/* * Device tree based initialization code for reserved memory. * * Copyright (c) 2013, The Linux Foundation. All Rights Reserved. * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd. * http://www.samsung.com * Author: Marek Szyprowski <m.szyprowski@samsung.com> * Author: Josh Cartwright <joshc@codeaurora.org> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License or (at your optional) any later version of the license. */ #include <linux/err.h> #include <linux/of.h> #include <linux/of_fdt.h> #include <linux/of_platform.h> #include <linux/mm.h> #include <linux/sizes.h> #include <linux/of_reserved_mem.h> #define MAX_RESERVED_REGIONS 16 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS]; static int reserved_mem_count; #if defined(CONFIG_HAVE_MEMBLOCK) #include <linux/memblock.h> int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size, phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap, phys_addr_t *res_base) { /* * We use __memblock_alloc_base() because memblock_alloc_base() * panic()s on allocation failure. */ phys_addr_t base = __memblock_alloc_base(size, align, end); if (!base) return -ENOMEM; /* * Check if the allocated region fits in to start..end window */ if (base < start) { memblock_free(base, size); return -ENOMEM; } *res_base = base; if (nomap) return memblock_remove(base, size); return 0; } #else int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size, phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap, phys_addr_t *res_base) { pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n", size, nomap ? " (nomap)" : ""); return -ENOSYS; } #endif /** * res_mem_save_node() - save fdt node for second pass initialization */ void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname, phys_addr_t base, phys_addr_t size) { struct reserved_mem *rmem = &reserved_mem[reserved_mem_count]; if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) { pr_err("Reserved memory: not enough space all defined regions.\n"); return; } rmem->fdt_node = node; rmem->name = uname; rmem->base = base; rmem->size = size; reserved_mem_count++; return; } /** * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align' * and 'alloc-ranges' properties */ static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname, phys_addr_t *res_base, phys_addr_t *res_size) { int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32); phys_addr_t start = 0, end = 0; phys_addr_t base = 0, align = 0, size; int len; const __be32 *prop; int nomap; int ret; prop = of_get_flat_dt_prop(node, "size", &len); if (!prop) return -EINVAL; if (len != dt_root_size_cells * sizeof(__be32)) { pr_err("Reserved memory: invalid size property in '%s' node.\n", uname); return -EINVAL; } size = dt_mem_next_cell(dt_root_size_cells, &prop); nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; prop = of_get_flat_dt_prop(node, "alignment", &len); if (prop) { if (len != dt_root_addr_cells * sizeof(__be32)) { pr_err("Reserved memory: invalid alignment property in '%s' node.\n", uname); return -EINVAL; } align = dt_mem_next_cell(dt_root_addr_cells, &prop); } prop = of_get_flat_dt_prop(node, "alloc-ranges", &len); if (prop) { if (len % t_len != 0) { pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n", uname); return -EINVAL; } base = 0; while (len > 0) { start = dt_mem_next_cell(dt_root_addr_cells, &prop); end = start + dt_mem_next_cell(dt_root_size_cells, &prop); ret = early_init_dt_alloc_reserved_memory_arch(size, align, start, end, nomap, &base); if (ret == 0) { pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n", uname, &base, (unsigned long)size / SZ_1M); break; } len -= t_len; } } else { ret = early_init_dt_alloc_reserved_memory_arch(size, align, 0, 0, nomap, &base); if (ret == 0) pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n", uname, &base, (unsigned long)size / SZ_1M); } if (base == 0) { pr_info("Reserved memory: failed to allocate memory for node '%s'\n", uname); return -ENOMEM; } *res_base = base; *res_size = size; return 0; } static const struct of_device_id __rmem_of_table_sentinel __used __section(__reservedmem_of_table_end); /** * res_mem_init_node() - call region specific reserved memory init code */ static int __init __reserved_mem_init_node(struct reserved_mem *rmem) { extern const struct of_device_id __reservedmem_of_table[]; const struct of_device_id *i; for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) { reservedmem_of_init_fn initfn = i->data; const char *compat = i->compatible; if (!of_flat_dt_is_compatible(rmem->fdt_node, compat)) continue; if (initfn(rmem) == 0) { pr_info("Reserved memory: initialized node %s, compatible id %s\n", rmem->name, compat); return 0; } } return -ENOENT; } /** * fdt_init_reserved_mem - allocate and init all saved reserved memory regions */ void __init fdt_init_reserved_mem(void) { int i; for (i = 0; i < reserved_mem_count; i++) { struct reserved_mem *rmem = &reserved_mem[i]; unsigned long node = rmem->fdt_node; int len; const __be32 *prop; int err = 0; prop = of_get_flat_dt_prop(node, "phandle", &len); if (!prop) prop = of_get_flat_dt_prop(node, "linux,phandle", &len); if (prop) rmem->phandle = of_read_number(prop, len/4); if (rmem->size == 0) err = __reserved_mem_alloc_size(node, rmem->name, &rmem->base, &rmem->size); if (err == 0) __reserved_mem_init_node(rmem); } } static inline struct reserved_mem *__find_rmem(struct device_node *node) { unsigned int i; if (!node->phandle) return NULL; for (i = 0; i < reserved_mem_count; i++) if (reserved_mem[i].phandle == node->phandle) return &reserved_mem[i]; return NULL; } /** * of_reserved_mem_device_init() - assign reserved memory region to given device * * This function assign memory region pointed by "memory-region" device tree * property to the given device. */ void of_reserved_mem_device_init(struct device *dev) { struct reserved_mem *rmem; struct device_node *np; np = of_parse_phandle(dev->of_node, "memory-region", 0); if (!np) return; rmem = __find_rmem(np); of_node_put(np); if (!rmem || !rmem->ops || !rmem->ops->device_init) return; rmem->ops->device_init(rmem, dev); dev_info(dev, "assigned reserved memory node %s\n", rmem->name); } /** * of_reserved_mem_device_release() - release reserved memory device structures * * This function releases structures allocated for memory region handling for * the given device. */ void of_reserved_mem_device_release(struct device *dev) { struct reserved_mem *rmem; struct device_node *np; np = of_parse_phandle(dev->of_node, "memory-region", 0); if (!np) return; rmem = __find_rmem(np); of_node_put(np); if (!rmem || !rmem->ops || !rmem->ops->device_release) return; rmem->ops->device_release(rmem, dev); }