/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * DOC: Panel Self Refresh (PSR/SRD) * * Since Haswell Display controller supports Panel Self-Refresh on display * panels witch have a remote frame buffer (RFB) implemented according to PSR * spec in eDP1.3. PSR feature allows the display to go to lower standby states * when system is idle but display is on as it eliminates display refresh * request to DDR memory completely as long as the frame buffer for that * display is unchanged. * * Panel Self Refresh must be supported by both Hardware (source) and * Panel (sink). * * PSR saves power by caching the framebuffer in the panel RFB, which allows us * to power down the link and memory controller. For DSI panels the same idea * is called "manual mode". * * The implementation uses the hardware-based PSR support which automatically * enters/exits self-refresh mode. The hardware takes care of sending the * required DP aux message and could even retrain the link (that part isn't * enabled yet though). The hardware also keeps track of any frontbuffer * changes to know when to exit self-refresh mode again. Unfortunately that * part doesn't work too well, hence why the i915 PSR support uses the * software frontbuffer tracking to make sure it doesn't miss a screen * update. For this integration intel_psr_invalidate() and intel_psr_flush() * get called by the frontbuffer tracking code. Note that because of locking * issues the self-refresh re-enable code is done from a work queue, which * must be correctly synchronized/cancelled when shutting down the pipe." */ #include #include "intel_drv.h" #include "i915_drv.h" static bool psr_global_enabled(u32 debug) { switch (debug & I915_PSR_DEBUG_MODE_MASK) { case I915_PSR_DEBUG_DEFAULT: return i915_modparams.enable_psr; case I915_PSR_DEBUG_DISABLE: return false; default: return true; } } static bool intel_psr2_enabled(struct drm_i915_private *dev_priv, const struct intel_crtc_state *crtc_state) { /* Cannot enable DSC and PSR2 simultaneously */ WARN_ON(crtc_state->dsc_params.compression_enable && crtc_state->has_psr2); switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) { case I915_PSR_DEBUG_DISABLE: case I915_PSR_DEBUG_FORCE_PSR1: return false; default: return crtc_state->has_psr2; } } static int edp_psr_shift(enum transcoder cpu_transcoder) { switch (cpu_transcoder) { case TRANSCODER_A: return EDP_PSR_TRANSCODER_A_SHIFT; case TRANSCODER_B: return EDP_PSR_TRANSCODER_B_SHIFT; case TRANSCODER_C: return EDP_PSR_TRANSCODER_C_SHIFT; default: MISSING_CASE(cpu_transcoder); /* fallthrough */ case TRANSCODER_EDP: return EDP_PSR_TRANSCODER_EDP_SHIFT; } } void intel_psr_irq_control(struct drm_i915_private *dev_priv, u32 debug) { u32 debug_mask, mask; enum transcoder cpu_transcoder; u32 transcoders = BIT(TRANSCODER_EDP); if (INTEL_GEN(dev_priv) >= 8) transcoders |= BIT(TRANSCODER_A) | BIT(TRANSCODER_B) | BIT(TRANSCODER_C); debug_mask = 0; mask = 0; for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) { int shift = edp_psr_shift(cpu_transcoder); mask |= EDP_PSR_ERROR(shift); debug_mask |= EDP_PSR_POST_EXIT(shift) | EDP_PSR_PRE_ENTRY(shift); } if (debug & I915_PSR_DEBUG_IRQ) mask |= debug_mask; I915_WRITE(EDP_PSR_IMR, ~mask); } static void psr_event_print(u32 val, bool psr2_enabled) { DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val); if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE) DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n"); if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled) DRM_DEBUG_KMS("\tPSR2 disabled\n"); if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN) DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n"); if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN) DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n"); if (val & PSR_EVENT_GRAPHICS_RESET) DRM_DEBUG_KMS("\tGraphics reset\n"); if (val & PSR_EVENT_PCH_INTERRUPT) DRM_DEBUG_KMS("\tPCH interrupt\n"); if (val & PSR_EVENT_MEMORY_UP) DRM_DEBUG_KMS("\tMemory up\n"); if (val & PSR_EVENT_FRONT_BUFFER_MODIFY) DRM_DEBUG_KMS("\tFront buffer modification\n"); if (val & PSR_EVENT_WD_TIMER_EXPIRE) DRM_DEBUG_KMS("\tPSR watchdog timer expired\n"); if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE) DRM_DEBUG_KMS("\tPIPE