/* * Copyright (c) 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * Keith Packard * Mika Kuoppala * */ #include #include #include #include "i915_drv.h" static const char *engine_str(int engine) { switch (engine) { case RCS: return "render"; case VCS: return "bsd"; case BCS: return "blt"; case VECS: return "vebox"; case VCS2: return "bsd2"; default: return ""; } } static const char *tiling_flag(int tiling) { switch (tiling) { default: case I915_TILING_NONE: return ""; case I915_TILING_X: return " X"; case I915_TILING_Y: return " Y"; } } static const char *dirty_flag(int dirty) { return dirty ? " dirty" : ""; } static const char *purgeable_flag(int purgeable) { return purgeable ? " purgeable" : ""; } static bool __i915_error_ok(struct drm_i915_error_state_buf *e) { if (!e->err && WARN(e->bytes > (e->size - 1), "overflow")) { e->err = -ENOSPC; return false; } if (e->bytes == e->size - 1 || e->err) return false; return true; } static bool __i915_error_seek(struct drm_i915_error_state_buf *e, unsigned len) { if (e->pos + len <= e->start) { e->pos += len; return false; } /* First vsnprintf needs to fit in its entirety for memmove */ if (len >= e->size) { e->err = -EIO; return false; } return true; } static void __i915_error_advance(struct drm_i915_error_state_buf *e, unsigned len) { /* If this is first printf in this window, adjust it so that * start position matches start of the buffer */ if (e->pos < e->start) { const size_t off = e->start - e->pos; /* Should not happen but be paranoid */ if (off > len || e->bytes) { e->err = -EIO; return; } memmove(e->buf, e->buf + off, len - off); e->bytes = len - off; e->pos = e->start; return; } e->bytes += len; e->pos += len; } static void i915_error_vprintf(struct drm_i915_error_state_buf *e, const char *f, va_list args) { unsigned len; if (!__i915_error_ok(e)) return; /* Seek the first printf which is hits start position */ if (e->pos < e->start) { va_list tmp; va_copy(tmp, args); len = vsnprintf(NULL, 0, f, tmp); va_end(tmp); if (!__i915_error_seek(e, len)) return; } len = vsnprintf(e->buf + e->bytes, e->size - e->bytes, f, args); if (len >= e->size - e->bytes) len = e->size - e->bytes - 1; __i915_error_advance(e, len); } static void i915_error_puts(struct drm_i915_error_state_buf *e, const char *str) { unsigned len; if (!__i915_error_ok(e)) return; len = strlen(str); /* Seek the first printf which is hits start position */ if (e->pos < e->start) { if (!__i915_error_seek(e, len)) return; } if (len >= e->size - e->bytes) len = e->size - e->bytes - 1; memcpy(e->buf + e->bytes, str, len); __i915_error_advance(e, len); } #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) #define err_puts(e, s) i915_error_puts(e, s) #ifdef CONFIG_DRM_I915_COMPRESS_ERROR static bool compress_init(struct z_stream_s *zstream) { memset(zstream, 0, sizeof(*zstream)); zstream->workspace = kmalloc(zlib_deflate_workspacesize(MAX_WBITS, MAX_MEM_LEVEL), GFP_ATOMIC | __GFP_NOWARN); if (!zstream->workspace) return false; if (zlib_deflateInit(zstream, Z_DEFAULT_COMPRESSION) != Z_OK) { kfree(zstream->workspace); return false; } return true; } static int compress_page(struct z_stream_s *zstream, void *src, struct drm_i915_error_object *dst) { zstream->next_in = src; zstream->avail_in = PAGE_SIZE; do { if (zstream->avail_out == 0) { unsigned long page; page = __get_free_page(GFP_ATOMIC | __GFP_NOWARN); if (!page) return -ENOMEM; dst->pages[dst->page_count++] = (void *)page; zstream->next_out = (void *)page; zstream->avail_out = PAGE_SIZE; } if (zlib_deflate(zstream, Z_SYNC_FLUSH) != Z_OK) return -EIO; } while (zstream->avail_in); /* Fallback to uncompressed if we increase size? */ if (0 && zstream->total_out > zstream->total_in) return -E2BIG; return 0; } static void compress_fini(struct z_stream_s *zstream, struct drm_i915_error_object *dst) { if (dst) { zlib_deflate(zstream, Z_FINISH); dst->unused = zstream->avail_out; } zlib_deflateEnd(zstream); kfree(zstream->workspace); } static void err_compression_marker(struct drm_i915_error_state_buf *m) { err_puts(m, ":"); } #else static bool compress_init(struct z_stream_s *zstream) { return true; } static int compress_page(struct z_stream_s *zstream, void *src, struct drm_i915_error_object *dst) { unsigned long page; page = __get_free_page(GFP_ATOMIC | __GFP_NOWARN); if (!page) return -ENOMEM; dst->pages[dst->page_count++] = memcpy((void *)page, src, PAGE_SIZE); return 0; } static void compress_fini(struct z_stream_s *zstream, struct drm_i915_error_object *dst) { } static void err_compression_marker(struct drm_i915_error_state_buf *m) { err_puts(m, "~"); } #endif static void print_error_buffers(struct drm_i915_error_state_buf *m, const char *name, struct drm_i915_error_buffer *err, int count) { int i; err_printf(m, "%s [%d]:\n", name, count); while (count--) { err_printf(m, " %08x_%08x %8u %02x %02x [ ", upper_32_bits(err->gtt_offset), lower_32_bits(err->gtt_offset), err->size, err->read_domains, err->write_domain); for (i = 0; i < I915_NUM_ENGINES; i++) err_printf(m, "%02x ", err->rseqno[i]); err_printf(m, "] %02x", err->wseqno); err_puts(m, tiling_flag(err->tiling)); err_puts(m, dirty_flag(err->dirty)); err_puts(m, purgeable_flag(err->purgeable)); err_puts(m, err->userptr ? " userptr" : ""); err_puts(m, err->engine != -1 ? " " : ""); err_puts(m, engine_str(err->engine)); err_puts(m, i915_cache_level_str(m->i915, err->cache_level)); if (err->name) err_printf(m, " (name: %d)", err->name); if (err->fence_reg != I915_FENCE_REG_NONE) err_printf(m, " (fence: %d)", err->fence_reg); err_puts(m, "\n"); err++; } } static const char *hangcheck_action_to_str(enum intel_engine_hangcheck_action a) { switch (a) { case HANGCHECK_IDLE: return "idle"; case HANGCHECK_WAIT: return "wait"; case HANGCHECK_ACTIVE: return "active"; case HANGCHECK_KICK: return "kick"; case HANGCHECK_HUNG: return "hung"; } return "unknown"; } static void error_print_instdone(struct drm_i915_error_state_buf *m, struct drm_i915_error_engine *ee) { int slice; int subslice; err_printf(m, " INSTDONE: 0x%08x\n", ee->instdone.instdone); if (ee->engine_id != RCS || INTEL_GEN(m->i915) <= 3) return; err_printf(m, " SC_INSTDONE: 0x%08x\n", ee->instdone.slice_common); if (INTEL_GEN(m->i915) <= 6) return; for_each_instdone_slice_subslice(m->i915, slice, subslice) err_printf(m, " SAMPLER_INSTDONE[%d][%d]: 0x%08x\n", slice, subslice, ee->instdone.sampler[slice][subslice]); for_each_instdone_slice_subslice(m->i915, slice, subslice) err_printf(m, " ROW_INSTDONE[%d][%d]: 0x%08x\n", slice, subslice, ee->instdone.row[slice][subslice]); } static void error_print_request(struct drm_i915_error_state_buf *m, const char *prefix, struct drm_i915_error_request *erq) { if (!erq->seqno) return; err_printf(m, "%s pid %d, seqno %8x:%08x, emitted %dms ago, head %08x, tail %08x\n", prefix, erq->pid, erq->context, erq->seqno, jiffies_to_msecs(jiffies - erq->jiffies), erq->head, erq->tail); } static void error_print_engine(struct drm_i915_error_state_buf *m, struct drm_i915_error_engine *ee) { err_printf(m, "%s command stream:\n", engine_str(ee->engine_id)); err_printf(m, " START: 0x%08x\n", ee->start); err_printf(m, " HEAD: 0x%08x [0x%08x]\n", ee->head, ee->rq_head); err_printf(m, " TAIL: 0x%08x [0x%08x, 0x%08x]\n", ee->tail, ee->rq_post, ee->rq_tail); err_printf(m, " CTL: 0x%08x\n", ee->ctl); err_printf(m, " MODE: 0x%08x\n", ee->mode); err_printf(m, " HWS: 0x%08x\n", ee->hws); err_printf(m, " ACTHD: 0x%08x %08x\n", (u32)(ee->acthd>>32), (u32)ee->acthd); err_printf(m, " IPEIR: 0x%08x\n", ee->ipeir); err_printf(m, " IPEHR: 0x%08x\n", ee->ipehr); error_print_instdone(m, ee); if (ee->batchbuffer) { u64 start = ee->batchbuffer->gtt_offset; u64 end = start + ee->batchbuffer->gtt_size; err_printf(m, " batch: [0x%08x_%08x, 0x%08x_%08x]\n", upper_32_bits(start), lower_32_bits(start), upper_32_bits(end), lower_32_bits(end)); } if (INTEL_GEN(m->i915) >= 4) { err_printf(m, " BBADDR: 0x%08x_%08x\n", (u32)(ee->bbaddr>>32), (u32)ee->bbaddr); err_printf(m, " BB_STATE: 0x%08x\n", ee->bbstate); err_printf(m, " INSTPS: 0x%08x\n", ee->instps); } err_printf(m, " INSTPM: 0x%08x\n", ee->instpm); err_printf(m, " FADDR: 0x%08x %08x\n", upper_32_bits(ee->faddr), lower_32_bits(ee->faddr)); if (INTEL_GEN(m->i915) >= 6) { err_printf(m, " RC PSMI: 0x%08x\n", ee->rc_psmi); err_printf(m, " FAULT_REG: 0x%08x\n", ee->fault_reg); err_printf(m, " SYNC_0: 0x%08x [last synced 0x%08x]\n", ee->semaphore_mboxes[0], ee->semaphore_seqno[0]); err_printf(m, " SYNC_1: 0x%08x [last synced 0x%08x]\n", ee->semaphore_mboxes[1], ee->semaphore_seqno[1]); if (HAS_VEBOX(m->i915)) { err_printf(m, " SYNC_2: 0x%08x [last synced 0x%08x]\n", ee->semaphore_mboxes[2], ee->semaphore_seqno[2]); } } if (USES_PPGTT(m->i915)) { err_printf(m, " GFX_MODE: 0x%08x\n", ee->vm_info.gfx_mode); if (INTEL_GEN(m->i915) >= 8) { int i; for (i = 0; i < 4; i++) err_printf(m, " PDP%d: 0x%016llx\n", i, ee->vm_info.pdp[i]); } else { err_printf(m, " PP_DIR_BASE: 0x%08x\n", ee->vm_info.pp_dir_base); } } err_printf(m, " seqno: 0x%08x\n", ee->seqno); err_printf(m, " last_seqno: 0x%08x\n", ee->last_seqno); err_printf(m, " waiting: %s\n", yesno(ee->waiting)); err_printf(m, " ring->head: 0x%08x\n", ee->cpu_ring_head); err_printf(m, " ring->tail: 0x%08x\n", ee->cpu_ring_tail); err_printf(m, " hangcheck: %s [%d]\n", hangcheck_action_to_str(ee->hangcheck_action), ee->hangcheck_score); error_print_request(m, " ELSP[0]: ", &ee->execlist[0]); error_print_request(m, " ELSP[1]: ", &ee->execlist[1]); } void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...) { va_list args; va_start(args, f); i915_error_vprintf(e, f, args); va_end(args); } static int ascii85_encode_len(int len) { return DIV_ROUND_UP(len, 4); } static bool ascii85_encode(u32 in, char *out) { int i; if (in == 