/* * Copyright 2006 Dave Airlie * Copyright © 2006-2009 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt * Jesse Barnes */ #include #include #include #include "drmP.h" #include "drm.h" #include "drm_crtc.h" #include "drm_edid.h" #include "intel_drv.h" #include "i915_drm.h" #include "i915_drv.h" static void assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi) { struct drm_device *dev = intel_hdmi->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t enabled_bits; enabled_bits = IS_HASWELL(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE; WARN(I915_READ(intel_hdmi->sdvox_reg) & enabled_bits, "HDMI port enabled, expecting disabled\n"); } struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder) { return container_of(encoder, struct intel_hdmi, base.base); } static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector) { return container_of(intel_attached_encoder(connector), struct intel_hdmi, base); } void intel_dip_infoframe_csum(struct dip_infoframe *frame) { uint8_t *data = (uint8_t *)frame; uint8_t sum = 0; unsigned i; frame->checksum = 0; frame->ecc = 0; for (i = 0; i < frame->len + DIP_HEADER_SIZE; i++) sum += data[i]; frame->checksum = 0x100 - sum; } static u32 g4x_infoframe_index(struct dip_infoframe *frame) { switch (frame->type) { case DIP_TYPE_AVI: return VIDEO_DIP_SELECT_AVI; case DIP_TYPE_SPD: return VIDEO_DIP_SELECT_SPD; default: DRM_DEBUG_DRIVER("unknown info frame type %d\n", frame->type); return 0; } } static u32 g4x_infoframe_enable(struct dip_infoframe *frame) { switch (frame->type) { case DIP_TYPE_AVI: return VIDEO_DIP_ENABLE_AVI; case DIP_TYPE_SPD: return VIDEO_DIP_ENABLE_SPD; default: DRM_DEBUG_DRIVER("unknown info frame type %d\n", frame->type); return 0; } } static u32 hsw_infoframe_enable(struct dip_infoframe *frame) { switch (frame->type) { case DIP_TYPE_AVI: return VIDEO_DIP_ENABLE_AVI_HSW; case DIP_TYPE_SPD: return VIDEO_DIP_ENABLE_SPD_HSW; default: DRM_DEBUG_DRIVER("unknown info frame type %d\n", frame->type); return 0; } } static u32 hsw_infoframe_data_reg(struct dip_infoframe *frame, enum pipe pipe) { switch (frame->type) { case DIP_TYPE_AVI: return HSW_TVIDEO_DIP_AVI_DATA(pipe); case DIP_TYPE_SPD: return HSW_TVIDEO_DIP_SPD_DATA(pipe); default: DRM_DEBUG_DRIVER("unknown info frame type %d\n", frame->type); return 0; } } static void g4x_write_infoframe(struct drm_encoder *encoder, struct dip_infoframe *frame) { uint32_t *data = (uint32_t *)frame; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 val = I915_READ(VIDEO_DIP_CTL); unsigned i, len = DIP_HEADER_SIZE + frame->len; WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(frame); val &= ~g4x_infoframe_enable(frame); I915_WRITE(VIDEO_DIP_CTL, val); mmiowb(); for (i = 0; i < len; i += 4) { I915_WRITE(VIDEO_DIP_DATA, *data); data++; } mmiowb(); val |= g4x_infoframe_enable(frame); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; I915_WRITE(VIDEO_DIP_CTL, val); POSTING_READ(VIDEO_DIP_CTL); } static void ibx_write_infoframe(struct drm_encoder *encoder, struct dip_infoframe *frame) { uint32_t *data = (uint32_t *)frame; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); int reg = TVIDEO_DIP_CTL(intel_crtc->pipe); unsigned i, len = DIP_HEADER_SIZE + frame->len; u32 val = I915_READ(reg); WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(frame); val &= ~g4x_infoframe_enable(frame); I915_WRITE(reg, val); mmiowb(); for (i = 0; i < len; i += 4) { I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data); data++; } mmiowb(); val |= g4x_infoframe_enable(frame); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; I915_WRITE(reg, val); POSTING_READ(reg); } static void cpt_write_infoframe(struct drm_encoder *encoder, struct dip_infoframe *frame) { uint32_t *data = (uint32_t *)frame; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); int reg = TVIDEO_DIP_CTL(intel_crtc->pipe); unsigned