registers updated\n"); if (val & PSR_EVENT_REGISTER_UPDATE) DRM_DEBUG_KMS("\tRegister updated\n"); if (val & PSR_EVENT_HDCP_ENABLE) DRM_DEBUG_KMS("\tHDCP enabled\n"); if (val & PSR_EVENT_KVMR_SESSION_ENABLE) DRM_DEBUG_KMS("\tKVMR session enabled\n"); if (val & PSR_EVENT_VBI_ENABLE) DRM_DEBUG_KMS("\tVBI enabled\n"); if (val & PSR_EVENT_LPSP_MODE_EXIT) DRM_DEBUG_KMS("\tLPSP mode exited\n"); if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled) DRM_DEBUG_KMS("\tPSR disabled\n"); } void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir) { u32 transcoders = BIT(TRANSCODER_EDP); enum transcoder cpu_transcoder; ktime_t time_ns = ktime_get(); u32 mask = 0; if (INTEL_GEN(dev_priv) >= 8) transcoders |= BIT(TRANSCODER_A) | BIT(TRANSCODER_B) | BIT(TRANSCODER_C); for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) { int shift = edp_psr_shift(cpu_transcoder); if (psr_iir & EDP_PSR_ERROR(shift)) { DRM_WARN("[transcoder %s] PSR aux error\n", transcoder_name(cpu_transcoder)); dev_priv->psr.irq_aux_error = true; /* * If this interruption is not masked it will keep * interrupting so fast that it prevents the scheduled * work to run. * Also after a PSR error, we don't want to arm PSR * again so we don't care about unmask the interruption * or unset irq_aux_error. */ mask |= EDP_PSR_ERROR(shift); } if (psr_iir & EDP_PSR_PRE_ENTRY(shift)) { dev_priv->psr.last_entry_attempt = time_ns; DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n", transcoder_name(cpu_transcoder)); } if (psr_iir & EDP_PSR_POST_EXIT(shift)) { dev_priv->psr.last_exit = time_ns; DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n", transcoder_name(cpu_transcoder)); if (INTEL_GEN(dev_priv) >= 9) { u32 val = I915_READ(PSR_EVENT(cpu_transcoder)); bool psr2_enabled = dev_priv->psr.psr2_enabled; I915_WRITE(PSR_EVENT(cpu_transcoder), val); psr_event_print(val, psr2_enabled); } } } if (mask) { mask |= I915_READ(EDP_PSR_IMR); I915_WRITE(EDP_PSR_IMR, mask); schedule_work(&dev_priv->psr.work); } } static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) { u8 dprx = 0; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &dprx) != 1) return false; return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; } static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp) { u8 alpm_caps = 0; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP, &alpm_caps) != 1) return false; return alpm_caps & DP_ALPM_CAP; } static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp) { u8 val = 8; /* assume the worst if we can't read the value */ if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1) val &= DP_MAX_RESYNC_FRAME_COUNT_MASK; else DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n"); return val; } static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp) { u16 val; ssize_t r; /* * Returning the default X granularity if granularity not required or * if DPCD read fails */ if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED)) return 4; r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2); if (r != 2) DRM_DEBUG_KMS("Unable to read DP_PSR2_SU_X_GRANULARITY\n"); /* * Spec says that if the value read is 0 the default granularity should * be used instead. */ if (r != 2 || val == 0) val = 4; return val; } void intel_psr_init_dpcd(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(dp_to_dig_port(intel_dp)->base.base.dev); drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd, sizeof(intel_dp->psr_dpcd)); if (!intel_dp->psr_dpcd[0]) return; DRM_DEBUG_KMS("eDP panel supports PSR version %x\n", intel_dp->psr_dpcd[0]); if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) { DRM_DEBUG_KMS("PSR support not currently available for this panel\n"); return; } if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) { DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n"); return; } dev_priv->psr.sink_support = true; dev_priv->psr.sink_sync_latency = intel_dp_get_sink_sync_latency(intel_dp); WARN_ON(dev_priv->psr.dp); dev_priv->psr.dp = intel_dp; if (INTEL_GEN(dev_priv) >= 9 && (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) { bool y_req = intel_dp->psr_dpcd[1] & DP_PSR2_SU_Y_COORDINATE_REQUIRED; bool alpm = intel_dp_get_alpm_status(intel_dp); /* * All panels that supports PSR version 03h (PSR2 + * Y-coordinate) can handle Y-coordinates in VSC but we are * only sure that it is going to be used when required by the * panel. This way panel is capable to do selective update * without a aux frame sync. * * To support PSR version 02h and PSR version 03h without * Y-coordinate requirement panels we would need to enable * GTC first. */ dev_priv->psr.sink_psr2_support = y_req && alpm; DRM_DEBUG_KMS("PSR2 %ssupported\n", dev_priv->psr.sink_psr2_support ? "" : "not "); if (dev_priv->psr.sink_psr2_support) { dev_priv->psr.colorimetry_support = intel_dp_get_colorimetry_status(intel_dp); dev_priv->psr.su_x_granularity = intel_dp_get_su_x_granulartiy(intel_dp); } } } static void intel_psr_setup_vsc(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct edp_vsc_psr psr_vsc; if (dev_priv->psr.psr2_enabled) { /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */ memset(&psr_vsc, 0, sizeof(psr_vsc)); psr_vsc.sdp_header.HB0 = 0; psr_vsc.sdp_header.HB1 = 0x7; if (dev_priv->psr.colorimetry_support) { psr_vsc.sdp_header.HB2 = 0x5; psr_vsc.sdp_header.HB3 = 0x13; } else { psr_vsc.sdp_header.HB2 = 0x4; psr_vsc.sdp_header.HB3 = 0xe; } } else { /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */ memset(&psr_vsc, 0, sizeof(psr_vsc)); psr_vsc.sdp_header.HB0 = 0; psr_vsc.sdp_header.HB1 = 0x7; psr_vsc.sdp_header.HB2 = 0x2; psr_vsc.sdp_header.HB3 = 0x8; } intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state, DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc)); } static void hsw_psr_setup_aux(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 aux_clock_divider, aux_ctl; int i; static const u8 aux_msg[] = { [0] = DP_AUX_NATIVE_WRITE << 4, [1] = DP_SET_POWER >> 8, [2] = DP_SET_POWER & 0xff, [3] = 1 - 1, [4] = DP_SET_POWER_D0, }; u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK | EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK | EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK | EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK; BUILD_BUG_ON(sizeof(aux_msg) > 20); for (i = 0; i < sizeof(aux_msg); i += 4) I915_WRITE(EDP_PSR_AUX_DATA(i >> 2), intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i)); aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0); /* Start with bits set for DDI_AUX_CTL register */ aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg), aux_clock_divider); /* Select only valid bits for SRD_AUX_CTL */ aux_ctl &= psr_aux_mask; I915_WRITE(EDP_PSR_AUX_CTL, aux_ctl); } static void intel_psr_enable_sink(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u8 dpcd_val = DP_PSR_ENABLE; /* Enable ALPM at sink for psr2 */ if (dev_priv->psr.psr2_enabled) { drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, DP_ALPM_ENABLE); dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS; } else { if (dev_priv->psr.link_standby) dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE; if (INTEL_GEN(dev_priv) >= 8) dpcd_val |= DP_PSR_CRC_VERIFICATION; } drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val); drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); } static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 val = 0; if (INTEL_GEN(dev_priv) >= 11) val |= EDP_PSR_TP4_TIME_0US; if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0) val |= EDP_PSR_TP1_TIME_0us; else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100) val |= EDP_PSR_TP1_TIME_100us; else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500) val |= EDP_PSR_TP1_TIME_500us; else val |= EDP_PSR_TP1_TIME_2500us; if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0) val |= EDP_PSR_TP2_TP3_TIME_0us; else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100) val |= EDP_PSR_TP2_TP3_TIME_100us; else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500) val |= EDP_PSR_TP2_TP3_TIME_500us; else val |= EDP_PSR_TP2_TP3_TIME_2500us; if (intel_dp_source_supports_hbr2(intel_dp) && drm_dp_tps3_supported(intel_dp->dpcd)) val |= EDP_PSR_TP1_TP3_SEL; else val |= EDP_PSR_TP1_TP2_SEL; return val; } static void hsw_activate_psr1(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 max_sleep_time = 0x1f; u32 val = EDP_PSR_ENABLE; /* Let's use 6 as the minimum to cover all known cases including the * off-by-one issue that HW has in some cases. */ int idle_frames = max(6, dev_priv->vbt.psr.idle_frames); /* sink_sync_latency of 8 means source has to wait for more than 8 * frames, we'll go with 9 frames for now */ idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1); val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT; val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT; if (IS_HASWELL(dev_priv)) val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES; if (dev_priv->psr.link_standby) val |= EDP_PSR_LINK_STANDBY; val |= intel_psr1_get_tp_time(intel_dp); if (INTEL_GEN(dev_priv) >= 8) val |= EDP_PSR_CRC_ENABLE; val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK; I915_WRITE(EDP_PSR_CTL, val); } static void hsw_activate_psr2(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 val; /* Let's use 6 as the minimum to cover all known cases including the * off-by-one issue that HW has in some cases. */ int idle_frames = max(6, dev_priv->vbt.psr.idle_frames); idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1); val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT; val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE; if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) val |= EDP_Y_COORDINATE_ENABLE; val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1); if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 && dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50) val |= EDP_PSR2_TP2_TIME_50us; else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100) val |= EDP_PSR2_TP2_TIME_100us; else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500) val |= EDP_PSR2_TP2_TIME_500us; else val |= EDP_PSR2_TP2_TIME_2500us; /* * FIXME: There is probably a issue in DMC firmwares(icl_dmc_ver1_07.bin * and kbl_dmc_ver1_04.bin at least) that causes PSR2 SU to fail after * exiting DC6 if EDP_PSR_TP1_TP3_SEL is kept in PSR_CTL, so for now * lets workaround the issue by cleaning PSR_CTL before enable PSR2. */ I915_WRITE(EDP_PSR_CTL, 0); I915_WRITE(EDP_PSR2_CTL, val); } static bool intel_psr2_config_valid(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay; int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay; int psr_max_h = 0, psr_max_v = 0; if (!dev_priv->psr.sink_psr2_support) return false; /* * DSC and PSR2 cannot be enabled simultaneously. If a requested * resolution requires DSC to be enabled, priority is given to DSC * over PSR2. */ if (crtc_state->dsc_params.compression_enable) { DRM_DEBUG_KMS("PSR2 cannot be enabled since DSC is enabled\n"); return false; } if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { psr_max_h = 4096; psr_max_v = 2304; } else if (IS_GEN(dev_priv, 9)) { psr_max_h = 3640; psr_max_v = 2304; } if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) { DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n", crtc_hdisplay, crtc_vdisplay, psr_max_h, psr_max_v); return false; } /* * HW sends SU blocks of size four scan lines, which means the starting * X coordinate and Y granularity requirements will always be met. We * only need to validate the SU block width is a multiple of * x granularity. */ if (crtc_hdisplay % dev_priv->psr.su_x_granularity) { DRM_DEBUG_KMS("PSR2 not enabled, hdisplay(%d) not multiple of %d\n", crtc_hdisplay, dev_priv->psr.su_x_granularity); return false; } if (crtc_state->crc_enabled) { DRM_DEBUG_KMS("PSR2 not enabled because it would inhibit pipe CRC calculation\n"); return false; } return true; } void intel_psr_compute_config(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; int psr_setup_time; if (!CAN_PSR(dev_priv)) return; if (intel_dp != dev_priv->psr.dp) return; /* * HSW spec explicitly says PSR is tied to port A. * BDW+ platforms with DDI implementation of PSR have different * PSR registers per transcoder and we only implement transcoder EDP * ones. Since by Display design transcoder EDP is tied to port A * we can safely escape based on the port A. */ if (dig_port->base.port != PORT_A) { DRM_DEBUG_KMS("PSR condition failed: Port not supported\n"); return; } if (dev_priv->psr.sink_not_reliable) { DRM_DEBUG_KMS("PSR sink implementation is