/* * Copyright (c) 2006-2008 Intel Corporation * Copyright (c) 2007 Dave Airlie <airlied@linux.ie> * Copyright (c) 2008 Red Hat Inc. * Copyright (c) 2016 Intel Corporation * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that copyright * notice and this permission notice appear in supporting documentation, and * that the name of the copyright holders not be used in advertising or * publicity pertaining to distribution of the software without specific, * written prior permission. The copyright holders make no representations * about the suitability of this software for any purpose. It is provided "as * is" without express or implied warranty. * * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE * OF THIS SOFTWARE. */ #include <drm/drmP.h> #include <drm/drm_gem.h> #include "drm_crtc_internal.h" /** * DOC: overview * * The KMS API doesn't standardize backing storage object creation and leaves it * to driver-specific ioctls. Furthermore actually creating a buffer object even * for GEM-based drivers is done through a driver-specific ioctl - GEM only has * a common userspace interface for sharing and destroying objects. While not an * issue for full-fledged graphics stacks that include device-specific userspace * components (in libdrm for instance), this limit makes DRM-based early boot * graphics unnecessarily complex. * * Dumb objects partly alleviate the problem by providing a standard API to * create dumb buffers suitable for scanout, which can then be used to create * KMS frame buffers. * * To support dumb objects drivers must implement the &drm_driver.dumb_create * operation. &drm_driver.dumb_destroy defaults to drm_gem_dumb_destroy() if * not set and &drm_driver.dumb_map_offset defaults to * drm_gem_dumb_map_offset(). See the callbacks for further details. * * Note that dumb objects may not be used for gpu acceleration, as has been * attempted on some ARM embedded platforms. Such drivers really must have * a hardware-specific ioctl to allocate suitable buffer objects. */ int drm_mode_create_dumb_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_mode_create_dumb *args = data; u32 cpp, stride, size; if (!dev->driver->dumb_create) return -ENOSYS; if (!args->width || !args->height || !args->bpp) return -EINVAL; /* overflow checks for 32bit size calculations */ /* NOTE: DIV_ROUND_UP() can overflow */ cpp = DIV_ROUND_UP(args->bpp, 8); if (!cpp || cpp > 0xffffffffU / args->width) return -EINVAL; stride = cpp * args->width; if (args->height > 0xffffffffU / stride) return -EINVAL; /* test for wrap-around */ size = args->height * stride; if (PAGE_ALIGN(size) == 0) return -EINVAL; /* * handle, pitch and size are output parameters. Zero them out to * prevent drivers from accidentally using uninitialized data. Since * not all existing userspace is clearing these fields properly we * cannot reject IOCTL with garbage in them. */ args->handle = 0; args->pitch = 0; args->size = 0; return dev->driver->dumb_create(file_priv, dev, args); } /** * drm_mode_mmap_dumb_ioctl - create an mmap offset for a dumb backing storage buffer * @dev: DRM device * @data: ioctl data * @file_priv: DRM file info * * Allocate an offset in the drm device node's address space to be able to * memory map a dumb buffer. * * Called by the user via ioctl. * * Returns: * Zero on success, negative errno on failure. */ int drm_mode_mmap_dumb_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_mode_map_dumb *args = data; if (!dev->driver->dumb_create) return -ENOSYS; if (dev->driver->dumb_map_offset) return dev->driver->dumb_map_offset(file_priv, dev, args->handle, &args->offset); else return drm_gem_dumb_map_offset(file_priv, dev, args->handle, &args->offset); } int drm_mode_destroy_dumb_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_mode_destroy_dumb *args = data; if (!dev->driver->dumb_create) return -ENOSYS; if (dev->driver->dumb_destroy) return dev->driver->dumb_destroy(file_priv, dev, args->handle); else return drm_gem_dumb_destroy(file_priv, dev, args->handle); }