i, len = DIP_HEADER_SIZE + frame->len; u32 val = I915_READ(reg); WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(frame); /* The DIP control register spec says that we need to update the AVI * infoframe without clearing its enable bit */ if (frame->type != DIP_TYPE_AVI) val &= ~g4x_infoframe_enable(frame); I915_WRITE(reg, val); mmiowb(); for (i = 0; i < len; i += 4) { I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data); data++; } mmiowb(); val |= g4x_infoframe_enable(frame); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; I915_WRITE(reg, val); POSTING_READ(reg); } static void vlv_write_infoframe(struct drm_encoder *encoder, struct dip_infoframe *frame) { uint32_t *data = (uint32_t *)frame; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); int reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe); unsigned i, len = DIP_HEADER_SIZE + frame->len; u32 val = I915_READ(reg); WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(frame); val &= ~g4x_infoframe_enable(frame); I915_WRITE(reg, val); mmiowb(); for (i = 0; i < len; i += 4) { I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data); data++; } mmiowb(); val |= g4x_infoframe_enable(frame); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; I915_WRITE(reg, val); POSTING_READ(reg); } static void hsw_write_infoframe(struct drm_encoder *encoder, struct dip_infoframe *frame) { uint32_t *data = (uint32_t *)frame; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->pipe); u32 data_reg = hsw_infoframe_data_reg(frame, intel_crtc->pipe); unsigned int i, len = DIP_HEADER_SIZE + frame->len; u32 val = I915_READ(ctl_reg); if (data_reg == 0) return; val &= ~hsw_infoframe_enable(frame); I915_WRITE(ctl_reg, val); mmiowb(); for (i = 0; i < len; i += 4) { I915_WRITE(data_reg + i, *data); data++; } mmiowb(); val |= hsw_infoframe_enable(frame); I915_WRITE(ctl_reg, val); POSTING_READ(ctl_reg); } static void intel_set_infoframe(struct drm_encoder *encoder, struct dip_infoframe *frame) { struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); intel_dip_infoframe_csum(frame); intel_hdmi->write_infoframe(encoder, frame); } static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder, struct drm_display_mode *adjusted_mode) { struct dip_infoframe avi_if = { .type = DIP_TYPE_AVI, .ver = DIP_VERSION_AVI, .len = DIP_LEN_AVI, }; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) avi_if.body.avi.YQ_CN_PR |= DIP_AVI_PR_2; intel_set_infoframe(encoder, &avi_if); } static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder) { struct dip_infoframe spd_if; memset(&spd_if, 0, sizeof(spd_if)); spd_if.type = DIP_TYPE_SPD; spd_if.ver = DIP_VERSION_SPD; spd_if.len = DIP_LEN_SPD; strcpy(spd_if.body.spd.vn, "Intel"); strcpy(spd_if.body.spd.pd, "Integrated gfx"); spd_if.body.spd.sdi = DIP_SPD_PC; intel_set_infoframe(encoder, &spd_if); } static void g4x_set_infoframes(struct drm_encoder *encoder, struct drm_display_mode *adjusted_mode) { struct drm_i915_private *dev_priv = encoder->dev->dev_private; struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); u32 reg = VIDEO_DIP_CTL; u32 val = I915_READ(reg); u32 port; assert_hdmi_port_disabled(intel_hdmi); /* If the registers were not initialized yet, they might be zeroes, * which means we're selecting the AVI DIP and we're setting its * frequency to once. This seems to really confuse the HW and make * things stop working (the register spec says the AVI always needs to * be sent every VSync). So here we avoid writing to the register more * than we need and also explicitly select the AVI DIP and explicitly * set its frequency to every VSync. Avoiding to write it twice seems to * be enough to solve the problem, but being defensive shouldn't hurt us * either. */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!intel_hdmi->has_hdmi_sink) { if (!