/* * PPC64 code to handle Linux booting another kernel. * * Copyright (C) 2004-2005, IBM Corp. * * Created by: Milton D Miller II * * This source code is licensed under the GNU General Public License, * Version 2. See the file COPYING for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include /* _end */ #include #include #include int default_machine_kexec_prepare(struct kimage *image) { int i; unsigned long begin, end; /* limits of segment */ unsigned long low, high; /* limits of blocked memory range */ struct device_node *node; const unsigned long *basep; const unsigned int *sizep; if (!ppc_md.hpte_clear_all) return -ENOENT; /* * Since we use the kernel fault handlers and paging code to * handle the virtual mode, we must make sure no destination * overlaps kernel static data or bss. */ for (i = 0; i < image->nr_segments; i++) if (image->segment[i].mem < __pa(_end)) return -ETXTBSY; /* * For non-LPAR, we absolutely can not overwrite the mmu hash * table, since we are still using the bolted entries in it to * do the copy. Check that here. * * It is safe if the end is below the start of the blocked * region (end <= low), or if the beginning is after the * end of the blocked region (begin >= high). Use the * boolean identity !(a || b) === (!a && !b). */ if (htab_address) { low = __pa(htab_address); high = low + htab_size_bytes; for (i = 0; i < image->nr_segments; i++) { begin = image->segment[i].mem; end = begin + image->segment[i].memsz; if ((begin < high) && (end > low)) return -ETXTBSY; } } /* We also should not overwrite the tce tables */ for (node = of_find_node_by_type(NULL, "pci"); node != NULL; node = of_find_node_by_type(node, "pci")) { basep = of_get_property(node, "linux,tce-base", NULL); sizep = of_get_property(node, "linux,tce-size", NULL); if (basep == NULL || sizep == NULL) continue; low = *basep; high = low + (*sizep); for (i = 0; i < image->nr_segments; i++) { begin = image->segment[i].mem; end = begin + image->segment[i].memsz; if ((begin < high) && (end > low)) return -ETXTBSY; } } return 0; } #define IND_FLAGS (IND_DESTINATION | IND_INDIRECTION | IND_DONE | IND_SOURCE) static void copy_segments(unsigned long ind) { unsigned long entry; unsigned long *ptr; void *dest; void *addr; /* * We rely on kexec_load to create a lists that properly * initializes these pointers before they are used. * We will still crash if the list is wrong, but at least * the compiler will be quiet. */ ptr = NULL; dest = NULL; for (entry = ind; !(entry & IND_DONE); entry = *ptr++) { addr = __va(entry & PAGE_MASK); switch (entry & IND_FLAGS) { case IND_DESTINATION: dest = addr; break; case IND_INDIRECTION: ptr = addr; break; case IND_SOURCE: copy_page(dest, addr); dest += PAGE_SIZE; } } } void kexec_copy_flush(struct kimage *image) { long i, nr_segments = image->nr_segments; struct kexec_segment ranges[KEXEC_SEGMENT_MAX]; /* save the ranges on the stack to efficiently flush the icache */ memcpy(ranges, image->segment, sizeof(ranges)); /* * After this call we may not use anything allocated in dynamic * memory, including *image. * * Only globals and the stack are allowed. */ copy_segments(image->head); /* * we need to clear the icache for all dest pages sometime, * including ones that were in place on the original copy */ for (i = 0; i < nr_segments; i++) flush_icache_range((unsigned long)__va(ranges[i].mem), (unsigned long)__va(ranges[i].mem + ranges[i].memsz)); } #ifdef CONFIG_SMP static int kexec_all_irq_disabled = 0; static void kexec_smp_down(void *arg) { local_irq_disable(); mb(); /* make sure our irqs are disabled before we say they are */ get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF; while(kexec_all_irq_disabled == 0) cpu_relax(); mb(); /* make sure all irqs are disabled before this */ hw_breakpoint_disable(); /* * Now every CPU has IRQs off, we can clear out any pending * IPIs and be sure that no more will come in after this. */ if (ppc_md.kexec_cpu_down) ppc_md.kexec_cpu_down(0, 1); kexec_smp_wait(); /* NOTREACHED */ } static void kexec_prepare_cpus_wait(int wait_state) { int my_cpu, i, notified=-1; hw_breakpoint_disable(); my_cpu = get_cpu(); /* Make sure each CPU has atleast made it to the state we need */ for (i=0; i < NR_CPUS; i++) { if (i == my_cpu) continue; while (paca[i].kexec_state < wait_state) { barrier(); if (!cpu_possible(i)) { printk("kexec: cpu %d hw_cpu_id %d is not" " possible, ignoring\n", i, paca[i].hw_cpu_id); break; } if (!cpu_online(i)) { /* Fixme: this can be spinning in * pSeries_secondary_wait with a paca * waiting for it to go online. */ printk("kexec: cpu %d hw_cpu_id %d is not" " online, ignoring\n", i, paca[i].hw_cpu_id); break; } if (i != notified) { printk( "kexec: waiting for cpu %d (physical" " %d) to enter %i state\n", i, paca[i].hw_cpu_id, wait_state); notified = i; } } } mb(); } static void kexec_prepare_cpus(void) { smp_call_function(kexec_smp_down, NULL, /* wait */0); local_irq_disable(); mb(); /* make sure IRQs are disabled before we say they are */ get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF; kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF); /* we are sure every CPU has IRQs off at this point */ kexec_all_irq_disabled = 1; /* after we tell the others to go down */ if (ppc_md.kexec_cpu_down) ppc_md.kexec_cpu_down(0, 0); /* Before removing MMU mapings make sure all CPUs have entered real mode */ kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE); put_cpu(); } #else /* ! SMP */ static void kexec_prepare_cpus(void) { /* * move the secondarys to us so that we can copy * the new kernel 0-0x100 safely * * do this if kexec in setup.c ? * * We need to release the cpus if we are ever going from an * UP to an SMP kernel. */ smp_release_cpus(); if (ppc_md.kexec_cpu_down) ppc_md.kexec_cpu_down(0, 0); local_irq_disable(); } #endif /* SMP */ /* * kexec thread structure and stack. * * We need to make sure that this is 16384-byte aligned due to the * way process stacks are handled. It also must be statically allocated * or allocated as part of the kimage, because everything else may be * overwritten when we copy the kexec image. We piggyback on the * "init_task" linker section here to statically allocate a stack. * * We could use a smaller stack if we don't care about anything using * current, but that audit has not been performed. */ static union thread_union kexec_stack __init_task_data = { }; /* Our assembly helper, in kexec_stub.S */ extern NORET_TYPE void kexec_sequence(void *newstack, unsigned long start, void *image, void *control, void (*clear_all)(void)) ATTRIB_NORET; /* too late to fail here */ void default_machine_kexec(struct kimage *image) { /* prepare control code if any */ /* * If the kexec boot is the normal one, need to shutdown other cpus * into our wait loop and quiesce interrupts. * Otherwise, in the case of crashed mode (crashing_cpu >= 0), * stopping other CPUs and collecting their pt_regs is done before * using debugger IPI. */ if (crashing_cpu == -1) kexec_prepare_cpus(); /* switch to a staticly allocated stack. Based on irq stack code. * XXX: the task struct will likely be invalid once we do the copy! */ kexec_stack.thread_info.task = current_thread_info()->task; kexec_stack.thread_info.flags = 0; /* Some things are best done in assembly. Finding globals with * a toc is easier in C, so pass in what we can. */ kexec_sequence(&kexec_stack, image->start, image, page_address(image->control_code_page), ppc_md.hpte_clear_all); /* NOTREACHED */ } /* Values we need to export to the second kernel via the device tree. */ static unsigned long htab_base; static struct property htab_base_prop = { .name = "linux,htab-base", .length = sizeof(unsigned long), .value = &htab_base, }; static struct property htab_size_prop = { .name = "linux,htab-size", .length = sizeof(unsigned long), .value = &htab_size_bytes, }; static int __init export_htab_values(void) { struct device_node *node; struct property *prop; /* On machines with no htab htab_address is NULL */ if (!htab_address) return -ENODEV; node = of_find_node_by_path("/chosen"); if (!node) return -ENODEV; /* remove any stale propertys so ours can be found */ prop = of_find_property(node, htab_base_prop.name, NULL); if (prop) prom_remove_property(node, prop); prop = of_find_property(node, htab_size_prop.name, NULL); if (prop) prom_remove_property(node, prop); htab_base = __pa(htab_address); prom_add_property(node, &htab_base_prop); prom_add_property(node, &htab_size_prop); of_node_put(node); return 0; } late_initcall(export_htab_values);