/* * Dave DNET Ethernet Controller driver * * Copyright (C) 2008 Dave S.r.l. * Copyright (C) 2009 Ilya Yanok, Emcraft Systems Ltd, * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dnet.h" #undef DEBUG /* function for reading internal MAC register */ static u16 dnet_readw_mac(struct dnet *bp, u16 reg) { u16 data_read; /* issue a read */ dnet_writel(bp, reg, MACREG_ADDR); /* since a read/write op to the MAC is very slow, * we must wait before reading the data */ ndelay(500); /* read data read from the MAC register */ data_read = dnet_readl(bp, MACREG_DATA); /* all done */ return data_read; } /* function for writing internal MAC register */ static void dnet_writew_mac(struct dnet *bp, u16 reg, u16 val) { /* load data to write */ dnet_writel(bp, val, MACREG_DATA); /* issue a write */ dnet_writel(bp, reg | DNET_INTERNAL_WRITE, MACREG_ADDR); /* since a read/write op to the MAC is very slow, * we must wait before exiting */ ndelay(500); } static void __dnet_set_hwaddr(struct dnet *bp) { u16 tmp; tmp = be16_to_cpup((__be16 *)bp->dev->dev_addr); dnet_writew_mac(bp, DNET_INTERNAL_MAC_ADDR_0_REG, tmp); tmp = be16_to_cpup((__be16 *)(bp->dev->dev_addr + 2)); dnet_writew_mac(bp, DNET_INTERNAL_MAC_ADDR_1_REG, tmp); tmp = be16_to_cpup((__be16 *)(bp->dev->dev_addr + 4)); dnet_writew_mac(bp, DNET_INTERNAL_MAC_ADDR_2_REG, tmp); } static void dnet_get_hwaddr(struct dnet *bp) { u16 tmp; u8 addr[6]; /* * from MAC docs: * "Note that the MAC address is stored in the registers in Hexadecimal * form. For example, to set the MAC Address to: AC-DE-48-00-00-80 * would require writing 0xAC (octet 0) to address 0x0B (high byte of * Mac_addr[15:0]), 0xDE (octet 1) to address 0x0A (Low byte of * Mac_addr[15:0]), 0x48 (octet 2) to address 0x0D (high byte of * Mac_addr[15:0]), 0x00 (octet 3) to address 0x0C (Low byte of * Mac_addr[15:0]), 0x00 (octet 4) to address 0x0F (high byte of * Mac_addr[15:0]), and 0x80 (octet 5) to address * 0x0E (Low byte of * Mac_addr[15:0]). */ tmp = dnet_readw_mac(bp, DNET_INTERNAL_MAC_ADDR_0_REG); *((__be16 *)addr) = cpu_to_be16(tmp); tmp = dnet_readw_mac(bp, DNET_INTERNAL_MAC_ADDR_1_REG); *((__be16 *)(addr + 2)) = cpu_to_be16(tmp); tmp = dnet_readw_mac(bp, DNET_INTERNAL_MAC_ADDR_2_REG); *((__be16 *)(addr + 4)) = cpu_to_be16(tmp); if (is_valid_ether_addr(addr)) memcpy(bp->dev->dev_addr, addr, sizeof(addr)); } static int dnet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) { struct dnet *bp = bus->priv; u16 value; while (!(dnet_readw_mac(bp, DNET_INTERNAL_GMII_MNG_CTL_REG) & DNET_INTERNAL_GMII_MNG_CMD_FIN)) cpu_relax(); /* only 5 bits allowed for phy-addr and reg_offset */ mii_id &= 0x1f; regnum &= 0x1f; /* prepare reg_value for a read */ value = (mii_id << 8); value |= regnum; /* write control word */ dnet_writew_mac(bp, DNET_INTERNAL_GMII_MNG_CTL_REG, value); /* wait for end of transfer */ while (!(dnet_readw_mac(bp, DNET_INTERNAL_GMII_MNG_CTL_REG) & DNET_INTERNAL_GMII_MNG_CMD_FIN)) cpu_relax(); value = dnet_readw_mac(bp, DNET_INTERNAL_GMII_MNG_DAT_REG); pr_debug("mdio_read %02x:%02x <- %04x\n", mii_id, regnum, value); return value; } static int dnet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 value) { struct dnet *bp = bus->priv; u16 tmp; pr_debug("mdio_write %02x:%02x <- %04x\n", mii_id, regnum, value); while (!