(val & VIDEO_DIP_ENABLE)) return; val &= ~VIDEO_DIP_ENABLE; I915_WRITE(reg, val); POSTING_READ(reg); return; } switch (intel_hdmi->sdvox_reg) { case SDVOB: port = VIDEO_DIP_PORT_B; break; case SDVOC: port = VIDEO_DIP_PORT_C; break; default: return; } if (port != (val & VIDEO_DIP_PORT_MASK)) { if (val & VIDEO_DIP_ENABLE) { val &= ~VIDEO_DIP_ENABLE; I915_WRITE(reg, val); POSTING_READ(reg); } val &= ~VIDEO_DIP_PORT_MASK; val |= port; } val |= VIDEO_DIP_ENABLE; val &= ~VIDEO_DIP_ENABLE_VENDOR; I915_WRITE(reg, val); POSTING_READ(reg); intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); intel_hdmi_set_spd_infoframe(encoder); } static void ibx_set_infoframes(struct drm_encoder *encoder, struct drm_display_mode *adjusted_mode) { struct drm_i915_private *dev_priv = encoder->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); u32 port; assert_hdmi_port_disabled(intel_hdmi); /* See the big comment in g4x_set_infoframes() */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!intel_hdmi->has_hdmi_sink) { if (!(val & VIDEO_DIP_ENABLE)) return; val &= ~VIDEO_DIP_ENABLE; I915_WRITE(reg, val); POSTING_READ(reg); return; } switch (intel_hdmi->sdvox_reg) { case HDMIB: port = VIDEO_DIP_PORT_B; break; case HDMIC: port = VIDEO_DIP_PORT_C; break; case HDMID: port = VIDEO_DIP_PORT_D; break; default: return; } if (port != (val & VIDEO_DIP_PORT_MASK)) { if (val & VIDEO_DIP_ENABLE) { val &= ~VIDEO_DIP_ENABLE; I915_WRITE(reg, val); POSTING_READ(reg); } val &= ~VIDEO_DIP_PORT_MASK; val |= port; } val |= VIDEO_DIP_ENABLE; val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_GCP); I915_WRITE(reg, val); POSTING_READ(reg); intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); intel_hdmi_set_spd_infoframe(encoder); } static void cpt_set_infoframes(struct drm_encoder *encoder, struct drm_display_mode *adjusted_mode) { struct drm_i915_private *dev_priv = encoder->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); assert_hdmi_port_disabled(intel_hdmi); /* See the big comment in g4x_set_infoframes() */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!intel_hdmi->has_hdmi_sink) { if (!(val & VIDEO_DIP_ENABLE)) return; val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI); I915_WRITE(reg, val); POSTING_READ(reg); return; } /* Set both together, unset both together: see the spec. */ val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI; val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_GCP); I915_WRITE(reg, val); POSTING_READ(reg); intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); intel_hdmi_set_spd_infoframe(encoder); } static void vlv_set_infoframes(struct drm_encoder *encoder, struct drm_display_mode *adjusted_mode) { struct drm_i915_private *dev_priv = encoder->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); assert_hdmi_port_disabled(intel_hdmi); /* See the big comment in g4x_set_infoframes() */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!intel_hdmi->has_hdmi_sink) { if (!(val & VIDEO_DIP_ENABLE)) return; val &= ~VIDEO_DIP_ENABLE; I915_WRITE(reg, val); POSTING_READ(reg); return; } val |= VIDEO_DIP_ENABLE; val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_GCP); I915_WRITE(reg, val); POSTING_READ(reg); intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); intel_hdmi_set_spd_infoframe(encoder); } static void hsw_set_infoframes(struct drm_encoder *encoder, struct drm_display_mode *adjusted_mode) { struct drm_i915_private *dev_priv = encoder->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); assert_hdmi_port_disabled(intel_hdmi); if (!intel_hdmi->has_hdmi_sink) { I915_WRITE(reg, 0); POSTING_READ(reg); return; } val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW); I915_WRITE(reg, val); POSTING_READ(reg); intel_hdmi_set_avi_infoframe(encoder, adjusted_mode); intel_hdmi_set_spd_infoframe(encoder); } static void intel_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); u32 