg; } ecmd->advertising = hw->phy.autoneg_advertised; if (adapter->fc_autoneg) hw->fc.requested_mode = e1000_fc_default; } else { u32 speed = ethtool_cmd_speed(ecmd); /* calling this overrides forced MDI setting */ if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) { clear_bit(__IGB_RESETTING, &adapter->state); return -EINVAL; } } /* MDI-X => 2; MDI => 1; Auto => 3 */ if (ecmd->eth_tp_mdix_ctrl) { /* fix up the value for auto (3 => 0) as zero is mapped * internally to auto */ if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) hw->phy.mdix = AUTO_ALL_MODES; else hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; } /* reset the link */ if (netif_running(adapter->netdev)) { igb_down(adapter); igb_up(adapter); } else igb_reset(adapter); clear_bit(__IGB_RESETTING, &adapter->state); return 0; } static u32 igb_get_link(struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_mac_info *mac = &adapter->hw.mac; /* If the link is not reported up to netdev, interrupts are disabled, * and so the physical link state may have changed since we last * looked. Set get_link_status to make sure that the true link * state is interrogated, rather than pulling a cached and possibly * stale link state from the driver. */ if (!netif_carrier_ok(netdev)) mac->get_link_status = 1; return igb_has_link(adapter); } static void igb_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; pause->autoneg = (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); if (hw->fc.current_mode == e1000_fc_rx_pause) pause->rx_pause = 1; else if (hw->fc.current_mode == e1000_fc_tx_pause) pause->tx_pause = 1; else if (hw->fc.current_mode == e1000_fc_full) { pause->rx_pause = 1; pause->tx_pause = 1; } } static int igb_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; int retval = 0; /* 100basefx does not support setting link flow control */ if (hw->dev_spec._82575.eth_flags.e100_base_fx) return -EINVAL; adapter->fc_autoneg = pause->autoneg; while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) usleep_range(1000, 2000); if (adapter->fc_autoneg == AUTONEG_ENABLE) { hw->fc.requested_mode = e1000_fc_default; if (netif_running(adapter->netdev)) { igb_down(adapter); igb_up(adapter); } else { igb_reset(adapter); } } else { if (pause->rx_pause && pause->tx_pause) hw->fc.requested_mode = e1000_fc_full; else if (pause->rx_pause && !pause->tx_pause) hw->fc.requested_mode = e1000_fc_rx_pause; else if (!pause->rx_pause && pause->tx_pause) hw->fc.requested_mode = e1000_fc_tx_pause; else if (!pause->rx_pause && !pause->tx_pause) hw->fc.requested_mode = e1000_fc_none; hw->fc.current_mode = hw->fc.requested_mode; retval = ((hw->phy.media_type == e1000_media_type_copper) ? igb_force_mac_fc(hw) : igb_setup_link(hw)); } clear_bit(__IGB_RESETTING, &adapter->state); return retval; } static u32 igb_get_msglevel(struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); return adapter->msg_enable; } static void igb_set_msglevel(struct net_device *netdev, u32 data) { struct igb_adapter *adapter = netdev_priv(netdev); adapter->msg_enable = data; } static int igb_get_regs_len(struct net_device *netdev) { #define IGB_REGS_LEN 739 return IGB_REGS_LEN * sizeof(u32); } static void igb_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 *regs_buff = p; u8 i; memset(p, 0, IGB_REGS_LEN * sizeof(u32)); regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; /* General Registers */ regs_buff[0] = rd32(E1000_CTRL); regs_buff[1] = rd32(E1000_STATUS); regs_buff[2] = rd32(E1000_CTRL_EXT); regs_buff[3] = rd32(E1000_MDIC); regs_buff[4] = rd32(E1000_SCTL); regs_buff[5] = rd32(E1000_CONNSW); regs_buff[6] = rd32(E1000_VET); regs_buff[7] = rd32(E1000_LEDCTL); regs_buff[8] = rd32(E1000_PBA); regs_buff[9] = rd32(E1000_PBS); regs_buff[10] = rd32(E1000_FRTIMER); regs_buff[11] = rd32(E1000_TCPTIMER); /* NVM Register */ regs_buff[12] = rd32(E1000_EECD); /* Interrupt */ /* Reading EICS for EICR because they read the * same but EICS does not clear on read */ regs_buff[13] = rd32(E1000_EICS); regs_buff[14] = rd32(E1000_EICS); regs_buff[15] = rd32(E1000_EIMS); regs_buff[16] = rd32(E1000_EIMC); regs_buff[17] = rd32(E1000_EIAC); regs_buff[18] = rd32(E1000_EIAM); /* Reading ICS for ICR because they read the * same but ICS does not clear on read */ regs_buff[19] = rd32(E1000_ICS); regs_buff[20] = rd32(E1000_ICS); regs_buff[21] = rd32(E1000_IMS); regs_buff[22] = rd32(E1000_IMC); regs_buff[23] = rd32(E1000_IAC); regs_buff[24] = rd32(E1000_IAM); regs_buff[25] = rd32(E1000_IMIRVP); /* Flow Control */ regs_buff[26] = rd32(E1000_FCAL); regs_buff[27] = rd32(E1000_FCAH); regs_buff[28] = rd32(E1000_FCTTV); regs_buff[29] = rd32(E1000_FCRTL); regs_buff[30] = rd32(E1000_FCRTH); regs_buff[31] = rd32(E1000_FCRTV); /* Receive */ regs_buff[32] = rd32(E1000_RCTL); regs_buff[33] = rd32(E1000_RXCSUM); regs_buff[34] = rd32(E1000_RLPML); regs_buff[35] = rd32(E1000_RFCTL); regs_buff[36] = rd32(E1000_MRQC); regs_buff[37] = rd32(E1000_VT_CTL); /* Transmit */ regs_buff[38] = rd32(E1000_TCTL); regs_buff[39] = rd32(E1000_TCTL_EXT); regs_buff[40] = rd32(E1000_TIPG); regs_buff[41] = rd32(E1000_DTXCTL); /* Wake Up */ regs_buff[42] = rd32(E1000_WUC); regs_buff[43] = rd32(E1000_WUFC); regs_buff[44] = rd32(E1000_WUS); regs_buff[45] = rd32(E1000_IPAV); regs_buff[46] = rd32(E1000_WUPL); /* MAC */ regs_buff[47] = rd32(E1000_PCS_CFG0); regs_buff[48] = rd32(E1000_PCS_LCTL); regs_buff[49] = rd32(E1000_PCS_LSTAT); regs_buff[50] = rd32(E1000_PCS_ANADV); regs_buff[51] = rd32(E1000_PCS_LPAB); regs_buff[52] = rd32(E1000_PCS_NPTX); regs_buff[53] = rd32(E1000_PCS_LPABNP); /* Statistics */ regs_buff[54] = adapter->stats.crcerrs; regs_buff[55] = adapter->stats.algnerrc; regs_buff[56] = adapter->stats.symerrs; regs_buff[57] = adapter->stats.rxerrc; regs_buff[58] = adapter->stats.mpc; regs_buff[59] = adapter->stats.scc; regs_buff[60] = adapter->stats.ecol; regs_buff[61] = adapter->stats.mcc; regs_buff[62] = adapter->stats.latecol; regs_buff[63] = adapter->stats.colc; regs_buff[64] = adapter->stats.dc; regs_buff[65] = adapter->stats.tncrs; regs_buff[66] = adapter->stats.sec; regs_buff[67] = adapter->stats.htdpmc; regs_buff[68] = adapter->stats.rlec; regs_buff[69] = adapter->stats.xonrxc; regs_buff[70] = adapter->stats.xontxc; regs_buff[71] = adapter->stats.xoffrxc; regs_buff[72] = adapter->stats.xofftxc; regs_buff[73] = adapter->stats.fcruc; regs_buff[74] = adapter->stats.prc64; regs_buff[75] = adapter->stats.prc127; regs_buff[76] = adapter->stats.prc255; regs_buff[77] = adapter->stats.prc511; regs_buff[78] = adapter->stats.prc1023; regs_buff[79] = adapter->stats.prc1522; regs_buff[80] = adapter->stats.gprc; regs_buff[81] = adapter->stats.bprc; regs_buff[82] = adapter->stats.mprc; regs_buff[83] = adapter->stats.gptc; regs_buff[84] = adapter->stats.gorc; regs_buff[86] = adapter->stats.gotc; regs_buff[88] = adapter->stats.rnbc; regs_buff[89] = adapter->stats.ruc; regs_buff[90] = adapter->stats.rfc; regs_buff[91] = adapter->stats.roc; regs_buff[92] = adapter->stats.rjc; regs_buff[93] = adapter->stats.mgprc; regs_buff[94] = adapter->stats.mgpdc; regs_buff[95] = adapter->stats.mgptc; regs_buff[96] = adapter->stats.tor; regs_buff[98] = adapter->stats.tot; regs_buff[100] = adapter->stats.tpr; regs_buff[101] = adapter->stats.tpt; regs_buff[102] = adapter->stats.ptc64; regs_buff[103] = adapter->stats.ptc127; regs_buff[104] = adapter->stats.ptc255; regs_buff[105] = adapter->stats.ptc511; regs_buff[106] = adapter->stats.ptc1023; regs_buff[107] = adapter->stats.ptc1522; regs_buff[108] = adapter->stats.mptc; regs_buff[109] = adapter->stats.bptc; regs_buff[110] = adapter->stats.tsctc; regs_buff[111] = adapter->stats.iac; regs_buff[112] = adapter->stats.rpthc; regs_buff[113] = adapter->stats.hgptc; regs_buff[114] = adapter->stats.hgorc; regs_buff[116] = adapter->stats.hgotc; regs_buff[118] = adapter->stats.lenerrs; regs_buff[119] = adapter->stats.scvpc; regs_buff[120] = adapter->stats.hrmpc; for (i = 0; i < 4; i++) regs_buff[121 + i] = rd32(E1000_SRRCTL(i)); for (i = 0; i < 4; i++) regs_buff[125 + i] = rd32(E1000_PSRTYPE(i)); for (i = 0; i < 4; i++) regs_buff[129 + i] = rd32(E1000_RDBAL(i)); for (i = 0; i < 4; i++) regs_buff[133 + i] = rd32(E1000_RDBAH(i)); for (i = 0; i < 4; i++) regs_buff[137 + i] = rd32(E1000_RDLEN(i)); for (i = 0; i < 4; i++) regs_buff[141 + i] = rd32(E1000_RDH(i)); for (i = 0; i < 4; i++) regs_buff[145 + i] = rd32(E1000_RDT(i)); for (i = 0; i < 4; i++) regs_buff[149 + i] = rd32(E1000_RXDCTL(i)); for (i = 0; i < 10; i++) regs_buff[153 + i] = rd32(E1000_EITR(i)); for (i = 0; i < 8; i++) regs_buff[163 + i] = rd32(E1000_IMIR(i)); for (i = 0; i < 8; i++) regs_buff[171 + i] = rd32(E1000_IMIREXT(i)); for (i = 0; i < 16; i++) regs_buff[179 + i] = rd32(E1000_RAL(i)); for (i = 0; i < 16; i++) regs_buff[195 + i] = rd32(E1000_RAH(i)); for (i = 0; i < 4; i++) regs_buff[211 + i] = rd32(E1000_TDBAL(i)); for (i = 0; i < 4; i++) regs_buff[215 + i] = rd32(E1000_TDBAH(i)); for (i = 0; i < 4; i++) regs_buff[219 + i] = rd32(E1000_TDLEN(i)); for (i = 0; i < 4; i++) regs_buff[223 + i] = rd32(E1000_TDH(i)); for (i = 0; i < 4; i++) regs_buff[227 + i] = rd32(E1000_TDT(i)); for (i = 0; i < 4; i++) regs_buff[231 + i] = rd32(E1000_TXDCTL(i)); for (i = 0; i < 4; i++) regs_buff[235 + i] = rd32(E1000_TDWBAL(i)); for (i = 0; i < 4; i++) regs_buff[239 + i] = rd32(E1000_TDWBAH(i)); for (i = 0; i < 4; i++) regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i)); for (i = 0; i < 4; i++) regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i)); for (i = 0; i < 4; i++) regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i)); for (i = 0; i < 32; i++) regs_buff[255 + i] = rd32(E1000_WUPM_REG(i)); for (i = 0; i < 128; i++) regs_buff[287 + i] = rd32(E1000_FFMT_REG(i)); for (i = 0; i < 128; i++) regs_buff[415 + i] = rd32(E1000_FFVT_REG(i)); for (i = 0; i < 4; i++) regs_buff[543 + i] = rd32(E1000_FFLT_REG(i)); regs_buff[547] = rd32(E1000_TDFH); regs_buff[548] = rd32(E1000_TDFT); regs_buff[549] = rd32(E1000_TDFHS); regs_buff[550] = rd32(E1000_TDFPC); if (hw->mac.type > e1000_82580) { regs_buff[551] = adapter->stats.o2bgptc; regs_buff[552] = adapter->stats.b2ospc; regs_buff[553] = adapter->stats.o2bspc; regs_buff[554] = adapter->stats.b2ogprc; } if (hw->mac.type != e1000_82576) return; for (i = 0; i < 12; i++) regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4)); for (i = 0; i < 4; i++) regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4)); for (i = 0; i < 12; i++) regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4)); for (i = 0; i < 12; i++) regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4)); for (i = 0; i < 12; i++) regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4)); for (i = 0; i < 12; i++) regs_buff[607 + i] = rd32(E1000_RDH(i + 4)); for (i = 0; i < 12; i++) regs_buff[619 + i] = rd32(E1000_RDT(i + 4)); for (i = 0; i < 12; i++) regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4)); for (i = 0; i < 12; i++) regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4)); for (i = 0; i < 12; i++) regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4)); for (i = 0; i < 12; i++) regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4)); for (i = 0; i < 12; i++) regs_buff[679 + i] = rd32(E1000_TDH(i + 4)); for (i = 0; i < 12; i++) regs_buff[691 + i] = rd32(E1000_TDT(i + 4)); for (i = 0; i < 12; i++) regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4)); for (i = 0; i < 12; i++) regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4)); for (i = 0; i < 12; i++) regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4)); } static int igb_get_eeprom_len(struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); return adapter->hw.nvm.word_size * 2; } static int igb_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u16 *eeprom_buff; int first_word, last_word; int ret_val = 0; u16 i; if (eeprom->len == 0) return -EINVAL; eeprom->magic = hw->vendor_id | (hw->device_id << 16); first_word = eeprom->offset >> 1; last_word = (eeprom->offset + eeprom->len - 1) >> 1; eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1), GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; if (hw->nvm.type == e1000_nvm_eeprom_spi) ret_val = hw->nvm.ops.read(hw, first_word, last_word - first_word + 1, eeprom_buff); else { for (i = 0; i < last_word - first_word + 1; i++) { ret_val = hw->nvm.ops.read(hw, first_word + i, 1, &eeprom_buff[i]); if (ret_val) break; } } /* Device's eeprom is always little-endian, word addressable */ for (i = 0; i < last_word - first_word + 1; i++) le16_to_cpus(&eeprom_buff[i]); memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); kfree(eeprom_buff); return ret_val; } static int igb_set_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u16 *eeprom_buff; void *ptr; int max_len, first_word, last_word, ret_val = 0; u16 i; if (eeprom->len == 0) return -EOPNOTSUPP; if ((hw->mac.type >= e1000_i210) && !igb_get_flash_presence_i210(hw)) { return -EOPNOTSUPP; } if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) return -EFAULT; max_len = hw->nvm.word_size * 2; first_word = eeprom->offset >> 1; last_word = (eeprom->offset + eeprom->len - 1) >> 1; eeprom_buff = kmalloc(max_len, GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; ptr = (void *)eeprom_buff; if (eeprom->offset & 1) { /* need read/modify/write of first changed EEPROM word * only the second byte of the word is being modified */ ret_val = hw->nvm.ops.read(hw, first_word, 1, &eeprom_buff[0]); ptr++; } if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { /* need read/modify/write of last changed EEPROM word * only the first byte of the word is being modified */ ret_val = hw->nvm.ops.read(hw, last_word, 1, &eeprom_buff[last_word - first_word]); } /* Device's eeprom is always little-endian, word addressable */ for (i = 0; i < last_word - first_word + 1; i++) le16_to_cpus(&eeprom_buff[i]); memcpy(ptr, bytes, eeprom->len); for (i = 0; i < last_word - first_word + 1; i++) eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); ret_val = hw->nvm.ops.write(hw, first_word, last_word - first_word + 1, eeprom_buff); /* Update the checksum if nvm write succeeded */ if (ret_val == 0) hw->nvm.ops.update(hw); igb_set_fw_version(adapter); kfree(eeprom_buff); return ret_val; } static void igb_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) { struct igb_adapter *adapter = netdev_priv(netdev); strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver)); strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version)); /* EEPROM image version # is reported as firmware version # for * 82575 controllers */ strlcpy(drvinfo->fw_version, adapter->fw_version, sizeof(drvinfo->fw_version)); strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), sizeof(drvinfo->bus_info)); drvinfo->n_stats = IGB_STATS_LEN; drvinfo->testinfo_len = IGB_TEST_LEN; drvinfo->regdump_len = igb_get_regs_len(netdev); drvinfo->eedump_len = igb_get_eeprom_len(netdev); } static void igb_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct igb_adapter *adapter = netdev_priv(netdev); ring->rx_max_pending = IGB_MAX_RXD; ring->tx_max_pending = IGB_MAX_TXD; ring->rx_pending = adapter->rx_ring_count; ring->tx_pending = adapter->tx_ring_count; } static int igb_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct igb_adapter *adapter = netdev_priv(netdev); struct igb_ring *temp_ring; int i, err = 0; u16 new_rx_count, new_tx_count; if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) return -EINVAL; new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD); new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD); new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD); new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD); new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); if ((new_tx_count == adapter->tx_ring_count) && (new_rx_count == adapter->rx_ring_count)) { /* nothing to do */ return 0; } while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) usleep_range(1000, 2000); if (!netif_running(adapter->netdev)) { for (i = 0; i < adapter->num_tx_queues; i++) adapter->tx_ring[i]->count = new_tx_count; for (i = 0; i < adapter->num_rx_queues; i++) adapter->rx_ring[i]->count = new_rx_count; adapter->tx_ring_count = new_tx_count; adapter->rx_ring_count = new_rx_count; goto clear_reset; } if (adapter->num_tx_queues > adapter->num_rx_queues) temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring)); else temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring)); if (!temp_ring) { err = -ENOMEM; goto clear_reset; } igb_down(adapter); /* We can't just free everything and then setup again, * because the ISRs in MSI-X mode get passed pointers * to the Tx and Rx ring structs. */ if (new_tx_count != adapter->tx_ring_count) { for (i = 0; i < adapter->num_tx_queues; i++) { memcpy(&temp_ring[i], adapter->tx_ring[i], sizeof(struct igb_ring)); temp_ring[i].count = new_tx_count; err = igb_setup_tx_resources(&temp_ring[i]); if (err) { while (i) { i--; igb_free_tx_resources(&temp_ring[i]); } goto err_setup; } } for (i = 0; i < adapter->num_tx_queues; i++) { igb_free_tx_resources(adapter->tx_ring[i]); memcpy(adapter->tx_ring[i], &temp_ring[i], sizeof(struct igb_ring)); } adapter->tx_ring_count = new_tx_count; } if (new_rx_count != adapter->rx_ring_count) { for (i = 0; i < adapter->num_rx_queues; i++) { memcpy(&temp_ring[i], adapter->rx_ring[i], sizeof(struct igb_ring)); temp_ring[i].count = new_rx_count; err = igb_setup_rx_resources(&temp_ring[i]); if (err) { while (i) { i--; igb_free_rx_resources(&temp_ring[i]); } goto err_setup; } } for (i = 0; i < adapter->num_rx_queues; i++) { igb_free_rx_resources(adapter->rx_ring[i]); memcpy(adapter->rx_ring[i], &temp_ring[i], sizeof(struct igb_ring)); } adapter->rx_ring_count = new_rx_count; } err_setup: igb_up(adapter); vfree(temp_ring); clear_reset: clear_bit(__IGB_RESETTING, &adapter->state); return err; } /* ethtool register test data */ struct igb_reg_test { u16 reg; u16 reg_offset; u16 array_len; u16 test_type; u32 mask; u32 write; }; /* In the hardware, registers are laid out either singly, in arrays * spaced 0x100 bytes apart, or in contiguous tables. We assume * most tests take place on arrays or single registers (handled * as a single-element array) and special-case the tables. * Table tests are always pattern tests. * * We also make provision for some required setup steps by specifying * registers to be written without any read-back testing. */ #define PATTERN_TEST 1 #define SET_READ_TEST 2 #define WRITE_NO_TEST 3 #define TABLE32_TEST 4 #define TABLE64_TEST_LO 5 #define TABLE64_TEST_HI 6 /* i210 reg test */ static struct igb_reg_test reg_test_i210[] = { { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, /* RDH is read-only for i210, only test RDT. */ { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x900FFFFF, 0xFFFFFFFF }, { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { 0, 0, 0, 0, 0 } }; /* i350 reg test */ static struct igb_reg_test reg_test_i350[] = { { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 }, { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, /* RDH is read-only for i350, only test RDT. */ { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RA, 0, 16, TABLE64_TEST_HI, 0xC3FFFFFF, 0xFFFFFFFF }, { E1000_RA2, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RA2, 0, 16, TABLE64_TEST_HI, 0xC3FFFFFF, 0xFFFFFFFF }, { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { 0, 0, 0, 0 } }; /* 82580 reg test */ static struct igb_reg_test reg_test_82580[] = { { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, /* RDH is read-only for 82580, only test RDT. */ { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { 0, 0, 0, 0 } }; /* 82576 reg test */ static struct igb_reg_test reg_test_82576[] = { { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, /* Enable all RX queues before testing. */ { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, /* RDH is read-only for 82576, only test RDT. */ { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 }, { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { 0, 0, 0, 0 } }; /* 82575 register test */ static struct igb_reg_test reg_test_82575[] = { { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, /* Enable all four RX queues before testing. */ { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, /* RDH is read-only for 82575, only test RDT. */ { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF }, { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, { 0, 0, 0, 0 } }; static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, int reg, u32 mask, u32 write) { struct e1000_hw *hw = &adapter->hw; u32 pat, val; static const u32 _test[] = { 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { wr32(reg, (_test[pat] & write)); val = rd32(reg) & mask; if (val != (_test[pat] & write & mask)) { dev_err(&adapter->pdev->dev, "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", reg, val, (_test[pat] & write & mask)); *data = reg; return true; } } return false; } static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, int reg, u32 mask, u32 write) { struct e1000_hw *hw = &adapter->hw; u32 val; wr32(reg, write & mask); val = rd32(reg); if ((write & mask) != (val & mask)) { dev_err(&adapter->pdev->dev, "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg, (val & mask), (write & mask)); *data = reg; return true; } return false; } #define REG_PATTERN_TEST(reg, mask, write) \ do { \ if (reg_pattern_test(adapter, data, reg, mask, write)) \ return 1; \ } while (0) #define REG_SET_AND_CHECK(reg, mask, write) \ do { \ if (reg_set_and_check(adapter, data, reg, mask, write)) \ return 1; \ } while (0) static int igb_reg_test(struct igb_adapter *adapter, u64 *data) { struct e1000_hw *hw = &adapter->hw; struct igb_reg_test *test; u32 value, before, after; u32 i, toggle; switch (adapter->hw.mac.type) { case e1000_i350: case e1000_i354: test = reg_test_i350; toggle = 0x7FEFF3FF; break; case e1000_i210: case e1000_i211: test = reg_test_i210; toggle = 0x7FEFF3FF; break; case e1000_82580: test = reg_test_82580; toggle = 0x7FEFF3FF; break; case e1000_82576: test = reg_test_82576; toggle = 0x7FFFF3FF; break; default: test = reg_test_82575; toggle = 0x7FFFF3FF; break; } /* Because the status register is such a special case, * we handle it separately from the rest of the register * tests. Some bits are read-only, some toggle, and some * are writable on newer MACs. */ before = rd32(E1000_STATUS); value = (rd32(E1000_STATUS) & toggle); wr32(E1000_STATUS, toggle); after = rd32(E1000_STATUS) & toggle; if (value != after) { dev_err(&adapter->pdev->dev, "failed STATUS register test got: 0x%08X expected: 0x%08X\n", after, value); *data = 1; return 1; } /* restore previous status */ wr32(E1000_STATUS, before); /* Perform the remainder of the register test, looping through * the test table until we either fail or reach the null entry. */ while (test->reg) { for (i = 0; i < test->array_len; i++) { switch (test->test_type) { case PATTERN_TEST: REG_PATTERN_TEST(test->reg + (i * test->reg_offset), test->mask, test->write); break; case SET_READ_TEST: REG_SET_AND_CHECK(test->reg + (i * test->reg_offset), test->mask, test->write); break; case