/* * Copyright (C) 2016 Linaro Ltd * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include u64 __ro_after_init module_alloc_base; u16 __initdata memstart_offset_seed; static __init u64 get_kaslr_seed(void *fdt) { int node, len; fdt64_t *prop; u64 ret; node = fdt_path_offset(fdt, "/chosen"); if (node < 0) return 0; prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len); if (!prop || len != sizeof(u64)) return 0; ret = fdt64_to_cpu(*prop); *prop = 0; return ret; } static __init const u8 *get_cmdline(void *fdt) { static __initconst const u8 default_cmdline[] = CONFIG_CMDLINE; if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) { int node; const u8 *prop; node = fdt_path_offset(fdt, "/chosen"); if (node < 0) goto out; prop = fdt_getprop(fdt, node, "bootargs", NULL); if (!prop) goto out; return prop; } out: return default_cmdline; } extern void *__init __fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot); /* * This routine will be executed with the kernel mapped at its default virtual * address, and if it returns successfully, the kernel will be remapped, and * start_kernel() will be executed from a randomized virtual offset. The * relocation will result in all absolute references (e.g., static variables * containing function pointers) to be reinitialized, and zero-initialized * .bss variables will be reset to 0. */ u64 __init kaslr_early_init(u64 dt_phys) { void *fdt; u64 seed, offset, mask, module_range; const u8 *cmdline, *str; int size; /* * Set a reasonable default for module_alloc_base in case * we end up running with module randomization disabled. */ module_alloc_base = (u64)_etext - MODULES_VSIZE; /* * Try to map the FDT early. If this fails, we simply bail, * and proceed with KASLR disabled. We will make another * attempt at mapping the FDT in setup_machine() */ early_fixmap_init(); fdt = __fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL); if (!fdt) return 0; /* * Retrieve (and wipe) the seed from the FDT */ seed = get_kaslr_seed(fdt); if (!seed) return 0; /* * Check if 'nokaslr' appears on the command line, and * return 0 if that is the case. */ cmdline = get_cmdline(fdt); str = strstr(cmdline, "nokaslr"); if (str == cmdline || (str > cmdline && *(str - 1) == ' ')) return 0; /* * OK, so we are proceeding with KASLR enabled. Calculate a suitable * kernel image offset from the seed. Let's place the kernel in the * lower half of the VMALLOC area (VA_BITS - 2). * Even if we could randomize at page granularity for 16k and 64k pages, * let's always round to 2 MB so we don't interfere with the ability to * map using contiguous PTEs */ mask = ((1UL << (VA_BITS - 2)) - 1) & ~(SZ_2M - 1); offset = seed & mask; /* use the top 16 bits to randomize the linear region */ memstart_offset_seed = seed >> 48; /* * The kernel Image should not extend across a 1GB/32MB/512MB alignment * boundary (for 4KB/16KB/64KB granule kernels, respectively). If this * happens, increase the KASLR offset by the size of the kernel image * rounded up by SWAPPER_BLOCK_SIZE. * * NOTE: The references to _text and _end below will already take the * modulo offset (the physical displacement modulo 2 MB) into * account, given that the physical placement is controlled by * the loader, and will not change as a result of the virtual * mapping we choose. */ if ((((u64)_text + offset) >> SWAPPER_TABLE_SHIFT) != (((u64)_end + offset) >> SWAPPER_TABLE_SHIFT)) { u64 kimg_sz = _end - _text; offset = (offset + round_up(kimg_sz, SWAPPER_BLOCK_SIZE)) & mask; } if (IS_ENABLED(CONFIG_KASAN)) /* * KASAN does not expect the module region to intersect the * vmalloc region, since shadow memory is allocated for each * module at load time, whereas the vmalloc region is shadowed * by KASAN zero pages. So keep modules out of the vmalloc * region if KASAN is enabled. */ return offset; if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) { /* * Randomize the module region independently from the core * kernel. This prevents modules from leaking any information * about the address of the kernel itself, but results in * branches between modules and the core kernel that are * resolved via PLTs. (Branches between modules will be * resolved normally.) */ module_range = VMALLOC_END - VMALLOC_START - MODULES_VSIZE; module_alloc_base = VMALLOC_START; } else { /* * Randomize the module region by setting module_alloc_base to * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE, * _stext) . This guarantees that the resulting region still * covers [_stext, _etext], and that all relative branches can * be resolved without veneers. */ module_range = MODULES_VSIZE - (u64)(_etext - _stext); module_alloc_base = (u64)_etext + offset - MODULES_VSIZE; } /* use the lower 21 bits to randomize the base of the module region */ module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21; module_alloc_base &= PAGE_MASK; return offset; }