not reliable\n"); return; } if (IS_HASWELL(dev_priv) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n"); return; } psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd); if (psr_setup_time < 0) { DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n", intel_dp->psr_dpcd[1]); return; } if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) > adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) { DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n", psr_setup_time); return; } crtc_state->has_psr = true; crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state); } static void intel_psr_activate(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (INTEL_GEN(dev_priv) >= 9) WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE); WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE); WARN_ON(dev_priv->psr.active); lockdep_assert_held(&dev_priv->psr.lock); /* psr1 and psr2 are mutually exclusive.*/ if (dev_priv->psr.psr2_enabled) hsw_activate_psr2(intel_dp); else hsw_activate_psr1(intel_dp); dev_priv->psr.active = true; } static i915_reg_t gen9_chicken_trans_reg(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) { static const i915_reg_t regs[] = { [TRANSCODER_A] = CHICKEN_TRANS_A, [TRANSCODER_B] = CHICKEN_TRANS_B, [TRANSCODER_C] = CHICKEN_TRANS_C, [TRANSCODER_EDP] = CHICKEN_TRANS_EDP, }; WARN_ON(INTEL_GEN(dev_priv) < 9); if (WARN_ON(cpu_transcoder >= ARRAY_SIZE(regs) || !regs[cpu_transcoder].reg)) cpu_transcoder = TRANSCODER_A; return regs[cpu_transcoder]; } static void intel_psr_enable_source(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; u32 mask; /* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+ * use hardcoded values PSR AUX transactions */ if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) hsw_psr_setup_aux(intel_dp); if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))) { i915_reg_t reg = gen9_chicken_trans_reg(dev_priv, cpu_transcoder); u32 chicken = I915_READ(reg); chicken |= PSR2_VSC_ENABLE_PROG_HEADER | PSR2_ADD_VERTICAL_LINE_COUNT; I915_WRITE(reg, chicken); } /* * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also * mask LPSP to avoid dependency on other drivers that might block * runtime_pm besides preventing other hw tracking issues now we * can rely on frontbuffer tracking. */ mask = EDP_PSR_DEBUG_MASK_MEMUP | EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP | EDP_PSR_DEBUG_MASK_MAX_SLEEP; if (INTEL_GEN(dev_priv) < 11) mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE; I915_WRITE(EDP_PSR_DEBUG, mask); } static void intel_psr_enable_locked(struct drm_i915_private *dev_priv, const struct intel_crtc_state *crtc_state) { struct intel_dp *intel_dp = dev_priv->psr.dp; WARN_ON(dev_priv->psr.enabled); dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state); dev_priv->psr.busy_frontbuffer_bits = 0; dev_priv->psr.pipe = to_intel_crtc(crtc_state->base.crtc)->pipe; DRM_DEBUG_KMS("Enabling PSR%s\n", dev_priv->psr.psr2_enabled ? "2" : "1"); intel_psr_setup_vsc(intel_dp, crtc_state); intel_psr_enable_sink(intel_dp); intel_psr_enable_source(intel_dp, crtc_state); dev_priv->psr.enabled = true; intel_psr_activate(intel_dp); } /** * intel_psr_enable - Enable PSR * @intel_dp: Intel DP * @crtc_state: new CRTC state * * This function can only be called after the pipe is fully trained and enabled. */ void intel_psr_enable(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (!crtc_state->has_psr) return; if (WARN_ON(!CAN_PSR(dev_priv))) return; WARN_ON(dev_priv->drrs.dp); mutex_lock(&dev_priv->psr.lock); if (!psr_global_enabled(dev_priv->psr.debug)) { DRM_DEBUG_KMS("PSR disabled by flag\n"); goto unlock; } intel_psr_enable_locked(dev_priv, crtc_state); unlock: mutex_unlock(&dev_priv->psr.lock); } static void intel_psr_exit(struct drm_i915_private *dev_priv) { u32 val; if (!dev_priv->psr.active) { if (INTEL_GEN(dev_priv) >= 9) WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE); WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE); return; } if (dev_priv->psr.psr2_enabled) { val = I915_READ(EDP_PSR2_CTL); WARN_ON(!(val & EDP_PSR2_ENABLE)); I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE); } else { val = I915_READ(EDP_PSR_CTL); WARN_ON(!