WRITE_NO_TEST: writel(test->write, (adapter->hw.hw_addr + test->reg) + (i * test->reg_offset)); break; case TABLE32_TEST: REG_PATTERN_TEST(test->reg + (i * 4), test->mask, test->write); break; case TABLE64_TEST_LO: REG_PATTERN_TEST(test->reg + (i * 8), test->mask, test->write); break; case TABLE64_TEST_HI: REG_PATTERN_TEST((test->reg + 4) + (i * 8), test->mask, test->write); break; } } test++; } *data = 0; return 0; } static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) { struct e1000_hw *hw = &adapter->hw; *data = 0; /* Validate eeprom on all parts but flashless */ switch (hw->mac.type) { case e1000_i210: case e1000_i211: if (igb_get_flash_presence_i210(hw)) { if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) *data = 2; } break; default: if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) *data = 2; break; } return *data; } static irqreturn_t igb_test_intr(int irq, void *data) { struct igb_adapter *adapter = (struct igb_adapter *) data; struct e1000_hw *hw = &adapter->hw; adapter->test_icr |= rd32(E1000_ICR); return IRQ_HANDLED; } static int igb_intr_test(struct igb_adapter *adapter, u64 *data) { struct e1000_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; u32 mask, ics_mask, i = 0, shared_int = true; u32 irq = adapter->pdev->irq; *data = 0; /* Hook up test interrupt handler just for this test */ if (adapter->flags & IGB_FLAG_HAS_MSIX) { if (request_irq(adapter->msix_entries[0].vector, igb_test_intr, 0, netdev->name, adapter)) { *data = 1; return -1; } } else if (adapter->flags & IGB_FLAG_HAS_MSI) { shared_int = false; if (request_irq(irq, igb_test_intr, 0, netdev->name, adapter)) { *data = 1; return -1; } } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED, netdev->name, adapter)) { shared_int = false; } else if (request_irq(irq, igb_test_intr, IRQF_SHARED, netdev->name, adapter)) { *data = 1; return -1; } dev_info(&adapter->pdev->dev, "testing %s interrupt\n", (shared_int ? "shared" : "unshared")); /* Disable all the interrupts */ wr32(E1000_IMC, ~0); wrfl(); usleep_range(10000, 11000); /* Define all writable bits for ICS */ switch (hw->mac.type) { case e1000_82575: ics_mask = 0x37F47EDD; break; case e1000_82576: ics_mask = 0x77D4FBFD; break; case e1000_82580: ics_mask = 0x77DCFED5; break; case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: ics_mask = 0x77DCFED5; break; default: ics_mask = 0x7FFFFFFF; break; } /* Test each interrupt */ for (; i < 31; i++) { /* Interrupt to test */ mask = 1 << i; if (!(mask & ics_mask)) continue; if (!shared_int) { /* Disable the interrupt to be reported in * the cause register and then force the same * interrupt and see if one gets posted. If * an interrupt was posted to the bus, the * test failed. */ adapter->test_icr = 0; /* Flush any pending interrupts */ wr32(E1000_ICR, ~0); wr32(E1000_IMC, mask); wr32(E1000_ICS, mask); wrfl(); usleep_range(10000, 11000); if (adapter->test_icr & mask) { *data = 3; break; } } /* Enable the interrupt to be reported in * the cause register and then force the same * interrupt and see if one gets posted. If * an interrupt was not posted to the bus, the * test failed. */ adapter->test_icr = 0; /* Flush any pending interrupts */ wr32(E1000_ICR, ~0); wr32(E1000_IMS, mask); wr32(E1000_ICS, mask); wrfl(); usleep_range(10000, 11000); if (!(adapter->test_icr & mask)) { *data = 4; break; } if (!shared_int) { /* Disable the other interrupts to be reported in * the cause register and then force the other * interrupts and see if any get posted. If * an interrupt was posted to the bus, the * test failed. */ adapter->test_icr = 0; /* Flush any pending interrupts */ wr32(E1000_ICR, ~0); wr32(E1000_IMC, ~mask); wr32(E1000_ICS, ~mask); wrfl(); usleep_range(10000, 11000); if (adapter->test_icr & mask) { *data = 5; break; } } } /* Disable all the interrupts */ wr32(E1000_IMC, ~0); wrfl(); usleep_range(10000, 11000); /* Unhook test interrupt handler */ if (adapter->flags & IGB_FLAG_HAS_MSIX) free_irq(adapter->msix_entries[0].vector, adapter); else free_irq(irq, adapter); return *data; } static void igb_free_desc_rings(struct igb_adapter *adapter) { igb_free_tx_resources(&adapter->test_tx_ring); igb_free_rx_resources(&adapter->test_rx_ring); } static int igb_setup_desc_rings(struct igb_adapter *adapter) { struct igb_ring *tx_ring = &adapter->test_tx_ring; struct igb_ring *rx_ring = &adapter->test_rx_ring; struct e1000_hw *hw = &adapter->hw; int ret_val; /* Setup Tx descriptor ring and Tx buffers */ tx_ring->count = IGB_DEFAULT_TXD; tx_ring->dev = &adapter->pdev->dev; tx_ring->netdev = adapter->netdev; tx_ring->reg_idx = adapter->vfs_allocated_count; if (igb_setup_tx_resources(tx_ring)) { ret_val = 1; goto err_nomem; } igb_setup_tctl(adapter); igb_configure_tx_ring(adapter, tx_ring); /* Setup Rx descriptor ring and Rx buffers */ rx_ring->count = IGB_DEFAULT_RXD; rx_ring->dev = &adapter->pdev->dev; rx_ring->netdev = adapter->netdev; rx_ring->reg_idx = adapter->vfs_allocated_count; if (igb_setup_rx_resources(rx_ring)) { ret_val = 3; goto err_nomem; } /* set the default queue to queue 0 of PF */ wr32(E1000_MRQC, adapter->vfs_allocated_count << 3); /* enable receive ring */ igb_setup_rctl(adapter); igb_configure_rx_ring(adapter, rx_ring); igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring)); return 0; err_nomem: igb_free_desc_rings(adapter); return ret_val; } static void igb_phy_disable_receiver(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; /* Write out to PHY registers 29 and 30 to disable the Receiver. */ igb_write_phy_reg(hw, 29, 0x001F); igb_write_phy_reg(hw, 30, 0x8FFC); igb_write_phy_reg(hw, 29, 0x001A); igb_write_phy_reg(hw, 30, 0x8FF0); } static int igb_integrated_phy_loopback(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 ctrl_reg = 0; hw->mac.autoneg = false; if (hw->phy.type == e1000_phy_m88) { if (hw->phy.id != I210_I_PHY_ID) { /* Auto-MDI/MDIX Off */ igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); /* reset to update Auto-MDI/MDIX */ igb_write_phy_reg(hw, PHY_CONTROL, 0x9140); /* autoneg off */ igb_write_phy_reg(hw, PHY_CONTROL, 0x8140); } else { /* force 1000, set loopback */ igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0); igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); } } else if (hw->phy.type == e1000_phy_82580) { /* enable MII loopback */ igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041); } /* add small delay to avoid loopback test failure */ msleep(50); /* force 1000, set loopback */ igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); /* Now set up the MAC to the same speed/duplex as the PHY. */ ctrl_reg = rd32(E1000_CTRL); ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ E1000_CTRL_FD | /* Force Duplex to FULL */ E1000_CTRL_SLU); /* Set link up enable bit */ if (hw->phy.type == e1000_phy_m88) ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ wr32(E1000_CTRL, ctrl_reg); /* Disable the receiver on the PHY so when a cable is plugged in, the * PHY does not begin to autoneg when a cable is reconnected to the NIC. */ if (hw->phy.type == e1000_phy_m88) igb_phy_disable_receiver(adapter); mdelay(500); return 0; } static int igb_set_phy_loopback(struct igb_adapter *adapter) { return igb_integrated_phy_loopback(adapter); } static int igb_setup_loopback_test(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 reg; reg = rd32(E1000_CTRL_EXT); /* use CTRL_EXT to identify link type as SGMII can appear as copper */ if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) { if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) || (hw->device_id == E1000_DEV_ID_I354_SGMII) || (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) { /* Enable DH89xxCC MPHY for near end loopback */ reg = rd32(E1000_MPHY_ADDR_CTL); reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | E1000_MPHY_PCS_CLK_REG_OFFSET; wr32(E1000_MPHY_ADDR_CTL, reg); reg = rd32(E1000_MPHY_DATA); reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN; wr32(E1000_MPHY_DATA, reg); } reg = rd32(E1000_RCTL); reg |= E1000_RCTL_LBM_TCVR; wr32(E1000_RCTL, reg); wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK); reg = rd32(E1000_CTRL); reg &= ~(E1000_CTRL_RFCE | E1000_CTRL_TFCE | E1000_CTRL_LRST); reg |= E1000_CTRL_SLU | E1000_CTRL_FD; wr32(E1000_CTRL, reg); /* Unset switch control to serdes energy detect */ reg = rd32(E1000_CONNSW); reg &= ~E1000_CONNSW_ENRGSRC; wr32(E1000_CONNSW, reg); /* Unset sigdetect for SERDES loopback on * 82580 and newer devices. */ if (hw->mac.type >= e1000_82580) { reg = rd32(E1000_PCS_CFG0); reg |= E1000_PCS_CFG_IGN_SD; wr32(E1000_PCS_CFG0, reg); } /* Set PCS register for forced speed */ reg = rd32(E1000_PCS_LCTL); reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/ reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ E1000_PCS_LCTL_FSD | /* Force Speed */ E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ wr32(E1000_PCS_LCTL, reg); return 0; } return igb_set_phy_loopback(adapter); } static void igb_loopback_cleanup(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 rctl; u16 phy_reg; if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) || (hw->device_id == E1000_DEV_ID_I354_SGMII)) { u32 reg; /* Disable near end loopback on DH89xxCC */ reg = rd32(E1000_MPHY_ADDR_CTL); reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | E1000_MPHY_PCS_CLK_REG_OFFSET; wr32(E1000_MPHY_ADDR_CTL, reg); reg = rd32(E1000_MPHY_DATA); reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN; wr32(E1000_MPHY_DATA, reg); } rctl = rd32(E1000_RCTL); rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); wr32(E1000_RCTL, rctl); hw->mac.autoneg = true; igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg); if (phy_reg & MII_CR_LOOPBACK) { phy_reg &= ~MII_CR_LOOPBACK; igb_write_phy_reg(hw, PHY_CONTROL, phy_reg); igb_phy_sw_reset(hw); } } static void igb_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) { memset(skb->data, 0xFF, frame_size); frame_size /= 2; memset(&skb->data[frame_size], 0xAA, frame_size - 1); memset(&skb->data[frame_size + 10], 0xBE, 1); memset(&skb->data[frame_size + 12], 0xAF, 1); } static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer, unsigned int frame_size) { unsigned char *data; bool match = true; frame_size >>= 1; data = kmap(rx_buffer->page); if (data[3] != 0xFF || data[frame_size + 10] != 0xBE || data[frame_size + 12] != 0xAF) match = false; kunmap(rx_buffer->page); return match; } static int igb_clean_test_rings(struct igb_ring *rx_ring, struct igb_ring *tx_ring, unsigned int size) { union e1000_adv_rx_desc *rx_desc; struct igb_rx_buffer *rx_buffer_info; struct igb_tx_buffer *tx_buffer_info; u16 rx_ntc, tx_ntc, count = 0; /* initialize next to clean and descriptor values */ rx_ntc = rx_ring->next_to_clean; tx_ntc = tx_ring->next_to_clean; rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) { /* check Rx buffer */ rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc]; /* sync Rx buffer for CPU read */ dma_sync_single_for_cpu(rx_ring->dev, rx_buffer_info->dma, IGB_RX_BUFSZ, DMA_FROM_DEVICE); /* verify contents of skb */ if (igb_check_lbtest_frame(rx_buffer_info, size)) count++; /* sync Rx buffer for device write */ dma_sync_single_for_device(rx_ring->dev, rx_buffer_info->dma, IGB_RX_BUFSZ, DMA_FROM_DEVICE); /* unmap buffer on Tx side */ tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc]; igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); /* increment Rx/Tx next to clean counters */ rx_ntc++; if (rx_ntc == rx_ring->count) rx_ntc = 0; tx_ntc++; if (tx_ntc == tx_ring->count) tx_ntc = 0; /* fetch next descriptor */ rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); } netdev_tx_reset_queue(txring_txq(tx_ring)); /* re-map buffers to ring, store next to clean values */ igb_alloc_rx_buffers(rx_ring, count); rx_ring->next_to_clean = rx_ntc; tx_ring->next_to_clean = tx_ntc; return count; } static int igb_run_loopback_test(struct igb_adapter *adapter) { struct igb_ring *tx_ring = &adapter->test_tx_ring; struct igb_ring *rx_ring = &adapter->test_rx_ring; u16 i, j, lc, good_cnt; int ret_val = 0; unsigned int size = IGB_RX_HDR_LEN; netdev_tx_t tx_ret_val; struct sk_buff *skb; /* allocate test skb */ skb = alloc_skb(size, GFP_KERNEL); if (!skb) return 11; /* place data into test skb */ igb_create_lbtest_frame(skb, size); skb_put(skb, size); /* Calculate the loop count based on the largest descriptor ring * The idea is to wrap the largest ring a number of times using 64 * send/receive pairs during each loop */ if (rx_ring->count <= tx_ring->count) lc = ((tx_ring->count / 64) * 2) + 1; else lc = ((rx_ring->count / 64) * 2) + 1; for (j = 0; j <= lc; j++) { /* loop count loop */ /* reset count of good packets */ good_cnt = 0; /* place 64 packets on the transmit queue*/ for (i = 0; i < 64; i++) { skb_get(skb); tx_ret_val = igb_xmit_frame_ring(skb, tx_ring); if (tx_ret_val == NETDEV_TX_OK) good_cnt++; } if (good_cnt != 64) { ret_val = 12; break; } /* allow 200 milliseconds for packets to go from Tx to Rx */ msleep(200); good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size); if (good_cnt != 64) { ret_val = 13; break; } } /* end loop count loop */ /* free the original skb */ kfree_skb(skb); return ret_val; } static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) { /* PHY loopback cannot be performed if SoL/IDER * sessions are active */ if (igb_check_reset_block(&adapter->hw)) { dev_err(&adapter->pdev->dev, "Cannot do PHY loopback test when SoL/IDER is active.\n"); *data = 0; goto out; } if (adapter->hw.mac.type == e1000_i354) { dev_info(&adapter->pdev->dev, "Loopback test not supported on i354.\n"); *data = 0; goto out; } *data = igb_setup_desc_rings(adapter); if (*data) goto out; *data = igb_setup_loopback_test(adapter); if (*data) goto err_loopback; *data = igb_run_loopback_test(adapter); igb_loopback_cleanup(adapter); err_loopback: igb_free_desc_rings(adapter); out: return *data; } static int igb_link_test(struct igb_adapter *adapter, u64 *data) { struct e1000_hw *hw = &adapter->hw; *data = 0; if (hw->phy.media_type == e1000_media_type_internal_serdes) { int i = 0; hw->mac.serdes_has_link = false; /* On some blade server designs, link establishment * could take as long as 2-3 minutes */ do { hw->mac.ops.check_for_link(&adapter->hw); if (hw->mac.serdes_has_link) return *data; msleep(20); } while (i++ < 3750); *data = 1; } else { hw->mac.ops.check_for_link(&adapter->hw); if (hw->mac.autoneg) msleep(5000); if (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) *data = 1; } return *data; } static void igb_diag_test(struct net_device *netdev, struct ethtool_test *eth_test, u64 *data) { struct igb_adapter *adapter = netdev_priv(netdev); u16 autoneg_advertised; u8 forced_speed_duplex, autoneg; bool if_running = netif_running(netdev); set_bit(__IGB_TESTING, &adapter->state); /* can't do offline tests on media switching devices */ if (adapter->hw.dev_spec._82575.mas_capable) eth_test->flags &= ~ETH_TEST_FL_OFFLINE; if (eth_test->flags == ETH_TEST_FL_OFFLINE) { /* Offline tests */ /* save speed, duplex, autoneg settings */ autoneg_advertised = adapter->hw.phy.autoneg_advertised; forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; autoneg = adapter->hw.mac.autoneg; dev_info(&adapter->pdev->dev, "offline testing starting\n"); /* power up link for link test */ igb_power_up_link(adapter); /* Link test performed before hardware reset so autoneg doesn't * interfere with test result */ if (igb_link_test(adapter, &data[4])) eth_test->flags |= ETH_TEST_FL_FAILED; if (if_running) /* indicate we're in test mode */ dev_close(netdev); else igb_reset(adapter); if (igb_reg_test(adapter, &data[0])) eth_test->flags |= ETH_TEST_FL_FAILED; igb_reset(adapter); if (igb_eeprom_test(adapter, &data[1])) eth_test->flags |= ETH_TEST_FL_FAILED; igb_reset(adapter); if (igb_intr_test(adapter, &data[2])) eth_test->flags |= ETH_TEST_FL_FAILED; igb_reset(adapter); /* power up link for loopback test */ igb_power_up_link(adapter); if (igb_loopback_test(adapter, &data[3])) eth_test->flags |= ETH_TEST_FL_FAILED; /* restore speed, duplex, autoneg settings */ adapter->hw.phy.autoneg_advertised = autoneg_advertised; adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; adapter->hw.mac.autoneg = autoneg; /* force this routine to wait until autoneg complete/timeout */ adapter->hw.phy.autoneg_wait_to_complete = true; igb_reset(adapter); adapter->hw.phy.autoneg_wait_to_complete = false; clear_bit(__IGB_TESTING, &adapter->state); if (if_running) dev_open(netdev); } else { dev_info(&adapter->pdev->dev, "online testing starting\n"); /* PHY is powered down when interface is down */ if (if_running && igb_link_test(adapter, &data[4])) eth_test->flags |= ETH_TEST_FL_FAILED; else data[4] = 0; /* Online tests aren't run; pass by default */ data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0; clear_bit(__IGB_TESTING, &adapter->state); } msleep_interruptible(4 * 1000); } static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct igb_adapter *adapter = netdev_priv(netdev); wol->wolopts = 0; if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) return; wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; /* apply any specific unsupported masks here */ switch (adapter->hw.device_id) { default: break; } if (adapter->wol & E1000_WUFC_EX) wol->wolopts |= WAKE_UCAST; if (adapter->wol & E1000_WUFC_MC) wol->wolopts |= WAKE_MCAST; if (adapter->wol & E1000_WUFC_BC) wol->wolopts |= WAKE_BCAST; if (adapter->wol & E1000_WUFC_MAG) wol->wolopts |= WAKE_MAGIC; if (adapter->wol & E1000_WUFC_LNKC) wol->wolopts |= WAKE_PHY; } static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct igb_adapter *adapter = netdev_priv(netdev); if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE)) return -EOPNOTSUPP; if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) return wol->wolopts ? -EOPNOTSUPP : 0; /* these settings will always override what we currently have */ adapter->wol = 0; if (wol->wolopts & WAKE_UCAST) adapter->wol |= E1000_WUFC_EX; if (wol->wolopts & WAKE_MCAST) adapter->wol |= E1000_WUFC_MC; if (wol->wolopts & WAKE_BCAST) adapter->wol |= E1000_WUFC_BC; if (wol->wolopts & WAKE_MAGIC) adapter->wol |= E1000_WUFC_MAG; if (wol->wolopts & WAKE_PHY) adapter->wol |= E1000_WUFC_LNKC; device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); return 0; } /* bit defines for adapter->led_status */ #define IGB_LED_ON 0 static int igb_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; switch (state) { case ETHTOOL_ID_ACTIVE: igb_blink_led(hw); return 2; case ETHTOOL_ID_ON: igb_blink_led(hw); break; case ETHTOOL_ID_OFF: igb_led_off(hw); break; case ETHTOOL_ID_INACTIVE: igb_led_off(hw); clear_bit(IGB_LED_ON, &adapter->led_status); igb_cleanup_led(hw); break; } return 0; } static int igb_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec) { struct igb_adapter *adapter = netdev_priv(netdev); int i; if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || ((ec->rx_coalesce_usecs > 3) && (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || (ec->rx_coalesce_usecs == 2)) return -EINVAL; if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) || ((ec->tx_coalesce_usecs > 3) && (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) || (ec->tx_coalesce_usecs == 2)) return -EINVAL; if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs) return -EINVAL; /* If ITR is disabled, disable DMAC */ if (ec->rx_coalesce_usecs == 0) { if (adapter->flags & IGB_FLAG_DMAC) adapter->flags &= ~IGB_FLAG_DMAC; } /* convert to rate of irq's per second */ if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) adapter->rx_itr_setting = ec->rx_coalesce_usecs; else adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2; /* convert to rate of irq's per second */ if (adapter->flags & IGB_FLAG_QUEUE_PAIRS) adapter->tx_itr_setting = adapter->rx_itr_setting; else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3) adapter->tx_itr_setting = ec->tx_coalesce_usecs; else adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2; for (i = 0; i < adapter->num_q_vectors; i++) { struct igb_q_vector *q_vector = adapter->q_vector[i]; q_vector->tx.work_limit = adapter->tx_work_limit; if (q_vector->rx.ring) q_vector->itr_val = adapter->rx_itr_setting; else q_vector->itr_val = adapter->tx_itr_setting; if (q_vector->itr_val && q_vector->itr_val <= 3) q_vector->itr_val = IGB_START_ITR; q_vector->set_itr = 1; } return 0; } static int igb_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ec) { struct igb_adapter *adapter = netdev_priv(netdev); if (adapter->rx_itr_setting <= 3) ec->rx_coalesce_usecs = adapter->rx_itr_setting; else ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2; if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) { if (adapter->tx_itr_setting <= 3) ec->tx_coalesce_usecs = adapter->tx_itr_setting; else ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2; } return 0; } static int igb_nway_reset(struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); if (netif_running(netdev)) igb_reinit_locked(adapter); return 0; } static int igb_get_sset_count(struct net_device *netdev, int sset) { switch (sset) { case ETH_SS_STATS: return IGB_STATS_LEN; case ETH_SS_TEST: return IGB_TEST_LEN; default: return -ENOTSUPP; } } static void igb_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *stats, u64 *data) { struct igb_adapter *adapter = netdev_priv(netdev); struct rtnl_link_stats64 *net_stats = &adapter->stats64; unsigned int start; struct igb_ring *ring; int i, j; char *p; spin_lock(&adapter->stats64_lock); igb_update_stats(adapter, net_stats); for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { p = (char *)adapter + igb_gstrings_stats[i].stat_offset; data[i] = (igb_gstrings_stats[i].sizeof_stat == sizeof(u64)) ? *(u64 *)p : *(u32 *)p; } for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) { p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset; data[i] = (igb_gstrings_net_stats[j].sizeof_stat == sizeof(u64)) ? *(u64 *)p : *(u32 *)p; } for (j = 0; j < adapter->num_tx_queues; j++) { u64 restart2; ring = adapter->tx_ring[j]; do { start = u64_stats_fetch_begin_irq(&ring->tx_syncp); data[i] = ring->tx_stats.packets; data[i+1] = ring->tx_stats.bytes; data[i+2] = ring->tx_stats.restart_queue; } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); do { start = u64_stats_fetch_begin_irq(&ring->tx_syncp2); restart2 = ring->tx_stats.restart_queue2; } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start)); data[i+2] += restart2; i += IGB_TX_QUEUE_STATS_LEN; } for (j = 0; j < adapter->num_rx_queues; j++) { ring = adapter->rx_ring[j]; do { start = u64_stats_fetch_begin_irq(&ring->rx_syncp); data[i] = ring->rx_stats.packets; data[i+1] = ring->rx_stats.bytes; data[i+2] = ring->rx_stats.drops; data[i+3] = ring->rx_stats.csum_err; data[i+4] = ring->rx_stats.alloc_failed; } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); i += IGB_RX_QUEUE_STATS_LEN; } spin_unlock(&adapter->stats64_lock); } static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) { struct igb_adapter *adapter = netdev_priv(netdev); u8 *p = data; int i; switch (stringset) { case ETH_SS_TEST: memcpy(data, *igb_gstrings_test, IGB_TEST_LEN*ETH_GSTRING_LEN); break; case