(dnet_readw_mac(bp, DNET_INTERNAL_GMII_MNG_CTL_REG) & DNET_INTERNAL_GMII_MNG_CMD_FIN)) cpu_relax(); /* prepare for a write operation */ tmp = (1 << 13); /* only 5 bits allowed for phy-addr and reg_offset */ mii_id &= 0x1f; regnum &= 0x1f; /* only 16 bits on data */ value &= 0xffff; /* prepare reg_value for a write */ tmp |= (mii_id << 8); tmp |= regnum; /* write data to write first */ dnet_writew_mac(bp, DNET_INTERNAL_GMII_MNG_DAT_REG, value); /* write control word */ dnet_writew_mac(bp, DNET_INTERNAL_GMII_MNG_CTL_REG, tmp); while (!(dnet_readw_mac(bp, DNET_INTERNAL_GMII_MNG_CTL_REG) & DNET_INTERNAL_GMII_MNG_CMD_FIN)) cpu_relax(); return 0; } static void dnet_handle_link_change(struct net_device *dev) { struct dnet *bp = netdev_priv(dev); struct phy_device *phydev = dev->phydev; unsigned long flags; u32 mode_reg, ctl_reg; int status_change = 0; spin_lock_irqsave(&bp->lock, flags); mode_reg = dnet_readw_mac(bp, DNET_INTERNAL_MODE_REG); ctl_reg = dnet_readw_mac(bp, DNET_INTERNAL_RXTX_CONTROL_REG); if (phydev->link) { if (bp->duplex != phydev->duplex) { if (phydev->duplex) ctl_reg &= ~(DNET_INTERNAL_RXTX_CONTROL_ENABLEHALFDUP); else ctl_reg |= DNET_INTERNAL_RXTX_CONTROL_ENABLEHALFDUP; bp->duplex = phydev->duplex; status_change = 1; } if (bp->speed != phydev->speed) { status_change = 1; switch (phydev->speed) { case 1000: mode_reg |= DNET_INTERNAL_MODE_GBITEN; break; case 100: case 10: mode_reg &= ~DNET_INTERNAL_MODE_GBITEN; break; default: printk(KERN_WARNING "%s: Ack! Speed (%d) is not " "10/100/1000!\n", dev->name, phydev->speed); break; } bp->speed = phydev->speed; } } if (phydev->link != bp->link) { if (phydev->link) { mode_reg |= (DNET_INTERNAL_MODE_RXEN | DNET_INTERNAL_MODE_TXEN); } else { mode_reg &= ~(DNET_INTERNAL_MODE_RXEN | DNET_INTERNAL_MODE_TXEN); bp->speed = 0; bp->duplex = -1; } bp->link = phydev->link; status_change = 1; } if (status_change) { dnet_writew_mac(bp, DNET_INTERNAL_RXTX_CONTROL_REG, ctl_reg); dnet_writew_mac(bp, DNET_INTERNAL_MODE_REG, mode_reg); } spin_unlock_irqrestore(&bp->lock, flags); if (status_change) { if (phydev->link) printk(KERN_INFO "%s: link up (%d/%s)\n", dev->name, phydev->speed, DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); else printk(KERN_INFO "%s: link down\n", dev->name); } } static int dnet_mii_probe(struct net_device *dev) { struct dnet *bp = netdev_priv(dev); struct phy_device *phydev = NULL; /* find the first phy */ phydev = phy_find_first(bp->mii_bus); if (!phydev) { printk(KERN_ERR "%s: no PHY found\n", dev->name); return -ENODEV; } /* TODO : add pin_irq */ /* attach the mac to the phy */ if (bp->capabilities & DNET_HAS_RMII) { phydev = phy_connect(dev, phydev_name(phydev), &dnet_handle_link_change, PHY_INTERFACE_MODE_RMII); } else { phydev = phy_connect(dev, phydev_name(phydev), &dnet_handle_link_change, PHY_INTERFACE_MODE_MII); } if (IS_ERR(phydev)) { printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); return PTR_ERR(phydev); } /* mask with MAC supported features */ if (bp->capabilities & DNET_HAS_GIGABIT) phy_set_max_speed(phydev, SPEED_1000); else phy_set_max_speed(phydev, SPEED_100); phydev->supported |= SUPPORTED_Asym_Pause | SUPPORTED_Pause; phydev->advertising = phydev->supported; bp->link = 0; bp->speed = 0; bp->duplex = -1; return 0; } static int dnet_mii_init(struct dnet *bp) { int err; bp->mii_bus = mdiobus_alloc(); if (bp->mii_bus == NULL) return -ENOMEM; bp->mii_bus->name = "dnet_mii_bus"; bp->mii_bus->read = &dnet_mdio_read; bp->mii_bus->write = &dnet_mdio_write; snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", bp->pdev->name, bp->pdev->id); bp->mii_bus->priv = bp; if (mdiobus_register(bp->mii_bus)) { err = -ENXIO; goto err_out; } if (dnet_mii_probe(bp->dev) != 0) { err = -ENXIO; goto err_out_unregister_bus; } return 0; err_out_unregister_bus: mdiobus_unregister(bp->mii_bus); err_out: mdiobus_free(bp->mii_bus); return err; } /* For Neptune board: LINK1000 as Link LED and TX as activity LED */ static int dnet_phy_marvell_fixup(struct phy_device *phydev) { return phy_write(phydev, 0x18, 0x4148); } static void dnet_update_stats(struct dnet *bp) { u32 __iomem *reg = bp->regs + DNET_RX_PKT_IGNR_CNT; u32 *p = &bp->hw_stats.rx_pkt_ignr; u32 *end = &bp->hw_stats.rx_byte + 1; WARN_ON((unsigned long)(end - p - 1) != (DNET_RX_BYTE_CNT - DNET_RX_PKT_IGNR_CNT) / 4); for (; p < end; p++, reg++) *p += readl(reg); reg = bp->regs + DNET_TX_UNICAST_CNT; p = &bp->hw_stats.tx_unicast; end = &bp->hw_stats.tx_byte + 1; WARN_ON((unsigned long)(end - p - 1) != (DNET_TX_BYTE_CNT - DNET_TX_UNICAST_CNT) / 4); for (; p < end; p++, reg++) *p += readl(reg); } static int dnet_poll(struct napi_struct *napi, int budget) { struct dnet *bp = container_of(napi, struct dnet, napi); struct net_device *dev = bp->dev; int npackets = 0; unsigned int pkt_len; struct sk_buff *skb; unsigned int *data_ptr; u32 int_enable; u32 cmd_word; int i; while (npackets < budget) { /* * break out of while loop if there are no more * packets waiting */ if (!(dnet_readl(bp, RX_FIFO_WCNT) >> 16)) break; cmd_word = dnet_readl(bp, RX_LEN_FIFO); pkt_len = cmd_word & 0xFFFF; if (cmd_word & 0xDF180000) printk(KERN_ERR "%s packet receive error %x\n", __func__, cmd_word); skb = netdev_alloc_skb(dev, pkt_len + 5); if (skb != NULL) { /* Align IP on 16 byte boundaries */ skb_reserve(skb, 2); /* * 'skb_put()' points to the start of sk_buff * data area. */ data_ptr = skb_put(skb, pkt_len); for (i = 0; i < (pkt_len + 3) >> 2; i++) *data_ptr++ = dnet_readl(bp, RX_DATA_FIFO); skb->protocol = eth_type_trans(skb, dev); netif_receive_skb(skb); npackets++; } else printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of " "size %u.