(val & EDP_PSR_ENABLE)); I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE); } dev_priv->psr.active = false; } static void intel_psr_disable_locked(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); i915_reg_t psr_status; u32 psr_status_mask; lockdep_assert_held(&dev_priv->psr.lock); if (!dev_priv->psr.enabled) return; DRM_DEBUG_KMS("Disabling PSR%s\n", dev_priv->psr.psr2_enabled ? "2" : "1"); intel_psr_exit(dev_priv); if (dev_priv->psr.psr2_enabled) { psr_status = EDP_PSR2_STATUS; psr_status_mask = EDP_PSR2_STATUS_STATE_MASK; } else { psr_status = EDP_PSR_STATUS; psr_status_mask = EDP_PSR_STATUS_STATE_MASK; } /* Wait till PSR is idle */ if (intel_wait_for_register(&dev_priv->uncore, psr_status, psr_status_mask, 0, 2000)) DRM_ERROR("Timed out waiting PSR idle state\n"); /* Disable PSR on Sink */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0); dev_priv->psr.enabled = false; } /** * intel_psr_disable - Disable PSR * @intel_dp: Intel DP * @old_crtc_state: old CRTC state * * This function needs to be called before disabling pipe. */ void intel_psr_disable(struct intel_dp *intel_dp, const struct intel_crtc_state *old_crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (!old_crtc_state->has_psr) return; if (WARN_ON(!CAN_PSR(dev_priv))) return; mutex_lock(&dev_priv->psr.lock); intel_psr_disable_locked(intel_dp); mutex_unlock(&dev_priv->psr.lock); cancel_work_sync(&dev_priv->psr.work); } static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv) { /* * Display WA #0884: all * This documented WA for bxt can be safely applied * broadly so we can force HW tracking to exit PSR * instead of disabling and re-enabling. * Workaround tells us to write 0 to CUR_SURFLIVE_A, * but it makes more sense write to the current active * pipe. */ I915_WRITE(CURSURFLIVE(dev_priv->psr.pipe), 0); } /** * intel_psr_update - Update PSR state * @intel_dp: Intel DP * @crtc_state: new CRTC state * * This functions will update PSR states, disabling, enabling or switching PSR * version when executing fastsets. For full modeset, intel_psr_disable() and * intel_psr_enable() should be called instead. */ void intel_psr_update(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct i915_psr *psr = &dev_priv->psr; bool enable, psr2_enable; if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp) return; mutex_lock(&dev_priv->psr.lock); enable = crtc_state->has_psr && psr_global_enabled(psr->debug); psr2_enable = intel_psr2_enabled(dev_priv, crtc_state); if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) { /* Force a PSR exit when enabling CRC to avoid CRC timeouts */ if (crtc_state->crc_enabled && psr->enabled) psr_force_hw_tracking_exit(dev_priv); goto unlock; } if (psr->enabled) intel_psr_disable_locked(intel_dp); if (enable) intel_psr_enable_locked(dev_priv, crtc_state); unlock: mutex_unlock(&dev_priv->psr.lock); } /** * intel_psr_wait_for_idle - wait for PSR1 to idle * @new_crtc_state: new CRTC state * @out_value: PSR status in case of failure * * This function is expected to be called from pipe_update_start() where it is * not expected to race with PSR enable or disable. * * Returns: 0 on success or -ETIMEOUT if PSR status does not idle. */ int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state, u32 *out_value) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!dev_priv->psr.enabled || !new_crtc_state->has_psr) return 0; /* FIXME: Update this for PSR2 if we need to wait for idle */ if (READ_ONCE(dev_priv->psr.psr2_enabled)) return 0; /* * From bspec: Panel Self Refresh (BDW+) * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of * exit training time + 1.5 ms of aux channel handshake. 