ETH_SS_STATS: for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { memcpy(p, igb_gstrings_stats[i].stat_string, ETH_GSTRING_LEN); p += ETH_GSTRING_LEN; } for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) { memcpy(p, igb_gstrings_net_stats[i].stat_string, ETH_GSTRING_LEN); p += ETH_GSTRING_LEN; } for (i = 0; i < adapter->num_tx_queues; i++) { sprintf(p, "tx_queue_%u_packets", i); p += ETH_GSTRING_LEN; sprintf(p, "tx_queue_%u_bytes", i); p += ETH_GSTRING_LEN; sprintf(p, "tx_queue_%u_restart", i); p += ETH_GSTRING_LEN; } for (i = 0; i < adapter->num_rx_queues; i++) { sprintf(p, "rx_queue_%u_packets", i); p += ETH_GSTRING_LEN; sprintf(p, "rx_queue_%u_bytes", i); p += ETH_GSTRING_LEN; sprintf(p, "rx_queue_%u_drops", i); p += ETH_GSTRING_LEN; sprintf(p, "rx_queue_%u_csum_err", i); p += ETH_GSTRING_LEN; sprintf(p, "rx_queue_%u_alloc_failed", i); p += ETH_GSTRING_LEN; } /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ break; } } static int igb_get_ts_info(struct net_device *dev, struct ethtool_ts_info *info) { struct igb_adapter *adapter = netdev_priv(dev); if (adapter->ptp_clock) info->phc_index = ptp_clock_index(adapter->ptp_clock); else info->phc_index = -1; switch (adapter->hw.mac.type) { case e1000_82575: info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE; return 0; case e1000_82576: case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE | SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); info->rx_filters = 1 << HWTSTAMP_FILTER_NONE; /* 82576 does not support timestamping all packets. */ if (adapter->hw.mac.type >= e1000_82580) info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL; else info->rx_filters |= (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); return 0; default: return -EOPNOTSUPP; } } static int igb_get_rss_hash_opts(struct igb_adapter *adapter, struct ethtool_rxnfc *cmd) { cmd->data = 0; /* Report default options for RSS on igb */ switch (cmd->flow_type) { case TCP_V4_FLOW: cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; /* Fall through */ case UDP_V4_FLOW: if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; /* Fall through */ case SCTP_V4_FLOW: case AH_ESP_V4_FLOW: case AH_V4_FLOW: case ESP_V4_FLOW: case IPV4_FLOW: cmd->data |= RXH_IP_SRC | RXH_IP_DST; break; case TCP_V6_FLOW: cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; /* Fall through */ case UDP_V6_FLOW: if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; /* Fall through */ case SCTP_V6_FLOW: case AH_ESP_V6_FLOW: case AH_V6_FLOW: case ESP_V6_FLOW: case IPV6_FLOW: cmd->data |= RXH_IP_SRC | RXH_IP_DST; break; default: return -EINVAL; } return 0; } static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, u32 *rule_locs) { struct igb_adapter *adapter = netdev_priv(dev); int ret = -EOPNOTSUPP; switch (cmd->cmd) { case ETHTOOL_GRXRINGS: cmd->data = adapter->num_rx_queues; ret = 0; break; case ETHTOOL_GRXFH: ret = igb_get_rss_hash_opts(adapter, cmd); break; default: break; } return ret; } #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \ IGB_FLAG_RSS_FIELD_IPV6_UDP) static int igb_set_rss_hash_opt(struct igb_adapter *adapter, struct ethtool_rxnfc *nfc) { u32 flags = adapter->flags; /* RSS does not support anything other than hashing * to queues on src and dst IPs and ports */ if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3)) return -EINVAL; switch (nfc->flow_type) { case TCP_V4_FLOW: case TCP_V6_FLOW: if (!(nfc->data & RXH_IP_SRC) || !(nfc->data & RXH_IP_DST) || !(nfc->data & RXH_L4_B_0_1) || !(nfc->data & RXH_L4_B_2_3)) return -EINVAL; break; case UDP_V4_FLOW: if (!(nfc->data & RXH_IP_SRC) || !(nfc->data & RXH_IP_DST)) return -EINVAL; switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { case 0: flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP; break; case (RXH_L4_B_0_1 | RXH_L4_B_2_3): flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP; break; default: return -EINVAL; } break; case UDP_V6_FLOW: if (!(nfc->data & RXH_IP_SRC) || !(nfc->data & RXH_IP_DST)) return -EINVAL; switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { case 0: flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP; break; case (RXH_L4_B_0_1 | RXH_L4_B_2_3): flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP; break; default: return -EINVAL; } break; case AH_ESP_V4_FLOW: case AH_V4_FLOW: case ESP_V4_FLOW: case SCTP_V4_FLOW: case AH_ESP_V6_FLOW: case AH_V6_FLOW: case ESP_V6_FLOW: case SCTP_V6_FLOW: if (!(nfc->data & RXH_IP_SRC) || !(nfc->data & RXH_IP_DST) || (nfc->data & RXH_L4_B_0_1) || (nfc->data & RXH_L4_B_2_3)) return -EINVAL; break; default: return -EINVAL; } /* if we changed something we need to update flags */ if (flags != adapter->flags) { struct e1000_hw *hw = &adapter->hw; u32 mrqc = rd32(E1000_MRQC); if ((flags & UDP_RSS_FLAGS) && !(adapter->flags & UDP_RSS_FLAGS)) dev_err(&adapter->pdev->dev, "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n"); adapter->flags = flags; /* Perform hash on these packet types */ mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | E1000_MRQC_RSS_FIELD_IPV4_TCP | E1000_MRQC_RSS_FIELD_IPV6 | E1000_MRQC_RSS_FIELD_IPV6_TCP; mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP | E1000_MRQC_RSS_FIELD_IPV6_UDP); if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; wr32(E1000_MRQC, mrqc); } return 0; } static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) { struct igb_adapter *adapter = netdev_priv(dev); int ret = -EOPNOTSUPP; switch (cmd->cmd) { case ETHTOOL_SRXFH: ret = igb_set_rss_hash_opt(adapter, cmd); break; default: break; } return ret; } static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 ret_val; u16 phy_data; if ((hw->mac.type < e1000_i350) || (hw->phy.media_type != e1000_media_type_copper)) return -EOPNOTSUPP; edata->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_100baseT_Full); if (!hw->dev_spec._82575.eee_disable) edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); /* The IPCNFG and EEER registers are not supported on I354. */ if (hw->mac.type == e1000_i354) { igb_get_eee_status_i354(hw, (bool *)&edata->eee_active); } else { u32 eeer; eeer = rd32(E1000_EEER); /* EEE status on negotiated link */ if (eeer & E1000_EEER_EEE_NEG) edata->eee_active = true; if (eeer & E1000_EEER_TX_LPI_EN) edata->tx_lpi_enabled = true; } /* EEE Link Partner Advertised */ switch (hw->mac.type) { case e1000_i350: ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350, &phy_data); if (ret_val) return -ENODATA; edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); break; case e1000_i354: case e1000_i210: case e1000_i211: ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210, E1000_EEE_LP_ADV_DEV_I210, &phy_data); if (ret_val) return -ENODATA; edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); break; default: break; } edata->eee_enabled = !hw->dev_spec._82575.eee_disable; if ((hw->mac.type == e1000_i354) && (edata->eee_enabled)) edata->tx_lpi_enabled = true; /* Report correct negotiated EEE status for devices that * wrongly report EEE at half-duplex */ if (adapter->link_duplex == HALF_DUPLEX) { edata->eee_enabled = false; edata->eee_active = false; edata->tx_lpi_enabled = false; edata->advertised &= ~edata->advertised; } return 0; } static int igb_set_eee(struct net_device *netdev, struct ethtool_eee *edata) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct ethtool_eee eee_curr; s32 ret_val; if ((hw->mac.type < e1000_i350) || (hw->phy.media_type != e1000_media_type_copper)) return -EOPNOTSUPP; memset(&eee_curr, 0, sizeof(struct ethtool_eee)); ret_val = igb_get_eee(netdev, &eee_curr); if (ret_val) return ret_val; if (eee_curr.eee_enabled) { if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { dev_err(&adapter->pdev->dev, "Setting