0) return false; out[5] = '\0'; for (i = 5; i--; ) { out[i] = '!' + in % 85; in /= 85; } return true; } static void print_error_obj(struct drm_i915_error_state_buf *m, struct intel_engine_cs *engine, const char *name, struct drm_i915_error_object *obj) { char out[6]; int page; if (!obj) return; if (name) { err_printf(m, "%s --- %s = 0x%08x %08x\n", engine ? engine->name : "global", name, upper_32_bits(obj->gtt_offset), lower_32_bits(obj->gtt_offset)); } err_compression_marker(m); for (page = 0; page < obj->page_count; page++) { int i, len; len = PAGE_SIZE; if (page == obj->page_count - 1) len -= obj->unused; len = ascii85_encode_len(len); for (i = 0; i < len; i++) { if (ascii85_encode(obj->pages[page][i], out)) err_puts(m, out); else err_puts(m, "z"); } } err_puts(m, "\n"); } static void err_print_capabilities(struct drm_i915_error_state_buf *m, const struct intel_device_info *info) { #define PRINT_FLAG(x) err_printf(m, #x ": %s\n", yesno(info->x)) DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG); #undef PRINT_FLAG } int i915_error_state_to_str(struct drm_i915_error_state_buf *m, const struct i915_error_state_file_priv *error_priv) { struct drm_device *dev = error_priv->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct pci_dev *pdev = dev_priv->drm.pdev; struct drm_i915_error_state *error = error_priv->error; struct drm_i915_error_object *obj; int max_hangcheck_score; int i, j; if (!error) { err_printf(m, "no error state collected\n"); goto out; } err_printf(m, "%s\n", error->error_msg); err_printf(m, "Time: %ld s %ld us\n", error->time.tv_sec, error->time.tv_usec); err_printf(m, "Kernel: " UTS_RELEASE "\n"); err_print_capabilities(m, &error->device_info); max_hangcheck_score = 0; for (i = 0; i < ARRAY_SIZE(error->engine); i++) { if (error->engine[i].hangcheck_score > max_hangcheck_score) max_hangcheck_score = error->engine[i].hangcheck_score; } for (i = 0; i < ARRAY_SIZE(error->engine); i++) { if (error->engine[i].hangcheck_score == max_hangcheck_score && error->engine[i].pid != -1) { err_printf(m, "Active process (on ring %s): %s [%d]\n", engine_str(i), error->engine[i].comm, error->engine[i].pid); } } err_printf(m, "Reset count: %u\n", error->reset_count); err_printf(m, "Suspend count: %u\n", error->suspend_count); err_printf(m, "PCI ID: 0x%04x\n", pdev->device); err_printf(m, "PCI Revision: 0x%02x\n", pdev->revision); err_printf(m, "PCI Subsystem: %04x:%04x\n", pdev->subsystem_vendor, pdev->subsystem_device); err_printf(m, "IOMMU enabled?: %d\n", error->iommu); if (HAS_CSR(dev)) { struct intel_csr *csr = &dev_priv->csr; err_printf(m, "DMC loaded: %s\n", yesno(csr->dmc_payload != NULL)); err_printf(m, "DMC fw version: %d.%d\n", CSR_VERSION_MAJOR(csr->version), CSR_VERSION_MINOR(csr->version)); } err_printf(m, "EIR: 0x%08x\n", error->eir); err_printf(m, "IER: 0x%08x\n", error->ier); if (INTEL_INFO(dev)->gen >= 8) { for (i = 0; i < 4; i++) err_printf(m, "GTIER gt %d: 0x%08x\n", i, error->gtier[i]); } else if (HAS_PCH_SPLIT(dev_priv) || IS_VALLEYVIEW(dev_priv)) err_printf(m, "GTIER: 0x%08x\n", error->gtier[0]); err_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er); err_printf(m, "FORCEWAKE: 0x%08x\n", error->forcewake); err_printf(m, "DERRMR: 0x%08x\n", error->derrmr); err_printf(m, "CCID: 0x%08x\n", error->ccid); err_printf(m, "Missed interrupts: 0x%08lx\n", dev_priv->gpu_error.missed_irq_rings); for (i = 0; i < dev_priv->num_fence_regs; i++) err_printf(m, " fence[%d] = %08llx\n", i, error->fence[i]); if (INTEL_INFO(dev)->gen >= 6) { err_printf(m, "ERROR: 0x%08x\n", error->error); if (INTEL_INFO(dev)->gen >= 8) err_printf(m, "FAULT_TLB_DATA: 0x%08x 0x%08x\n", error->fault_data1, error->fault_data0); err_printf(m, "DONE_REG: 0x%08x\n", error->done_reg); } if (IS_GEN7(dev_priv)) err_printf(m, "ERR_INT: 0x%08x\n", error->err_int); for (i = 0; i < ARRAY_SIZE(error->engine); i++) { if (error->engine[i].engine_id != -1) error_print_engine(m, &error->engine[i]); } for (i = 0; i < ARRAY_SIZE(error->active_vm); i++) { char buf[128]; int len, first = 1; if (!error->active_vm[i]) break; len = scnprintf(buf, sizeof(buf), "Active ("); for (j = 0; j < ARRAY_SIZE(error->engine); j++) { if (error->engine[j].vm != error->active_vm[i]) continue; len += scnprintf(buf + len, sizeof(buf), "%s%s", first ? "" : ", ", dev_priv->engine[j]->name); first = 0; } scnprintf(buf + len, sizeof(buf), ")"); print_error_buffers(m, buf, error->active_bo[i], error->active_bo_count[i]); } print_error_buffers(m, "Pinned (global)", error->pinned_bo, error->pinned_bo_count); for (i = 0; i < ARRAY_SIZE(error->engine); i++) { struct drm_i915_error_engine *ee = &error->engine[i]; obj = ee->batchbuffer; if (obj) { err_puts(m, dev_priv->engine[i]->name); if (ee->pid != -1) err_printf(m, " (submitted by %s [%d])", ee->comm, ee->pid); err_printf(m, " --- gtt_offset = 0x%08x %08x\n", upper_32_bits(obj->gtt_offset), lower_32_bits(obj->gtt_offset)); print_error_obj(m, dev_priv->engine[i], NULL, obj); } if (ee->num_requests) { err_printf(m, "%s --- %d requests\n", dev_priv->engine[i]->name, ee->num_requests); for (j = 0; j < ee->num_requests; j++) error_print_request(m, " ", &ee->requests[j]); } if (IS_ERR(ee->waiters)) { err_printf(m, "%s --- ? waiters [unable to acquire spinlock]\n", dev_priv->engine[i]->name); } else if (ee->num_waiters) { err_printf(m, "%s --- %d waiters\n", dev_priv->engine[i]->name, ee->num_waiters); for (j = 0; j < ee->num_waiters; j++) { err_printf(m, " seqno 0x%08x for %s [%d]\n", ee->waiters[j].seqno, ee->waiters[j].comm, ee->waiters[j].pid); } } print_error_obj(m, dev_priv->engine[i], "ringbuffer", ee->ringbuffer); print_error_obj(m, dev_priv->engine[i], "HW Status", ee->hws_page); print_error_obj(m, dev_priv->engine[i], "HW context", ee->ctx); print_error_obj(m, dev_priv->engine[i], "WA context", ee->wa_ctx); print_error_obj(m, dev_priv->engine[i], "WA batchbuffer", ee->wa_batchbuffer); } print_error_obj(m, NULL, "Semaphores", error->semaphore); if (error->overlay) intel_overlay_print_error_state(m, error->overlay); if (error->display) intel_display_print_error_state(m, dev, error->display); out: if (m->bytes == 0 && m->err) return m->err; return 0; } int i915_error_state_buf_init(struct drm_i915_error_state_buf *ebuf, struct drm_i915_private *i915, size_t count, loff_t pos) { memset(ebuf, 0, sizeof(*ebuf)); ebuf->i915 = i915; /* We need to have enough room to store any i915_error_state printf * so that we can move it to start position. */ ebuf->size = count + 1 > PAGE_SIZE ? count + 1 : PAGE_SIZE; ebuf->buf = kmalloc(ebuf->size, GFP_TEMPORARY | __GFP_NORETRY | __GFP_NOWARN); if (ebuf->buf == NULL) { ebuf->size = PAGE_SIZE; ebuf->buf = kmalloc(ebuf->size, GFP_TEMPORARY); } if (ebuf->buf == NULL) { ebuf->size = 128; ebuf->buf = kmalloc(ebuf->size, GFP_TEMPORARY); } if (ebuf->buf == NULL) return -ENOMEM; ebuf->start = pos; return 0; } static void i915_error_object_free(struct drm_i915_error_object *obj) { int page; if (obj == NULL) return; for (page = 0; page < obj->page_count; page++) free_page((unsigned long)obj->pages[page]); kfree(obj); } static void i915_error_state_free(struct kref *error_ref) { struct drm_i915_error_state *error = container_of(error_ref, typeof(*error), ref); int i; for (i = 0; i < ARRAY_SIZE(error->engine); i++) { struct drm_i915_error_engine *ee = &error->engine[i]; i915_error_object_free(ee->batchbuffer); i915_error_object_free(ee->wa_batchbuffer); i915_error_object_free(ee->ringbuffer); i915_error_object_free(ee->hws_page); i915_error_object_free(ee->ctx); i915_error_object_free(ee->wa_ctx); kfree(ee->requests); if (!IS_ERR_OR_NULL(ee->waiters)) kfree(ee->waiters); } i915_error_object_free(error->semaphore); for (i = 0; i < ARRAY_SIZE(error->active_bo); i++) kfree(error->active_bo[i]); kfree(error->pinned_bo); kfree(error->overlay); kfree(error->display); kfree(error); } static struct drm_i915_error_object * i915_error_object_create(struct drm_i915_private *i915, struct i915_vma *vma) { struct i915_ggtt *ggtt = &i915->ggtt; const u64 slot = ggtt->error_capture.start; struct drm_i915_error_object *dst; struct z_stream_s zstream; unsigned long num_pages; struct sgt_iter iter; dma_addr_t dma; if (!vma) return NULL; num_pages = min_t(u64, vma->size, vma->obj->base.size) >> PAGE_SHIFT; num_pages = DIV_ROUND_UP(10 * num_pages, 8); /* worstcase zlib growth */ dst = kmalloc(sizeof(*dst) + num_pages * sizeof(u32 *), GFP_ATOMIC | __GFP_NOWARN); if (!dst) return NULL; dst->gtt_offset = vma->node.start; dst->gtt_size = vma->node.size; dst->page_count = 0; dst->unused = 0; if (!compress_init(&zstream)) { kfree(dst); return NULL; } for_each_sgt_dma(dma, iter, vma->pages) { void __iomem *s; int ret; ggtt->base.insert_page(&ggtt->base, dma, slot, I915_CACHE_NONE, 0); s = io_mapping_map_atomic_wc(&ggtt->mappable, slot); ret = compress_page(&zstream, (void __force *)s, dst); io_mapping_unmap_atomic(s); if (ret) goto unwind; } goto out; unwind: while (dst->page_count--) free_page((unsigned long)dst->pages[dst->page_count]); kfree(dst); dst = NULL; out: compress_fini(&zstream, dst); ggtt->base.clear_range(&ggtt->base, slot, PAGE_SIZE); return dst; } /* The error capture is special as tries to run underneath the normal * locking rules - so we use the raw version of the i915_gem_active lookup. */ static inline uint32_t __active_get_seqno(struct i915_gem_active *active) { return i915_gem_request_get_seqno(__i915_gem_active_peek(active)); } static inline int __active_get_engine_id(struct i915_gem_active *active) { struct intel_engine_cs *engine; engine = i915_gem_request_get_engine(__i915_gem_active_peek(active)); return engine ? engine->id : -1; } static void capture_bo(struct drm_i915_error_buffer *err, struct i915_vma *vma) { struct drm_i915_gem_object *obj = vma->obj; int