50 ms is * defensive enough to cover everything. */ return __intel_wait_for_register(&dev_priv->uncore, EDP_PSR_STATUS, EDP_PSR_STATUS_STATE_MASK, EDP_PSR_STATUS_STATE_IDLE, 2, 50, out_value); } static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv) { i915_reg_t reg; u32 mask; int err; if (!dev_priv->psr.enabled) return false; if (dev_priv->psr.psr2_enabled) { reg = EDP_PSR2_STATUS; mask = EDP_PSR2_STATUS_STATE_MASK; } else { reg = EDP_PSR_STATUS; mask = EDP_PSR_STATUS_STATE_MASK; } mutex_unlock(&dev_priv->psr.lock); err = intel_wait_for_register(&dev_priv->uncore, reg, mask, 0, 50); if (err) DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n"); /* After the unlocked wait, verify that PSR is still wanted! */ mutex_lock(&dev_priv->psr.lock); return err == 0 && dev_priv->psr.enabled; } static int intel_psr_fastset_force(struct drm_i915_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct drm_modeset_acquire_ctx ctx; struct drm_atomic_state *state; struct drm_crtc *crtc; int err; state = drm_atomic_state_alloc(dev); if (!state) return -ENOMEM; drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE); state->acquire_ctx = &ctx; retry: drm_for_each_crtc(crtc, dev) { struct drm_crtc_state *crtc_state; struct intel_crtc_state *intel_crtc_state; crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) { err = PTR_ERR(crtc_state); goto error; } intel_crtc_state = to_intel_crtc_state(crtc_state); if (crtc_state->active && intel_crtc_state->has_psr) { /* Mark mode as changed to trigger a pipe->update() */ crtc_state->mode_changed = true; break; } } err = drm_atomic_commit(state); error: if (err == -EDEADLK) { drm_atomic_state_clear(state); err = drm_modeset_backoff(&ctx); if (!err) goto retry; } drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); drm_atomic_state_put(state); return err; } int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val) { const u32 mode = val & I915_PSR_DEBUG_MODE_MASK; u32 old_mode; int ret; if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) || mode > I915_PSR_DEBUG_FORCE_PSR1) { DRM_DEBUG_KMS("Invalid debug mask %llx\n", val); return -EINVAL; } ret = mutex_lock_interruptible(&dev_priv->psr.lock); if (ret) return ret; old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK; dev_priv->psr.debug = val; intel_psr_irq_control(dev_priv, dev_priv->psr.debug); mutex_unlock(&dev_priv->psr.lock); if (old_mode != mode) ret = intel_psr_fastset_force(dev_priv); return ret; } static void intel_psr_handle_irq(struct drm_i915_private *dev_priv) { struct i915_psr *psr = &dev_priv->psr; intel_psr_disable_locked(psr->dp); psr->sink_not_reliable = true; /* let's make sure that sink is awaken */ drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0); } static void intel_psr_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), psr.work); mutex_lock(&dev_priv->psr.lock); if (!dev_priv->psr.enabled) goto unlock; if (READ_ONCE(dev_priv->psr.irq_aux_error)) intel_psr_handle_irq(dev_priv); /* * We have to make sure PSR is ready for re-enable * otherwise it keeps disabled until next full enable/disable cycle. * PSR might take some time to get fully disabled * and be ready for re-enable. */ if (!__psr_wait_for_idle_locked(dev_priv)) goto unlock; /* * The delayed work can race with an invalidate hence we need to * recheck. Since psr_flush first clears this and then reschedules we * won't ever miss a flush when bailing out here. */ if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active) goto unlock; intel_psr_activate(dev_priv->psr.dp); unlock: mutex_unlock(&dev_priv->psr.lock); } /** * intel_psr_invalidate - Invalidade PSR * @dev_priv: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * @origin: which operation caused the invalidate * * Since the hardware frontbuffer tracking has gaps we need to integrate * with the software frontbuffer tracking. This function gets called every * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be * disabled if the frontbuffer mask contains a buffer relevant to PSR. * * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits." */ void intel_psr_invalidate(struct drm_i915_private *dev_priv, unsigned frontbuffer_bits, enum fb_op_origin origin) { if (!CAN_PSR(dev_priv)) return; if (origin == ORIGIN_FLIP) return; mutex_lock(&dev_priv->psr.lock); if (!dev_priv->psr.enabled) { mutex_unlock(&dev_priv->psr.lock); return; } frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe); dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits; if (frontbuffer_bits) intel_psr_exit(dev_priv); mutex_unlock(&dev_priv->psr.lock); } /** * intel_psr_flush - Flush PSR * @dev_priv: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * @origin: which operation caused the flush * * Since the hardware frontbuffer tracking has