\n", dev->name, pkt_len); } if (npackets < budget) { /* We processed all packets available. Tell NAPI it can * stop polling then re-enable rx interrupts. */ napi_complete_done(napi, npackets); int_enable = dnet_readl(bp, INTR_ENB); int_enable |= DNET_INTR_SRC_RX_CMDFIFOAF; dnet_writel(bp, int_enable, INTR_ENB); } return npackets; } static irqreturn_t dnet_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct dnet *bp = netdev_priv(dev); u32 int_src, int_enable, int_current; unsigned long flags; unsigned int handled = 0; spin_lock_irqsave(&bp->lock, flags); /* read and clear the DNET irq (clear on read) */ int_src = dnet_readl(bp, INTR_SRC); int_enable = dnet_readl(bp, INTR_ENB); int_current = int_src & int_enable; /* restart the queue if we had stopped it for TX fifo almost full */ if (int_current & DNET_INTR_SRC_TX_FIFOAE) { int_enable = dnet_readl(bp, INTR_ENB); int_enable &= ~DNET_INTR_ENB_TX_FIFOAE; dnet_writel(bp, int_enable, INTR_ENB); netif_wake_queue(dev); handled = 1; } /* RX FIFO error checking */ if (int_current & (DNET_INTR_SRC_RX_CMDFIFOFF | DNET_INTR_SRC_RX_DATAFIFOFF)) { printk(KERN_ERR "%s: RX fifo error %x, irq %x\n", __func__, dnet_readl(bp, RX_STATUS), int_current); /* we can only flush the RX FIFOs */ dnet_writel(bp, DNET_SYS_CTL_RXFIFOFLUSH, SYS_CTL); ndelay(500); dnet_writel(bp, 0, SYS_CTL); handled = 1; } /* TX FIFO error checking */ if (int_current & (DNET_INTR_SRC_TX_FIFOFULL | DNET_INTR_SRC_TX_DISCFRM)) { printk(KERN_ERR "%s: TX fifo error %x, irq %x\n", __func__, dnet_readl(bp, TX_STATUS), int_current); /* we can only flush the TX FIFOs */ dnet_writel(bp, DNET_SYS_CTL_TXFIFOFLUSH, SYS_CTL); ndelay(500); dnet_writel(bp, 0, SYS_CTL); handled = 1; } if (int_current & DNET_INTR_SRC_RX_CMDFIFOAF) { if (napi_schedule_prep(&bp->napi)) { /* * There's no point taking any more interrupts * until we have processed the buffers */ /* Disable Rx interrupts and schedule NAPI poll */ int_enable = dnet_readl(bp, INTR_ENB); int_enable &= ~DNET_INTR_SRC_RX_CMDFIFOAF; dnet_writel(bp, int_enable, INTR_ENB); __napi_schedule(&bp->napi); } handled = 1; } if (!handled) pr_debug("%s: irq %x remains\n", __func__, int_current); spin_unlock_irqrestore(&bp->lock, flags); return IRQ_RETVAL(handled); } #ifdef DEBUG static inline void dnet_print_skb(struct sk_buff *skb) { int k; printk(KERN_DEBUG PFX "data:"); for (k = 0; k < skb->len; k++) printk(" %02x", (unsigned int)skb->data[k]); printk("\n"); } #else #define dnet_print_skb(skb) do {} while (0) #endif static netdev_tx_t dnet_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct dnet *bp = netdev_priv(dev); u32 tx_status, irq_enable; unsigned int len, i, tx_cmd, wrsz; unsigned long flags; unsigned int *bufp; tx_status = dnet_readl(bp, TX_STATUS); pr_debug("start_xmit: len %u head %p data %p\n", skb->len, skb->head, skb->data); dnet_print_skb(skb); /* frame size (words) */ len = (skb->len + 3) >> 2; spin_lock_irqsave(&bp->lock, flags); tx_status = dnet_readl(bp, TX_STATUS); bufp = (unsigned int *)(((unsigned long) skb->data) & ~0x3UL); wrsz = (u32) skb->len + 3; wrsz += ((unsigned long) skb->data) & 0x3; wrsz >>= 2; tx_cmd = ((((unsigned long)(skb->data)) & 0x03) << 16) | (u32) skb->len; /* check if there is enough room for the current frame */ if (wrsz < (DNET_FIFO_SIZE - dnet_readl(bp, TX_FIFO_WCNT))) { for (i = 0; i < wrsz; i++) dnet_writel(bp, *bufp++, TX_DATA_FIFO); /* * inform MAC that a packet's written and ready to be * shipped out */ dnet_writel(bp, tx_cmd, TX_LEN_FIFO); } if (dnet_readl(bp, TX_FIFO_WCNT) > DNET_FIFO_TX_DATA_AF_TH) { netif_stop_queue(dev); tx_status = dnet_readl(bp, INTR_SRC); irq_enable = dnet_readl(bp, INTR_ENB); irq_enable |= DNET_INTR_ENB_TX_FIFOAE; dnet_writel(bp, irq_enable, INTR_ENB); } skb_tx_timestamp(skb); /* free the buffer */ dev_kfree_skb(skb); spin_unlock_irqrestore(&bp->lock, flags); return NETDEV_TX_OK; } static void dnet_reset_hw(struct dnet *bp) { /* put ts_mac in IDLE state i.e. disable rx/tx */ dnet_writew_mac(bp, DNET_INTERNAL_MODE_REG, DNET_INTERNAL_MODE_FCEN); /* * RX FIFO almost full threshold: only cmd FIFO almost full is * implemented for RX side */ dnet_writel(bp, DNET_FIFO_RX_CMD_AF_TH, RX_FIFO_TH); /* * TX FIFO almost empty threshold: only data FIFO almost empty * is implemented for TX side */ dnet_writel(bp, DNET_FIFO_TX_DATA_AE_TH, TX_FIFO_TH); /* flush rx/tx fifos */ dnet_writel(bp, DNET_SYS_CTL_RXFIFOFLUSH | DNET_SYS_CTL_TXFIFOFLUSH, SYS_CTL); msleep(1); dnet_writel(bp, 0, SYS_CTL); } static void dnet_init_hw(struct dnet *bp) { u32 config; dnet_reset_hw(bp); __dnet_set_hwaddr(bp); config = dnet_readw_mac(bp, DNET_INTERNAL_RXTX_CONTROL_REG); if (bp->dev->flags & IFF_PROMISC) /* Copy All Frames */ config |= DNET_INTERNAL_RXTX_CONTROL_ENPROMISC; if (!(bp->dev->flags & IFF_BROADCAST)) /* No BroadCast */ config |= DNET_INTERNAL_RXTX_CONTROL_RXMULTICAST; config |= DNET_INTERNAL_RXTX_CONTROL_RXPAUSE | DNET_INTERNAL_RXTX_CONTROL_RXBROADCAST | DNET_INTERNAL_RXTX_CONTROL_DROPCONTROL | DNET_INTERNAL_RXTX_CONTROL_DISCFXFCS; dnet_writew_mac(bp, DNET_INTERNAL_RXTX_CONTROL_REG, config); /* clear irq before enabling them */ config = dnet_readl(bp, INTR_SRC); /* enable RX/TX interrupt, recv packet ready interrupt */ dnet_writel(bp, DNET_INTR_ENB_GLOBAL_ENABLE | DNET_INTR_ENB_RX_SUMMARY | DNET_INTR_ENB_TX_SUMMARY | DNET_INTR_ENB_RX_FIFOERR | DNET_INTR_ENB_RX_ERROR | DNET_INTR_ENB_RX_FIFOFULL | DNET_INTR_ENB_TX_FIFOFULL | DNET_INTR_ENB_TX_DISCFRM | DNET_INTR_ENB_RX_PKTRDY, INTR_ENB); } static int dnet_open(struct net_device *dev) { struct dnet *bp = netdev_priv(dev); /* if the phy is not yet register, retry later */ if (!dev->phydev) return -EAGAIN; napi_enable(&bp->napi); dnet_init_hw(bp); phy_start_aneg(dev->phydev); /* schedule a link state check */ phy_start(dev->phydev); netif_start_queue(dev); return 0; } static int dnet_close(struct net_device *dev) { struct dnet *bp = netdev_priv(dev); netif_stop_queue(dev); napi_disable(&bp->napi); if (dev->phydev) phy_stop(dev->phydev); dnet_reset_hw(bp); netif_carrier_off(dev); return 0; } static inline void dnet_print_pretty_hwstats(struct dnet_stats *hwstat) { pr_debug("%s\n", __func__); pr_debug("----------------------------- RX statistics " "-------------------------------\n"); pr_debug("RX_PKT_IGNR_CNT %-8x\n", hwstat->rx_pkt_ignr); pr_debug("RX_LEN_CHK_ERR_CNT %-8x\n", hwstat->rx_len_chk_err); pr_debug("RX_LNG_FRM_CNT %-8x\n", hwstat->rx_lng_frm); pr_debug("RX_SHRT_FRM_CNT %-8x\n", hwstat->rx_shrt_frm); pr_debug("RX_IPG_VIOL_CNT %-8x\n", hwstat->rx_ipg_viol); pr_debug("RX_CRC_ERR_CNT %-8x\n", hwstat->rx_crc_err); pr_debug("RX_OK_PKT_CNT %-8x\n", hwstat->rx_ok_pkt); pr_debug("RX_CTL_FRM_CNT %-8x\n", hwstat->rx_ctl_frm); pr_debug("RX_PAUSE_FRM_CNT %-8x\n", hwstat->rx_pause_frm); pr_debug("RX_MULTICAST_CNT %-8x\n", hwstat->rx_multicast); pr_debug("RX_BROADCAST_CNT %-8x\n", hwstat->rx_broadcast); pr_debug("RX_VLAN_TAG_CNT %-8x\n", hwstat->rx_vlan_tag); pr_debug("RX_PRE_SHRINK_CNT %-8x\n", hwstat->rx_pre_shrink); pr_debug("RX_DRIB_NIB_CNT %-8x\n", hwstat->rx_drib_nib); pr_debug("RX_UNSUP_OPCD_CNT %-8x\n", hwstat->rx_unsup_opcd); pr_debug("RX_BYTE_CNT %-8x\n", hwstat->rx_byte); pr_debug("----------------------------- TX statistics " "-------------------------------\n"); pr_debug("TX_UNICAST_CNT %-8x\n", hwstat->tx_unicast); pr_debug("TX_PAUSE_FRM_CNT %-8x\n", hwstat->tx_pause_frm); pr_debug("TX_MULTICAST_CNT %-8x\n", hwstat->tx_multicast); pr_debug("TX_BRDCAST_CNT %-8x\n", hwstat->tx_brdcast); pr_debug("TX_VLAN_TAG_CNT %-8x\n", hwstat->tx_vlan_tag); pr_debug("TX_BAD_FCS_CNT %-8x\n", hwstat->tx_bad_fcs); pr_debug("TX_JUMBO_CNT %-8x\n", hwstat->tx_jumbo); pr_debug("TX_BYTE_CNT %-8x\n", hwstat->tx_byte); } static struct net_device_stats *dnet_get_stats(struct net_device *dev) { struct dnet *bp = netdev_priv(dev); struct net_device_stats *nstat = &dev->stats; struct dnet_stats *hwstat = &bp->hw_stats; /* read stats from hardware */ dnet_update_stats(bp); /* Convert HW stats into netdevice stats */ nstat->rx_errors = (hwstat->rx_len_chk_err + hwstat->rx_lng_frm + hwstat->rx_shrt_frm + /* ignore IGP violation error hwstat->rx_ipg_viol + */ hwstat->rx_crc_err + hwstat->rx_pre_shrink + hwstat->rx_drib_nib + hwstat->rx_unsup_opcd); nstat->tx_errors = hwstat->tx_bad_fcs; nstat->rx_length_errors = (hwstat->rx_len_chk_err + hwstat->rx_lng_frm + hwstat->rx_shrt_frm + hwstat->rx_pre_shrink); nstat->rx_crc_errors = hwstat->rx_crc_err; nstat->rx_frame_errors = hwstat->rx_pre_shrink + hwstat->rx_drib_nib; nstat->rx_packets = hwstat->rx_ok_pkt; nstat->tx_packets = (hwstat->tx_unicast + hwstat->tx_multicast + hwstat->tx_brdcast); nstat->rx_bytes = hwstat->rx_byte; nstat->tx_bytes = hwstat->tx_byte; nstat->multicast = hwstat->rx_multicast; nstat->rx_missed_errors = hwstat->rx_pkt_ignr; dnet_print_pretty_hwstats(hwstat); return nstat; } static int dnet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct phy_device *phydev = dev->phydev; if (!netif_running(dev)) return -EINVAL; if (!phydev) return -ENODEV; return phy_mii_ioctl(phydev, rq, cmd); } static void dnet_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); strlcpy(info->version, DRV_VERSION, sizeof(info->version)); strlcpy(info->bus_info, "0", sizeof(info->bus_info)); } static const struct ethtool_ops dnet_ethtool_ops = { .get_drvinfo = dnet_get_drvinfo, .get_link = ethtool_op_get_link, .get_ts_info = ethtool_op_get_ts_info, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; static const struct net_device_ops dnet_netdev_ops = { .ndo_open = dnet_open, .ndo_stop = dnet_close, .ndo_get_stats = dnet_get_stats, .ndo_start_xmit = dnet_start_xmit, .ndo_do_ioctl = dnet_ioctl, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; static int dnet_probe(struct platform_device *pdev) { struct resource *res; struct net_device *dev; struct dnet *bp; struct phy_device *phydev; int err; unsigned int irq; irq = platform_get_irq(pdev, 0); dev = alloc_etherdev(sizeof(*bp)); if (!dev) return -ENOMEM; /* TODO: Actually, we have some interesting features... */ dev->features |= 0; bp = netdev_priv(dev); bp->dev = dev; platform_set_drvdata(pdev, dev); SET_NETDEV_DEV(dev, &pdev->dev); spin_lock_init(&bp->lock); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); bp->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(bp->regs)) { err = PTR_ERR(bp->regs); goto err_out_free_dev; } dev->irq = irq; err = request_irq(dev->irq, dnet_interrupt, 0, DRV_NAME, dev); if (err) { dev_err(&pdev->dev, "Unable to request IRQ %d (error %d)\n", irq, err); goto err_out_free_dev; } dev->netdev_ops = &dnet_netdev_ops; netif_napi_add(dev, &bp->napi, dnet_poll, 64); dev->ethtool_ops = &dnet_ethtool_ops; dev->base_addr = (unsigned long)bp->regs; bp->capabilities = dnet_readl(bp, VERCAPS) & DNET_CAPS_MASK; dnet_get_hwaddr(bp); if (!is_valid_ether_addr(dev->dev_addr)) { /* choose a random ethernet address */ eth_hw_addr_random(dev); __dnet_set_hwaddr(bp); } err = register_netdev(dev); if (err) { dev_err(&pdev->dev, "Cannot register net device, aborting.\n"); goto err_out_free_irq; } /* register the PHY board fixup (for Marvell 88E1111) */ err = phy_register_fixup_for_uid(0x01410cc0, 0xfffffff0, dnet_phy_marvell_fixup); /* we can live without it, so just issue a warning */ if (err) dev_warn(&pdev->dev, "Cannot register PHY board fixup.\n"); err = dnet_mii_init(bp); if (err) goto err_out_unregister_netdev; dev_info(&pdev->dev, "Dave DNET at 0x%p (0x%08x) irq %d %pM\n", bp->regs, (unsigned int)res->start, dev->irq, dev->dev_addr); dev_info(&pdev->dev, "has %smdio, %sirq, %sgigabit, %sdma\n", (bp->capabilities & DNET_HAS_MDIO) ? "" : "no ", (bp->capabilities & DNET_HAS_IRQ) ? "" : "no ", (bp->capabilities & DNET_HAS_GIGABIT) ? "" : "no ", (bp->capabilities & DNET_HAS_DMA) ? "" : "no "); phydev = dev->phydev; phy_attached_info(phydev); return 0; err_out_unregister_netdev: unregister_netdev(dev); err_out_free_irq: free_irq(dev->irq, dev); err_out_free_dev: free_netdev(dev); return err; } static int dnet_remove(struct platform_device *pdev) { struct net_device *dev; struct dnet *bp; dev = platform_get_drvdata(pdev); if (dev) { bp = netdev_priv(dev); if (dev->phydev) phy_disconnect(dev->phydev); mdiobus_unregister(bp->mii_bus); mdiobus_free(bp->mii_bus); unregister_netdev(dev); free_irq(dev->irq, dev); free_netdev(dev); } return 0; } static struct platform_driver dnet_driver = { .probe = dnet_probe, .remove = dnet_remove, .driver = { .name = "dnet", }, }; module_platform_driver(dnet_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Dave DNET Ethernet driver"); MODULE_AUTHOR("Ilya Yanok , " "Matteo Vit ");