i; err->size = obj->base.size; err->name = obj->base.name; for (i = 0; i < I915_NUM_ENGINES; i++) err->rseqno[i] = __active_get_seqno(&obj->last_read[i]); err->wseqno = __active_get_seqno(&obj->last_write); err->engine = __active_get_engine_id(&obj->last_write); err->gtt_offset = vma->node.start; err->read_domains = obj->base.read_domains; err->write_domain = obj->base.write_domain; err->fence_reg = vma->fence ? vma->fence->id : -1; err->tiling = i915_gem_object_get_tiling(obj); err->dirty = obj->dirty; err->purgeable = obj->madv != I915_MADV_WILLNEED; err->userptr = obj->userptr.mm != NULL; err->cache_level = obj->cache_level; } static u32 capture_error_bo(struct drm_i915_error_buffer *err, int count, struct list_head *head, bool pinned_only) { struct i915_vma *vma; int i = 0; list_for_each_entry(vma, head, vm_link) { if (pinned_only && !i915_vma_is_pinned(vma)) continue; capture_bo(err++, vma); if (++i == count) break; } return i; } /* Generate a semi-unique error code. The code is not meant to have meaning, The * code's only purpose is to try to prevent false duplicated bug reports by * grossly estimating a GPU error state. * * TODO Ideally, hashing the batchbuffer would be a very nice way to determine * the hang if we could strip the GTT offset information from it. * * It's only a small step better than a random number in its current form. */ static uint32_t i915_error_generate_code(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error, int *engine_id) { uint32_t error_code = 0; int i; /* IPEHR would be an ideal way to detect errors, as it's the gross * measure of "the command that hung." However, has some very common * synchronization commands which almost always appear in the case * strictly a client bug. Use instdone to differentiate those some. */ for (i = 0; i < I915_NUM_ENGINES; i++) { if (error->engine[i].hangcheck_action == HANGCHECK_HUNG) { if (engine_id) *engine_id = i; return error->engine[i].ipehr ^ error->engine[i].instdone.instdone; } } return error_code; } static void i915_gem_record_fences(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error) { int i; if (IS_GEN3(dev_priv) || IS_GEN2(dev_priv)) { for (i = 0; i < dev_priv->num_fence_regs; i++) error->fence[i] = I915_READ(FENCE_REG(i)); } else if (IS_GEN5(dev_priv) || IS_GEN4(dev_priv)) { for (i = 0; i < dev_priv->num_fence_regs; i++) error->fence[i] = I915_READ64(FENCE_REG_965_LO(i)); } else if (INTEL_GEN(dev_priv) >= 6) { for (i = 0; i < dev_priv->num_fence_regs; i++) error->fence[i] = I915_READ64(FENCE_REG_GEN6_LO(i)); } } static void gen8_record_semaphore_state(struct drm_i915_error_state *error, struct intel_engine_cs *engine, struct drm_i915_error_engine *ee) { struct drm_i915_private *dev_priv = engine->i915; struct intel_engine_cs *to; enum intel_engine_id id; if (!error->semaphore) return; for_each_engine(to, dev_priv, id) { int idx; u16 signal_offset; u32 *tmp; if (engine == to) continue; signal_offset = (GEN8_SIGNAL_OFFSET(engine, id) & (PAGE_SIZE - 1)) / 4; tmp = error->semaphore->pages[0]; idx = intel_engine_sync_index(engine, to); ee->semaphore_mboxes[idx] = tmp[signal_offset]; ee->semaphore_seqno[idx] = engine->semaphore.sync_seqno[idx]; } } static void gen6_record_semaphore_state(struct intel_engine_cs *engine, struct drm_i915_error_engine *ee) { struct drm_i915_private *dev_priv = engine->i915; ee->semaphore_mboxes[0] = I915_READ(RING_SYNC_0(engine->mmio_base)); ee->semaphore_mboxes[1] = I915_READ(RING_SYNC_1(engine->mmio_base)); ee->semaphore_seqno[0] = engine->semaphore.sync_seqno[0]; ee->semaphore_seqno[1] = engine->semaphore.sync_seqno[1]; if (HAS_VEBOX(dev_priv)) { ee->semaphore_mboxes[2] = I915_READ(RING_SYNC_2(engine->mmio_base)); ee->semaphore_seqno[2] = engine->semaphore.sync_seqno[2]; } } static void error_record_engine_waiters(struct intel_engine_cs *engine, struct drm_i915_error_engine *ee) { struct intel_breadcrumbs *b = &engine->breadcrumbs; struct drm_i915_error_waiter *waiter; struct rb_node *rb; int count; ee->num_waiters = 0; ee->waiters = NULL; if (RB_EMPTY_ROOT(&b->waiters)) return; if (!spin_trylock(&b->lock)) { ee->waiters = ERR_PTR(-EDEADLK); return; } count = 0; for (rb = rb_first(&b->waiters); rb != NULL; rb = rb_next(rb)) count++; spin_unlock(&b->lock); waiter = NULL; if (count) waiter = kmalloc_array(count, sizeof(struct drm_i915_error_waiter), GFP_ATOMIC); if (!waiter) return; if (!spin_trylock(&b->lock)) { kfree(waiter); ee->waiters = ERR_PTR(-EDEADLK); return; } ee->waiters = waiter; for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) { struct intel_wait *w = container_of(rb, typeof(*w), node); strcpy(waiter->comm, w->tsk->comm); waiter->pid = w->tsk->pid; waiter->seqno = w->seqno; waiter++; if (++ee->num_waiters == count) break; } spin_unlock(&b->lock); } static void error_record_engine_registers(struct drm_i915_error_state *error, struct intel_engine_cs *engine, struct drm_i915_error_engine *ee) { struct drm_i915_private *dev_priv = engine->i915; if (INTEL_GEN(dev_priv) >= 6) { ee->rc_psmi = I915_READ(RING_PSMI_CTL(engine->mmio_base)); ee->fault_reg = I915_READ(RING_FAULT_REG(engine)); if (INTEL_GEN(dev_priv) >= 8) gen8_record_semaphore_state(error, engine, ee); else gen6_record_semaphore_state(engine, ee); } if (INTEL_GEN(dev_priv) >= 4) { ee->faddr = I915_READ(RING_DMA_FADD(engine->mmio_base)); ee->ipeir = I915_READ(RING_IPEIR(engine->mmio_base)); ee->ipehr = I915_READ(RING_IPEHR(engine->mmio_base)); ee->instps = I915_READ(RING_INSTPS(engine->mmio_base)); ee->bbaddr = I915_READ(RING_BBADDR(engine->mmio_base)); if (INTEL_GEN(dev_priv) >= 8) { ee->faddr |= (u64) I915_READ(RING_DMA_FADD_UDW(engine->mmio_base)) << 32; ee->bbaddr |= (u64) I915_READ(RING_BBADDR_UDW(engine->mmio_base)) << 32; } ee->bbstate = I915_READ(RING_BBSTATE(engine->mmio_base)); } else { ee->faddr = I915_READ(DMA_FADD_I8XX); ee->ipeir = I915_READ(IPEIR); ee->ipehr = I915_READ(IPEHR); } intel_engine_get_instdone(engine, &ee->instdone); ee->waiting = intel_engine_has_waiter(engine); ee->instpm = I915_READ(RING_INSTPM(engine->mmio_base)); ee->acthd = intel_engine_get_active_head(engine); ee->seqno = intel_engine_get_seqno(engine); ee->last_seqno = engine->last_submitted_seqno; ee->start = I915_READ_START(engine); ee->head = I915_READ_HEAD(engine); ee->tail = I915_READ_TAIL(engine); ee->ctl = I915_READ_CTL(engine); if (INTEL_GEN(dev_priv) > 2) ee->mode = I915_READ_MODE(engine); if (!HWS_NEEDS_PHYSICAL(dev_priv)) { i915_reg_t mmio; if (IS_GEN7(dev_priv)) { switch (engine->id) { default: case RCS: mmio = RENDER_HWS_PGA_GEN7; break; case BCS: mmio = BLT_HWS_PGA_GEN7; break; case VCS: mmio = BSD_HWS_PGA_GEN7; break; case VECS: mmio = VEBOX_HWS_PGA_GEN7; break; } } else if (IS_GEN6(engine->i915)) { mmio = RING_HWS_PGA_GEN6(engine->mmio_base); } else { /* XXX: gen8 returns to sanity */ mmio = RING_HWS_PGA(engine->mmio_base); } ee->hws = I915_READ(mmio); } ee->hangcheck_score = engine->hangcheck.score; ee->hangcheck_action = engine->hangcheck.action; if (USES_PPGTT(dev_priv)) { int i; ee->vm_info.gfx_mode = I915_READ(RING_MODE_GEN7(engine)); if (IS_GEN6(dev_priv)) ee->vm_info.pp_dir_base = I915_READ(RING_PP_DIR_BASE_READ(engine)); else if (IS_GEN7(dev_priv)) ee->vm_info.pp_dir_base = I915_READ(RING_PP_DIR_BASE(engine)); else if (INTEL_GEN(dev_priv) >= 8) for (i = 0; i < 4; i++) { ee->vm_info.pdp[i] = I915_READ(GEN8_RING_PDP_UDW(engine, i)); ee->vm_info.pdp[i] <<= 32; ee->vm_info.pdp[i] |= I915_READ(GEN8_RING_PDP_LDW(engine, i)); } } } static void record_request(struct drm_i915_gem_request *request, struct drm_i915_error_request *erq) { erq->context = request->ctx->hw_id; erq->seqno = request->fence.seqno; erq->jiffies = request->emitted_jiffies; erq->head = request->head; erq->tail = request->tail; rcu_read_lock(); erq->pid = request->ctx->pid ? pid_nr(request->ctx->pid) : 0; rcu_read_unlock(); } static void engine_record_requests(struct intel_engine_cs *engine, struct drm_i915_gem_request *first, struct drm_i915_error_engine *ee) { struct drm_i915_gem_request *request; int count; count = 0; request = first; list_for_each_entry_from(request, &engine->request_list, link) count++; if (!count) return; ee->requests = kcalloc(count, sizeof(*ee->requests), GFP_ATOMIC); if (!ee->requests) return; ee->num_requests = count; count = 0; request = first; list_for_each_entry_from(request, &engine->request_list, link) { if (count >= ee->num_requests) { /* * If the ring request list was changed in * between the point where the error request * list was created and dimensioned and this * point then just exit early to avoid crashes. * * We don't need to communicate that the * request list changed state during error * state capture and that the error state is * slightly incorrect as a consequence since we * are typically only interested in the request * list state at the point of error state * capture, not in any changes happening during * the capture. */ break; } record_request(request, &ee->requests[count++]); } ee->num_requests = count; } static void error_record_engine_execlists(struct intel_engine_cs *engine, struct drm_i915_error_engine *ee) { unsigned int n; for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) if (engine->execlist_port[n].request) record_request(engine->execlist_port[n].request, &ee->execlist[n]); } static void i915_gem_record_rings(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error) { struct i915_ggtt *ggtt = &dev_priv->ggtt; int i; error->semaphore = i915_error_object_create(dev_priv, dev_priv->semaphore); for (i = 0; i < I915_NUM_ENGINES; i++) { struct intel_engine_cs *engine = dev_priv->engine[i]; struct drm_i915_error_engine *ee = &error->engine[i]; struct drm_i915_gem_request *request; ee->pid = -1; ee->engine_id = -1; if (!engine) continue; ee->engine_id = i; error_record_engine_registers(error, engine, ee); error_record_engine_waiters(engine, ee); error_record_engine_execlists(engine, ee); request = i915_gem_find_active_request(engine); if (request) { struct intel_ring *ring; struct pid *pid; ee->vm = request->ctx->ppgtt ? &request->ctx->ppgtt->base : &ggtt->base; /* We need to copy these to an anonymous buffer * as the simplest method to avoid being overwritten * by userspace. */ ee->batchbuffer = i915_error_object_create(dev_priv, request->batch); if (HAS_BROKEN_CS_TLB(dev_priv)) ee->wa_batchbuffer = i915_error_object_create(dev_priv, engine->scratch); ee->ctx = i915_error_object_create(dev_priv, request->ctx->engine[i].state); pid = request->ctx->pid; if (pid) { struct task_struct *task; rcu_read_lock(); task = pid_task(pid, PIDTYPE_PID); if (task) { strcpy(ee->comm, task->comm); ee->pid = task->pid; } rcu_read_unlock(); } error->simulated |= request->ctx->flags & CONTEXT_NO_ERROR_CAPTURE; ee->rq_head = request->head; ee->rq_post = request->postfix; ee->rq_tail = request->tail; ring = request->ring; ee->cpu_ring_head = ring->head; ee->cpu_ring_tail = ring->tail; ee->ringbuffer = i915_error_object_create(dev_priv, ring->vma); engine_record_requests(engine, request, ee); } ee->hws_page = i915_error_object_create(dev_priv, engine->status_page.vma); ee->wa_ctx = i915_error_object_create(dev_priv, engine->wa_ctx.vma); } } static void i915_gem_capture_vm(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error, struct i915_address_space *vm, int idx) { struct drm_i915_error_buffer *active_bo; struct i915_vma *vma; int count; count = 0; list_for_each_entry(vma, &vm->active_list, vm_link) count++; active_bo = NULL; if (count) active_bo = kcalloc(count, sizeof(*active_bo), GFP_ATOMIC); if (active_bo) count = capture_error_bo(active_bo, count, &vm->active_list, false); else count = 0; error->active_vm[idx] = vm; error->active_bo[idx] = active_bo; error->active_bo_count[idx] = count; } static void i915_capture_active_buffers(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error) { int cnt = 0, i, j; BUILD_BUG_ON(ARRAY_SIZE(error->engine) > ARRAY_SIZE(error->active_bo)); BUILD_BUG_ON(ARRAY_SIZE(error->active_bo) != ARRAY_SIZE(error->active_vm)); BUILD_BUG_ON(ARRAY_SIZE(error->active_bo) != ARRAY_SIZE(error->active_bo_count)); /* Scan each engine looking for unique active contexts/vm */ for (i = 0; i < ARRAY_SIZE(error->engine); i++) { struct drm_i915_error_engine *ee = &error->engine[i]; bool found; if (!ee->vm) continue; found = false; for (j = 0; j < i && !found; j++) found = error->engine[j].vm == ee->vm; if (!found) i915_gem_capture_vm(dev_priv, error, ee->vm, cnt++); } } static void i915_capture_pinned_buffers(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error) { struct i915_address_space *vm = &dev_priv->ggtt.base; struct drm_i915_error_buffer *bo; struct i915_vma *vma; int count_inactive, count_active; count_inactive = 0; list_for_each_entry(vma, &vm->active_list, vm_link) count_inactive++; count_active = 0; list_for_each_entry(vma, &vm->inactive_list, vm_link) count_active++; bo = NULL; if (count_inactive + count_active) bo = kcalloc(count_inactive + count_active, sizeof(*bo), GFP_ATOMIC); if (!bo) return; count_inactive = capture_error_bo(bo, count_inactive, &vm->active_list, true); count_active = capture_error_bo(bo + count_inactive, count_active, &vm->inactive_list, true); error->pinned_bo_count = count_inactive + count_active; error->pinned_bo = bo; } /* Capture all registers which don't fit into another category. */ static void i915_capture_reg_state(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error) { struct drm_device *dev = &dev_priv->drm; int i; /* General organization * 1. Registers specific to a single generation * 2. Registers which belong to multiple generations * 3. Feature specific registers. * 4. Everything else * Please try to follow the order. */ /* 1: Registers specific to a single generation */ if (IS_VALLEYVIEW(dev_priv)) { error->gtier[0] = I915_READ(GTIER); error->ier = I915_READ(VLV_IER); error->forcewake = I915_READ_FW(FORCEWAKE_VLV); } if (IS_GEN7(dev_priv)) error->err_int = I915_READ(GEN7_ERR_INT); if (INTEL_INFO(dev)->gen >= 8) { error->fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0); error->fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1); } if (IS_GEN6(dev_priv)) { error->forcewake = I915_READ_FW(FORCEWAKE); error->gab_ctl = I915_READ(GAB_CTL); error->gfx_mode = I915_READ(GFX_MODE); } /* 2: Registers which belong to multiple generations */ if (INTEL_INFO(dev)->gen >= 7) error->forcewake = I915_READ_FW(FORCEWAKE_MT); if (INTEL_INFO(dev)->gen >= 6) { error->derrmr = I915_READ(DERRMR); error->error = I915_READ(ERROR_GEN6); error->done_reg = I915_READ(DONE_REG); } /* 3: Feature specific registers */ if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) { error->gam_ecochk = I915_READ(GAM_ECOCHK); error->gac_eco = I915_READ(GAC_ECO_BITS); } /* 4: Everything else */ if (HAS_HW_CONTEXTS(dev)) error->ccid = I915_READ(CCID); if (INTEL_INFO(dev)->gen >= 8) { error->ier = I915_READ(GEN8_DE_MISC_IER); for (i = 0; i < 4; i++) error->gtier[i] = I915_READ(GEN8_GT_IER(i)); } else if (HAS_PCH_SPLIT(dev_priv)) { error->ier = I915_READ(DEIER); error->gtier[0] = I915_READ(GTIER); } else if (IS_GEN2(dev_priv)) { error->ier = I915_READ16(IER); } else if (!IS_VALLEYVIEW(dev_priv)) { error->ier = I915_READ(IER); } error->eir = I915_READ(EIR); error->pgtbl_er = I915_READ(PGTBL_ER); } static void i915_error_capture_msg(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error, u32 engine_mask, const char *error_msg) { u32 ecode; int engine_id = -1, len; ecode = i915_error_generate_code(dev_priv, error, &engine_id); len = scnprintf(error->error_msg, sizeof(error->error_msg), "GPU HANG: ecode %d:%d:0x%08x", INTEL_GEN(dev_priv), engine_id, ecode); if (engine_id != -1 && error->engine[engine_id].pid != -1) len += scnprintf(error->error_msg + len, sizeof(error->error_msg) - len, ", in %s [%d]", error->engine[engine_id].comm, error->engine[engine_id].pid); scnprintf(error->error_msg + len, sizeof(error->error_msg) - len, ", reason: %s, action: %s", error_msg, engine_mask ? "reset" : "continue"); } static void i915_capture_gen_state(struct drm_i915_private *dev_priv, struct drm_i915_error_state *error) { error->iommu = -1; #ifdef CONFIG_INTEL_IOMMU error->iommu = intel_iommu_gfx_mapped; #endif error->reset_count = i915_reset_count(&dev_priv->gpu_error); error->suspend_count = dev_priv->suspend_count; memcpy(&error->device_info, INTEL_INFO(dev_priv), sizeof(error->device_info)); } static int capture(void *data) { struct drm_i915_error_state *error = data; i915_capture_gen_state(error->i915, error); i915_capture_reg_state(error->i915, error); i915_gem_record_fences(error->i915, error); i915_gem_record_rings(error->i915, error); i915_capture_active_buffers(error->i915, error); i915_capture_pinned_buffers(error->i915, error); do_gettimeofday(&error->time); error->overlay = intel_overlay_capture_error_state(error->i915); error->display = intel_display_capture_error_state(error->i915); return 0; } /** * i915_capture_error_state - capture an error record for later analysis * @dev: drm device * * Should be called when an error is detected (either a hang or an error * interrupt) to capture error state from the time of the error. Fills * out a structure which becomes available in debugfs for user level tools * to pick up. */ void i915_capture_error_state(struct drm_i915_private *dev_priv, u32 engine_mask, const char *error_msg) { static bool warned; struct drm_i915_error_state *error; unsigned long flags; if (!i915.error_capture) return; if (READ_ONCE(dev_priv->gpu_error.first_error)) return; /* Account for pipe specific data like PIPE*STAT */ error = kzalloc(sizeof(*error), GFP_ATOMIC); if (!error) { DRM_DEBUG_DRIVER("out of memory, not capturing error state\n"); return; } kref_init(&error->ref); error->i915 = dev_priv; stop_machine(capture, error, NULL); i915_error_capture_msg(dev_priv, error, engine_mask, error_msg); DRM_INFO("%s\n", error->error_msg); if (!error->simulated) { spin_lock_irqsave(&dev_priv->gpu_error.lock, flags); if (!dev_priv->gpu_error.first_error) { dev_priv->gpu_error.first_error = error; error = NULL; } spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags); } if (error) { i915_error_state_free(&error->ref); return; } if (!warned) { DRM_INFO("GPU hangs can indicate a bug anywhere in the entire gfx stack, including userspace.\n"); DRM_INFO("Please file a _new_ bug report on bugs.freedesktop.org against DRI -> DRM/Intel\n"); DRM_INFO("drm/i915 developers can then reassign to the right component if it's not a kernel issue.\n"); DRM_INFO("The gpu crash dump is required to analyze gpu hangs, so please always attach it.\n"); DRM_INFO("GPU crash dump saved to /sys/class/drm/card%d/error\n", dev_priv->drm.primary->index); warned = true; } } void i915_error_state_get(struct drm_device *dev, struct i915_error_state_file_priv *error_priv) { struct drm_i915_private *dev_priv = to_i915(dev); spin_lock_irq(&dev_priv->gpu_error.lock); error_priv->error = dev_priv->gpu_error.first_error; if (error_priv->error) kref_get(&error_priv->error->ref); spin_unlock_irq(&dev_priv->gpu_error.lock); } void i915_error_state_put(struct i915_error_state_file_priv *error_priv) { if (error_priv->error) kref_put(&error_priv->error->ref, i915_error_state_free); } void i915_destroy_error_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_i915_error_state *error; spin_lock_irq(&dev_priv->gpu_error.lock); error = dev_priv->gpu_error.first_error; dev_priv->gpu_error.first_error = NULL; spin_unlock_irq(&dev_priv->gpu_error.lock); if (error) kref_put(&error->ref, i915_error_state_free); }