sdvox; sdvox = SDVO_ENCODING_HDMI; if (!HAS_PCH_SPLIT(dev)) sdvox |= intel_hdmi->color_range; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) sdvox |= SDVO_VSYNC_ACTIVE_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) sdvox |= SDVO_HSYNC_ACTIVE_HIGH; if (intel_crtc->bpp > 24) sdvox |= COLOR_FORMAT_12bpc; else sdvox |= COLOR_FORMAT_8bpc; /* Required on CPT */ if (intel_hdmi->has_hdmi_sink && HAS_PCH_CPT(dev)) sdvox |= HDMI_MODE_SELECT; if (intel_hdmi->has_audio) { DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n", pipe_name(intel_crtc->pipe)); sdvox |= SDVO_AUDIO_ENABLE; sdvox |= SDVO_NULL_PACKETS_DURING_VSYNC; intel_write_eld(encoder, adjusted_mode); } if (HAS_PCH_CPT(dev)) sdvox |= PORT_TRANS_SEL_CPT(intel_crtc->pipe); else if (intel_crtc->pipe == PIPE_B) sdvox |= SDVO_PIPE_B_SELECT; I915_WRITE(intel_hdmi->sdvox_reg, sdvox); POSTING_READ(intel_hdmi->sdvox_reg); intel_hdmi->set_infoframes(encoder, adjusted_mode); } static void intel_enable_hdmi(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); u32 temp; u32 enable_bits = SDVO_ENABLE; if (intel_hdmi->has_audio) enable_bits |= SDVO_AUDIO_ENABLE; temp = I915_READ(intel_hdmi->sdvox_reg); /* HW workaround for IBX, we need to move the port to transcoder A * before disabling it. */ if (HAS_PCH_IBX(dev)) { struct drm_crtc *crtc = encoder->base.crtc; int pipe = crtc ? to_intel_crtc(crtc)->pipe : -1; /* Restore the transcoder select bit. */ if (pipe == PIPE_B) enable_bits |= SDVO_PIPE_B_SELECT; } /* HW workaround, need to toggle enable bit off and on for 12bpc, but * we do this anyway which shows more stable in testing. */ if (HAS_PCH_SPLIT(dev)) { I915_WRITE(intel_hdmi->sdvox_reg, temp & ~SDVO_ENABLE); POSTING_READ(intel_hdmi->sdvox_reg); } temp |= enable_bits; I915_WRITE(intel_hdmi->sdvox_reg, temp); POSTING_READ(intel_hdmi->sdvox_reg); /* HW workaround, need to write this twice for issue that may result * in first write getting masked. */ if (HAS_PCH_SPLIT(dev)) { I915_WRITE(intel_hdmi->sdvox_reg, temp); POSTING_READ(intel_hdmi->sdvox_reg); } } static void intel_disable_hdmi(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); u32 temp; u32 enable_bits = SDVO_ENABLE; if (intel_hdmi->has_audio) enable_bits |= SDVO_AUDIO_ENABLE; temp = I915_READ(intel_hdmi->sdvox_reg); /* HW workaround for IBX, we need to move the port to transcoder A * before disabling it. */ if (HAS_PCH_IBX(dev)) { struct drm_crtc *crtc = encoder->base.crtc; int pipe = crtc ? to_intel_crtc(crtc)->pipe : -1; if (temp & SDVO_PIPE_B_SELECT) { temp &= ~SDVO_PIPE_B_SELECT; I915_WRITE(intel_hdmi->sdvox_reg, temp); POSTING_READ(intel_hdmi->sdvox_reg); /* Again we need to write this twice. */ I915_WRITE(intel_hdmi->sdvox_reg, temp); POSTING_READ(intel_hdmi->sdvox_reg); /* Transcoder selection bits only update * effectively on vblank. */ if (crtc) intel_wait_for_vblank(dev, pipe); else msleep(50); } } /* HW workaround, need to toggle enable bit off and on for 12bpc, but * we do this anyway which shows more stable in testing. */ if (HAS_PCH_SPLIT(dev)) { I915_WRITE(intel_hdmi->sdvox_reg, temp & ~SDVO_ENABLE); POSTING_READ(intel_hdmi->sdvox_reg); } temp &= ~enable_bits; I915_WRITE(intel_hdmi->sdvox_reg, temp); POSTING_READ(intel_hdmi->sdvox_reg); /* HW workaround, need to write this twice for issue that may result * in first write getting masked. */ if (HAS_PCH_SPLIT(dev)) { I915_WRITE(intel_hdmi->sdvox_reg, temp); POSTING_READ(intel_hdmi->sdvox_reg); } } static int intel_hdmi_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { if (mode->clock > 165000) return MODE_CLOCK_HIGH; if (mode->clock < 20000) return MODE_CLOCK_LOW; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) return MODE_NO_DBLESCAN; return MODE_OK; } static bool intel_hdmi_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static bool g4x_hdmi_connected(struct intel_hdmi *intel_hdmi) { struct drm_device *dev = intel_hdmi->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t bit; switch (intel_hdmi->sdvox_reg) { case SDVOB: bit = HDMIB_HOTPLUG_LIVE_STATUS; break; case SDVOC: bit = HDMIC_HOTPLUG_LIVE_STATUS; break; default: bit = 0; break; } return I915_READ(PORT_HOTPLUG_STAT) & bit; } static enum drm_connector_status intel_hdmi_detect(struct drm_connector *connector, bool force) { struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector); struct drm_i915_private *dev_priv = connector->dev->dev_private; struct edid *edid; enum drm_connector_status status = connector_status_disconnected; if (IS_G4X(connector->dev) && !g4x_hdmi_connected(intel_hdmi)) return status; intel_hdmi->has_hdmi_sink = false; intel_hdmi->has_audio = false; edid = drm_get_edid(connector, intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus)); if (edid) { if (edid->input & DRM_EDID_INPUT_DIGITAL) { status = connector_status_connected; if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI) intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid); intel_hdmi->has_audio = drm_detect_monitor_audio(edid); } connector->display_info.raw_edid = NULL; kfree(edid); } if (status == connector_status_connected) { if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO) intel_hdmi->has_audio = (intel_hdmi->force_audio == HDMI_AUDIO_ON); } return status; } static int intel_hdmi_get_modes(struct drm_connector *connector) { struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector); struct drm_i915_private *dev_priv = connector->dev->dev_private; /* We should parse the EDID data and find out if it's an HDMI sink so * we can send audio to it. */ return intel_ddc_get_modes(connector, intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus)); } static bool intel_hdmi_detect_audio(struct drm_connector *connector) { struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector); struct drm_i915_private *dev_priv = connector->dev->dev_private; struct edid *edid; bool has_audio = false; edid = drm_get_edid(connector, intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus)); if (edid) { if (edid->input & DRM_EDID_INPUT_DIGITAL) has_audio = drm_detect_monitor_audio(edid); connector->display_info.raw_edid = NULL; kfree(edid); } return has_audio; } static int intel_hdmi_set_property(struct drm_connector *connector, struct drm_property *property, uint64_t val) { struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector); struct drm_i915_private *dev_priv = connector->dev->dev_private; int ret; ret = drm_connector_property_set_value(connector, property, val); if (ret) return ret; if (property == dev_priv->force_audio_property) { enum hdmi_force_audio i = val; bool has_audio; if (i == intel_hdmi->force_audio) return 0; intel_hdmi->force_audio = i; if (i == HDMI_AUDIO_AUTO) has_audio = intel_hdmi_detect_audio(connector); else has_audio = (i == HDMI_AUDIO_ON); if (i == HDMI_AUDIO_OFF_DVI) intel_hdmi->has_hdmi_sink = 0; intel_hdmi->has_audio = has_audio; goto done; } if (property == dev_priv->broadcast_rgb_property) { if (val == !!intel_hdmi->color_range) return 0; intel_hdmi->color_range = val ? SDVO_COLOR_RANGE_16_235 : 0; goto done; } return -EINVAL; done: if (intel_hdmi->base.base.crtc) { struct drm_crtc *crtc = intel_hdmi->base.base.crtc; drm_crtc_helper_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb); } return 0; } static void intel_hdmi_destroy(struct drm_connector *connector) { drm_sysfs_connector_remove(connector); drm_connector_cleanup(connector); kfree(connector); } static const struct drm_encoder_helper_funcs intel_hdmi_helper_funcs_hsw = { .mode_fixup = intel_hdmi_mode_fixup, .prepare = intel_encoder_noop, .mode_set = intel_ddi_mode_set, .commit = intel_encoder_noop, .disable = intel_encoder_disable, }; static const struct drm_encoder_helper_funcs intel_hdmi_helper_funcs = { .mode_fixup = intel_hdmi_mode_fixup, .prepare = intel_encoder_noop, .mode_set = intel_hdmi_mode_set, .commit = intel_encoder_noop, .disable = intel_encoder_disable, }; static const struct drm_connector_funcs intel_hdmi_connector_funcs = { .dpms = intel_connector_dpms, .detect = intel_hdmi_detect, .fill_modes = drm_helper_probe_single_connector_modes, .set_property = intel_hdmi_set_property, .destroy = intel_hdmi_destroy, }; static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = { .get_modes = intel_hdmi_get_modes, .mode_valid = intel_hdmi_mode_valid, .best_encoder = intel_best_encoder, }; static const struct drm_encoder_funcs intel_hdmi_enc_funcs = { .destroy = intel_encoder_destroy, }; static void intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector) { intel_attach_force_audio_property(connector); intel_attach_broadcast_rgb_property(connector); } void intel_hdmi_init(struct drm_device *dev, int sdvox_reg, enum port port) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_connector *connector; struct intel_encoder *intel_encoder; struct intel_connector *intel_connector; struct intel_hdmi *intel_hdmi; intel_hdmi = kzalloc(sizeof(struct intel_hdmi), GFP_KERNEL); if (!intel_hdmi) return; intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL); if (!intel_connector) { kfree(intel_hdmi); return; } intel_encoder = &intel_hdmi->base; drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs, DRM_MODE_ENCODER_TMDS); connector = &intel_connector->base; drm_connector_init(dev, connector, &intel_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA); drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs); intel_encoder->type = INTEL_OUTPUT_HDMI; connector->polled = DRM_CONNECTOR_POLL_HPD; connector->interlace_allowed = 1; connector->doublescan_allowed = 0; intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); intel_encoder->cloneable = false; intel_hdmi->ddi_port = port; switch (port) { case PORT_B: intel_hdmi->ddc_bus = GMBUS_PORT_DPB; dev_priv->hotplug_supported_mask |= HDMIB_HOTPLUG_INT_STATUS; break; case PORT_C: intel_hdmi->ddc_bus = GMBUS_PORT_DPC; dev_priv->hotplug_supported_mask |= HDMIC_HOTPLUG_INT_STATUS; break; case PORT_D: intel_hdmi->ddc_bus = GMBUS_PORT_DPD; dev_priv->hotplug_supported_mask |= HDMID_HOTPLUG_INT_STATUS; break; case PORT_A: /* Internal port only for eDP. */ default: BUG(); } intel_hdmi->sdvox_reg = sdvox_reg; if (!HAS_PCH_SPLIT(dev)) { intel_hdmi->write_infoframe = g4x_write_infoframe; intel_hdmi->set_infoframes = g4x_set_infoframes; } else if (IS_VALLEYVIEW(dev)) { intel_hdmi->write_infoframe = vlv_write_infoframe; intel_hdmi->set_infoframes = vlv_set_infoframes; } else if (IS_HASWELL(dev)) { intel_hdmi->write_infoframe = hsw_write_infoframe; intel_hdmi->set_infoframes = hsw_set_infoframes; } else if (HAS_PCH_IBX(dev)) { intel_hdmi->write_infoframe = ibx_write_infoframe; intel_hdmi->set_infoframes = ibx_set_infoframes; } else { intel_hdmi->write_infoframe = cpt_write_infoframe; intel_hdmi->set_infoframes = cpt_set_infoframes; } if (IS_HASWELL(dev)) { intel_encoder->enable = intel_enable_ddi; intel_encoder->disable = intel_disable_ddi; drm_encoder_helper_add(&intel_encoder->base, &intel_hdmi_helper_funcs_hsw); } else { intel_encoder->enable = intel_enable_hdmi; intel_encoder->disable = intel_disable_hdmi; drm_encoder_helper_add(&intel_encoder->base, &intel_hdmi_helper_funcs); } intel_hdmi_add_properties(intel_hdmi, connector); intel_connector_attach_encoder(intel_connector, intel_encoder); drm_sysfs_connector_add(connector); /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written * 0xd. Failure to do so will result in spurious interrupts being * generated on the port when a cable is not attached. */ if (IS_G4X(dev) && !IS_GM45(dev)) { u32 temp = I915_READ(PEG_BAND_GAP_DATA); I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); } }