/* * Copyright (C) 2016-2017 Netronome Systems, Inc. * * This software is dual licensed under the GNU General License Version 2, * June 1991 as shown in the file COPYING in the top-level directory of this * source tree or the BSD 2-Clause License provided below. You have the * option to license this software under the complete terms of either license. * * The BSD 2-Clause License: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * 1. Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include "nfp_asm.h" const struct cmd_tgt_act cmd_tgt_act[__CMD_TGT_MAP_SIZE] = { [CMD_TGT_WRITE8_SWAP] = { 0x02, 0x42 }, [CMD_TGT_WRITE32_SWAP] = { 0x02, 0x5f }, [CMD_TGT_READ8] = { 0x01, 0x43 }, [CMD_TGT_READ32] = { 0x00, 0x5c }, [CMD_TGT_READ32_LE] = { 0x01, 0x5c }, [CMD_TGT_READ32_SWAP] = { 0x02, 0x5c }, [CMD_TGT_READ_LE] = { 0x01, 0x40 }, [CMD_TGT_READ_SWAP_LE] = { 0x03, 0x40 }, }; u16 br_get_offset(u64 instr) { u16 addr_lo, addr_hi; addr_lo = FIELD_GET(OP_BR_ADDR_LO, instr); addr_hi = FIELD_GET(OP_BR_ADDR_HI, instr); return (addr_hi * ((OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO)) + 1)) | addr_lo; } void br_set_offset(u64 *instr, u16 offset) { u16 addr_lo, addr_hi; addr_lo = offset & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO)); addr_hi = offset != addr_lo; *instr &= ~(OP_BR_ADDR_HI | OP_BR_ADDR_LO); *instr |= FIELD_PREP(OP_BR_ADDR_HI, addr_hi); *instr |= FIELD_PREP(OP_BR_ADDR_LO, addr_lo); } void br_add_offset(u64 *instr, u16 offset) { u16 addr; addr = br_get_offset(*instr); br_set_offset(instr, addr + offset); } static u16 nfp_swreg_to_unreg(swreg reg, bool is_dst) { bool lm_id, lm_dec = false; u16 val = swreg_value(reg); switch (swreg_type(reg)) { case NN_REG_GPR_A: case NN_REG_GPR_B: case NN_REG_GPR_BOTH: return val; case NN_REG_NNR: return UR_REG_NN | val; case NN_REG_XFER: return UR_REG_XFR | val; case NN_REG_LMEM: lm_id = swreg_lm_idx(reg); switch (swreg_lm_mode(reg)) { case NN_LM_MOD_NONE: if (val & ~UR_REG_LM_IDX_MAX) { pr_err("LM offset too large\n"); return 0; } return UR_REG_LM | FIELD_PREP(UR_REG_LM_IDX, lm_id) | val; case NN_LM_MOD_DEC: lm_dec = true; /* fall through */ case NN_LM_MOD_INC: if (val) { pr_err("LM offset in inc/dev mode\n"); return 0; } return UR_REG_LM | UR_REG_LM_POST_MOD | FIELD_PREP(UR_REG_LM_IDX, lm_id) | FIELD_PREP(UR_REG_LM_POST_MOD_DEC, lm_dec); default: pr_err("bad LM mode for unrestricted operands %d\n", swreg_lm_mode(reg)); return 0; } case NN_REG_IMM: if (val & ~0xff) { pr_err("immediate too large\n"); return 0; } return UR_REG_IMM_encode(val); case NN_REG_NONE: return is_dst ? UR_REG_NO_DST : REG_NONE; } pr_err("unrecognized reg encoding %08x\n", reg); return 0; } int swreg_to_unrestricted(swreg dst, swreg lreg, swreg rreg, struct nfp_insn_ur_regs *reg) { memset(reg, 0, sizeof(*reg)); /* Decode destination */ if (swreg_type(dst) == NN_REG_IMM) return -EFAULT; if (swreg_type(dst) == NN_REG_GPR_B) reg->dst_ab = ALU_DST_B; if (swreg_type(dst) == NN_REG_GPR_BOTH) reg->wr_both = true; reg->dst = nfp_swreg_to_unreg(dst, true); /* Decode source operands */ if (swreg_type(lreg) == swreg_type(rreg) && swreg_type(lreg) != NN_REG_NONE) return -EFAULT; if (swreg_type(lreg) == NN_REG_GPR_B || swreg_type(rreg) == NN_REG_GPR_A) { reg->areg = nfp_swreg_to_unreg(rreg, false); reg->breg = nfp_swreg_to_unreg(lreg, false); reg->swap = true; } else { reg->areg = nfp_swreg_to_unreg(lreg, false); reg->breg = nfp_swreg_to_unreg(rreg, false); } reg->dst_lmextn = swreg_lmextn(dst); reg->src_lmextn = swreg_lmextn(lreg) | swreg_lmextn(rreg); return 0; } static u16 nfp_swreg_to_rereg(swreg reg, bool is_dst, bool has_imm8, bool *i8) { u16 val = swreg_value(reg); bool lm_id; switch (swreg_type(reg)) { case NN_REG_GPR_A: case NN_REG_GPR_B: case NN_REG_GPR_BOTH: return val; case NN_REG_XFER: return RE_REG_XFR | val; case NN_REG_LMEM: lm_id = swreg_lm_idx(reg); if (swreg_lm_mode(reg) != NN_LM_MOD_NONE) { pr_err("bad LM mode for restricted operands %d\n", swreg_lm_mode(reg)); return 0; } if (val & ~RE_REG_LM_IDX_MAX) { pr_err("LM offset too large\n"); return 0; } return RE_REG_LM | FIELD_PREP(RE_REG_LM_IDX, lm_id) | val; case NN_REG_IMM: if (val & ~(0x7f | has_imm8 << 7)) { pr_err("immediate too large\n"); return 0; } *i8 = val & 0x80; return RE_REG_IMM_encode(val & 0x7f); case NN_REG_NONE: return is_dst ? RE_REG_NO_DST : REG_NONE; case NN_REG_NNR: pr_err("NNRs used with restricted encoding\n"); return 0; } pr_err("unrecognized reg encoding\n"); return 0; } int swreg_to_restricted(swreg dst, swreg lreg, swreg rreg, struct nfp_insn_re_regs *reg, bool has_imm8) { memset(reg, 0, sizeof(*reg)); /* Decode destination */ if (swreg_type(dst) == NN_REG_IMM) return -EFAULT; if (swreg_type(dst) == NN_REG_GPR_B) reg->dst_ab = ALU_DST_B; if (swreg_type(dst) == NN_REG_GPR_BOTH) reg->wr_both = true; reg->dst = nfp_swreg_to_rereg(dst, true, false, NULL); /* Decode source operands */ if (swreg_type(lreg) == swreg_type(rreg) && swreg_type(lreg) != NN_REG_NONE) return -EFAULT; if (swreg_type(lreg) == NN_REG_GPR_B || swreg_type(rreg) == NN_REG_GPR_A) { reg->areg = nfp_swreg_to_rereg(rreg, false, has_imm8, ®->i8); reg->breg = nfp_swreg_to_rereg(lreg, false, has_imm8, ®->i8); reg->swap = true; } else { reg->areg = nfp_swreg_to_rereg(lreg, false, has_imm8, ®->i8); reg->breg = nfp_swreg_to_rereg(rreg, false, has_imm8, ®->i8); } reg->dst_lmextn = swreg_lmextn(dst); reg->src_lmextn = swreg_lmextn(lreg) | swreg_lmextn(rreg); return 0; } #define NFP_USTORE_ECC_POLY_WORDS 7 #define NFP_USTORE_OP_BITS 45 static const u64 nfp_ustore_ecc_polynomials[NFP_USTORE_ECC_POLY_WORDS] = { 0x0ff800007fffULL, 0x11f801ff801fULL, 0x1e387e0781e1ULL, 0x17cb8e388e22ULL, 0x1af5b2c93244ULL, 0x1f56d5525488ULL, 0x0daf69a46910ULL, }; static bool parity(u64 value) { return hweight64(value) & 1; } int nfp_ustore_check_valid_no_ecc(u64 insn) { if (insn & ~GENMASK_ULL(NFP_USTORE_OP_BITS, 0)) return -EINVAL; return 0; } u64 nfp_ustore_calc_ecc_insn(u64 insn) { u8 ecc = 0; int i; for (i = 0; i < NFP_USTORE_ECC_POLY_WORDS; i++) ecc |= parity(nfp_ustore_ecc_polynomials[i] & insn) << i; return insn | (u64)ecc << NFP_USTORE_OP_BITS; }