gaps we need to integrate * with the software frontbuffer tracking. This function gets called every * time frontbuffer rendering has completed and flushed out to memory. PSR * can be enabled again if no other frontbuffer relevant to PSR is dirty. * * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits. */ void intel_psr_flush(struct drm_i915_private *dev_priv, unsigned frontbuffer_bits, enum fb_op_origin origin) { if (!CAN_PSR(dev_priv)) return; if (origin == ORIGIN_FLIP) return; mutex_lock(&dev_priv->psr.lock); if (!dev_priv->psr.enabled) { mutex_unlock(&dev_priv->psr.lock); return; } frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe); dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits; /* By definition flush = invalidate + flush */ if (frontbuffer_bits) psr_force_hw_tracking_exit(dev_priv); if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits) schedule_work(&dev_priv->psr.work); mutex_unlock(&dev_priv->psr.lock); } /** * intel_psr_init - Init basic PSR work and mutex. * @dev_priv: i915 device private * * This function is called only once at driver load to initialize basic * PSR stuff. */ void intel_psr_init(struct drm_i915_private *dev_priv) { u32 val; if (!HAS_PSR(dev_priv)) return; dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ? HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE; if (!dev_priv->psr.sink_support) return; if (i915_modparams.enable_psr == -1) if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable) i915_modparams.enable_psr = 0; /* * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR * will still keep the error set even after the reset done in the * irq_preinstall and irq_uninstall hooks. * And enabling in this situation cause the screen to freeze in the * first time that PSR HW tries to activate so lets keep PSR disabled * to avoid any rendering problems. */ val = I915_READ(EDP_PSR_IIR); val &= EDP_PSR_ERROR(edp_psr_shift(TRANSCODER_EDP)); if (val) { DRM_DEBUG_KMS("PSR interruption error set\n"); dev_priv->psr.sink_not_reliable = true; return; } /* Set link_standby x link_off defaults */ if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) /* HSW and BDW require workarounds that we don't implement. */ dev_priv->psr.link_standby = false; else /* For new platforms let's respect VBT back again */ dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link; INIT_WORK(&dev_priv->psr.work, intel_psr_work); mutex_init(&dev_priv->psr.lock); } void intel_psr_short_pulse(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct i915_psr *psr = &dev_priv->psr; u8 val; const u8 errors = DP_PSR_RFB_STORAGE_ERROR | DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR | DP_PSR_LINK_CRC_ERROR; if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp)) return; mutex_lock(&psr->lock); if (!psr->enabled || psr->dp != intel_dp) goto exit; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val) != 1) { DRM_ERROR("PSR_STATUS dpcd read failed\n"); goto exit; } if ((val & DP_PSR_SINK_STATE_MASK) == DP_PSR_SINK_INTERNAL_ERROR) { DRM_DEBUG_KMS("PSR sink internal error, disabling PSR\n"); intel_psr_disable_locked(intel_dp); psr->sink_not_reliable = true; } if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ERROR_STATUS, &val) != 1) { DRM_ERROR("PSR_ERROR_STATUS dpcd read failed\n"); goto exit; } if (val & DP_PSR_RFB_STORAGE_ERROR) DRM_DEBUG_KMS("PSR RFB storage error, disabling PSR\n"); if (val & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR) DRM_DEBUG_KMS("PSR VSC SDP uncorrectable error, disabling PSR\n"); if (val & DP_PSR_LINK_CRC_ERROR) DRM_ERROR("PSR Link CRC error, disabling PSR\n"); if (val & ~errors) DRM_ERROR("PSR_ERROR_STATUS unhandled errors %x\n", val & ~errors); if (val & errors) { intel_psr_disable_locked(intel_dp); psr->sink_not_reliable = true; } /* clear status register */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, val); exit: mutex_unlock(&psr->lock); } bool intel_psr_enabled(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); bool ret; if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp)) return false; mutex_lock(&dev_priv->psr.lock); ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled); mutex_unlock(&dev_priv->psr.lock); return ret; }