EEE tx-lpi is not supported\n"); return -EINVAL; } /* Tx LPI timer is not implemented currently */ if (edata->tx_lpi_timer) { dev_err(&adapter->pdev->dev, "Setting EEE Tx LPI timer is not supported\n"); return -EINVAL; } if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { dev_err(&adapter->pdev->dev, "EEE Advertisement supports only 100Tx and or 100T full duplex\n"); return -EINVAL; } } else if (!edata->eee_enabled) { dev_err(&adapter->pdev->dev, "Setting EEE options are not supported with EEE disabled\n"); return -EINVAL; } adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) { hw->dev_spec._82575.eee_disable = !edata->eee_enabled; adapter->flags |= IGB_FLAG_EEE; if (hw->mac.type == e1000_i350) igb_set_eee_i350(hw); else igb_set_eee_i354(hw); /* reset link */ if (netif_running(netdev)) igb_reinit_locked(adapter); else igb_reset(adapter); } return 0; } static int igb_get_module_info(struct net_device *netdev, struct ethtool_modinfo *modinfo) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 status = E1000_SUCCESS; u16 sff8472_rev, addr_mode; bool page_swap = false; if ((hw->phy.media_type == e1000_media_type_copper) || (hw->phy.media_type == e1000_media_type_unknown)) return -EOPNOTSUPP; /* Check whether we support SFF-8472 or not */ status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev); if (status != E1000_SUCCESS) return -EIO; /* addressing mode is not supported */ status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode); if (status != E1000_SUCCESS) return -EIO; /* addressing mode is not supported */ if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) { hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n"); page_swap = true; } if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) { /* We have an SFP, but it does not support SFF-8472 */ modinfo->type = ETH_MODULE_SFF_8079; modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; } else { /* We have an SFP which supports a revision of SFF-8472 */ modinfo->type = ETH_MODULE_SFF_8472; modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; } return 0; } static int igb_get_module_eeprom(struct net_device *netdev, struct ethtool_eeprom *ee, u8 *data) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 status = E1000_SUCCESS; u16 *dataword; u16 first_word, last_word; int i = 0; if (ee->len == 0) return -EINVAL; first_word = ee->offset >> 1; last_word = (ee->offset + ee->len - 1) >> 1; dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1), GFP_KERNEL); if (!dataword) return -ENOMEM; /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */ for (i = 0; i < last_word - first_word + 1; i++) { status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]); if (status != E1000_SUCCESS) { /* Error occurred while reading module */ kfree(dataword); return -EIO; } be16_to_cpus(&dataword[i]); } memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len); kfree(dataword); return 0; } static int igb_ethtool_begin(struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); pm_runtime_get_sync(&adapter->pdev->dev); return 0; } static void igb_ethtool_complete(struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); pm_runtime_put(&adapter->pdev->dev); } static u32 igb_get_rxfh_indir_size(struct net_device *netdev) { return IGB_RETA_SIZE; } static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key) { struct igb_adapter *adapter = netdev_priv(netdev); int i; for (i = 0; i < IGB_RETA_SIZE; i++) indir[i] = adapter->rss_indir_tbl[i]; return 0; } void igb_write_rss_indir_tbl(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 reg = E1000_RETA(0); u32 shift = 0; int i = 0; switch (hw->mac.type) { case e1000_82575: shift = 6; break; case e1000_82576: /* 82576 supports 2 RSS queues for SR-IOV */ if (adapter->vfs_allocated_count) shift = 3; break; default: break; } while (i < IGB_RETA_SIZE) { u32 val = 0; int j; for (j = 3; j >= 0; j--) { val <<= 8; val |= adapter->rss_indir_tbl[i + j]; } wr32(reg, val << shift); reg += 4; i += 4; } } static int igb_set_rxfh(struct net_device *netdev, const u32 *indir, const u8 *key) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; int i; u32 num_queues; num_queues = adapter->rss_queues; switch (hw->mac.type) { case e1000_82576: /* 82576 supports 2 RSS queues for SR-IOV */ if (adapter->vfs_allocated_count) num_queues = 2; break; default: break; } /* Verify user input. */ for (i = 0; i < IGB_RETA_SIZE; i++) if (indir[i] >= num_queues) return -EINVAL; for (i = 0; i < IGB_RETA_SIZE; i++) adapter->rss_indir_tbl[i] = indir[i]; igb_write_rss_indir_tbl(adapter); return 0; } static unsigned int igb_max_channels(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; unsigned int max_combined = 0; switch (hw->mac.type) { case e1000_i211: max_combined = IGB_MAX_RX_QUEUES_I211; break; case e1000_82575: case e1000_i210: max_combined = IGB_MAX_RX_QUEUES_82575; break; case e1000_i350: if (!!adapter->vfs_allocated_count) { max_combined = 1; break; } /* fall through */ case e1000_82576: if (!!adapter->vfs_allocated_count) { max_combined = 2; break; } /* fall through */ case e1000_82580: case e1000_i354: default: max_combined = IGB_MAX_RX_QUEUES; break; } return max_combined; } static void igb_get_channels(struct net_device *netdev, struct ethtool_channels *ch) { struct igb_adapter *adapter = netdev_priv(netdev); /* Report maximum channels */ ch->max_combined = igb_max_channels(adapter); /* Report info for other vector */ if (adapter->flags & IGB_FLAG_HAS_MSIX) { ch->max_other = NON_Q_VECTORS; ch->other_count = NON_Q_VECTORS; } ch->combined_count = adapter->rss_queues; } static int igb_set_channels(struct net_device *netdev, struct ethtool_channels *ch) { struct igb_adapter *adapter = netdev_priv(netdev); unsigned int count = ch->combined_count; /* Verify they are not requesting separate vectors */ if (!count || ch->rx_count || ch->tx_count) return -EINVAL; /* Verify other_count is valid and has not been changed */ if (ch->other_count != NON_Q_VECTORS) return -EINVAL; /* Verify the number of channels doesn't exceed hw limits */ if (count > igb_max_channels(adapter)) return -EINVAL; if (count != adapter->rss_queues) { adapter->rss_queues = count; /* Hardware has to reinitialize queues and interrupts to * match the new configuration. */ return igb_reinit_queues(adapter); } return 0; } static const struct ethtool_ops igb_ethtool_ops = { .get_settings = igb_get_settings, .set_settings = igb_set_settings, .get_drvinfo = igb_get_drvinfo, .get_regs_len = igb_get_regs_len, .get_regs = igb_get_regs, .get_wol = igb_get_wol, .set_wol = igb_set_wol, .get_msglevel = igb_get_msglevel, .set_msglevel = igb_set_msglevel, .nway_reset = igb_nway_reset, .get_link = igb_get_link, .get_eeprom_len = igb_get_eeprom_len, .get_eeprom = igb_get_eeprom, .set_eeprom = igb_set_eeprom, .get_ringparam = igb_get_ringparam, .set_ringparam = igb_set_ringparam, .get_pauseparam = igb_get_pauseparam, .set_pauseparam = igb_set_pauseparam, .self_test = igb_diag_test, .get_strings = igb_get_strings, .set_phys_id = igb_set_phys_id, .get_sset_count = igb_get_sset_count, .get_ethtool_stats = igb_get_ethtool_stats, .get_coalesce = igb_get_coalesce, .set_coalesce = igb_set_coalesce, .get_ts_info = igb_get_ts_info, .get_rxnfc = igb_get_rxnfc, .set_rxnfc = igb_set_rxnfc, .get_eee = igb_get_eee, .set_eee = igb_set_eee, .get_module_info = igb_get_module_info, .get_module_eeprom = igb_get_module_eeprom, .get_rxfh_indir_size = igb_get_rxfh_indir_size, .get_rxfh = igb_get_rxfh, .set_rxfh = igb_set_rxfh, .get_channels = igb_get_channels, .set_channels = igb_set_channels, .begin = igb_ethtool_begin, .complete = igb_ethtool_complete, }; void igb_set_ethtool_ops(struct net_device *netdev) { netdev->ethtool_ops = &igb_ethtool_ops; }