/* * Freescale FSL CAAM support for crypto API over QI backend. * Based on caamalg.c * * Copyright 2013-2016 Freescale Semiconductor, Inc. * Copyright 2016-2017 NXP */ #include "compat.h" #include "ctrl.h" #include "regs.h" #include "intern.h" #include "desc_constr.h" #include "error.h" #include "sg_sw_qm.h" #include "key_gen.h" #include "qi.h" #include "jr.h" #include "caamalg_desc.h" /* * crypto alg */ #define CAAM_CRA_PRIORITY 2000 /* max key is sum of AES_MAX_KEY_SIZE, max split key size */ #define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \ SHA512_DIGEST_SIZE * 2) #define DESC_MAX_USED_BYTES (DESC_QI_AEAD_GIVENC_LEN + \ CAAM_MAX_KEY_SIZE) #define DESC_MAX_USED_LEN (DESC_MAX_USED_BYTES / CAAM_CMD_SZ) struct caam_alg_entry { int class1_alg_type; int class2_alg_type; bool rfc3686; bool geniv; }; struct caam_aead_alg { struct aead_alg aead; struct caam_alg_entry caam; bool registered; }; /* * per-session context */ struct caam_ctx { struct device *jrdev; u32 sh_desc_enc[DESC_MAX_USED_LEN]; u32 sh_desc_dec[DESC_MAX_USED_LEN]; u32 sh_desc_givenc[DESC_MAX_USED_LEN]; u8 key[CAAM_MAX_KEY_SIZE]; dma_addr_t key_dma; struct alginfo adata; struct alginfo cdata; unsigned int authsize; struct device *qidev; spinlock_t lock; /* Protects multiple init of driver context */ struct caam_drv_ctx *drv_ctx[NUM_OP]; }; static int aead_set_sh_desc(struct crypto_aead *aead) { struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead), typeof(*alg), aead); struct caam_ctx *ctx = crypto_aead_ctx(aead); unsigned int ivsize = crypto_aead_ivsize(aead); u32 ctx1_iv_off = 0; u32 *nonce = NULL; unsigned int data_len[2]; u32 inl_mask; const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) == OP_ALG_AAI_CTR_MOD128); const bool is_rfc3686 = alg->caam.rfc3686; if (!ctx->cdata.keylen || !ctx->authsize) return 0; /* * AES-CTR needs to load IV in CONTEXT1 reg * at an offset of 128bits (16bytes) * CONTEXT1[255:128] = IV */ if (ctr_mode) ctx1_iv_off = 16; /* * RFC3686 specific: * CONTEXT1[255:128] = {NONCE, IV, COUNTER} */ if (is_rfc3686) { ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE; nonce = (u32 *)((void *)ctx->key + ctx->adata.keylen_pad + ctx->cdata.keylen - CTR_RFC3686_NONCE_SIZE); } data_len[0] = ctx->adata.keylen_pad; data_len[1] = ctx->cdata.keylen; if (alg->caam.geniv) goto skip_enc; /* aead_encrypt shared descriptor */ if (desc_inline_query(DESC_QI_AEAD_ENC_LEN + (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0), DESC_JOB_IO_LEN, data_len, &inl_mask, ARRAY_SIZE(data_len)) < 0) return -EINVAL; if (inl_mask & 1) ctx->adata.key_virt = ctx->key; else ctx->adata.key_dma = ctx->key_dma; if (inl_mask & 2) ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad; else ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad; ctx->adata.key_inline = !!(inl_mask & 1); ctx->cdata.key_inline = !!(inl_mask & 2); cnstr_shdsc_aead_encap(ctx->sh_desc_enc, &ctx->cdata, &ctx->adata, ivsize, ctx->authsize, is_rfc3686, nonce, ctx1_iv_off, true); skip_enc: /* aead_decrypt shared descriptor */ if (desc_inline_query(DESC_QI_AEAD_DEC_LEN + (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0), DESC_JOB_IO_LEN, data_len, &inl_mask, ARRAY_SIZE(data_len)) < 0) return -EINVAL; if (inl_mask & 1) ctx->adata.key_virt = ctx->key; else ctx->adata.key_dma = ctx->key_dma; if (inl_mask & 2) ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad; else ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad; ctx->adata.key_inline = !!(inl_mask & 1); ctx->cdata.key_inline = !!(inl_mask & 2); cnstr_shdsc_aead_decap(ctx->sh_desc_dec, &ctx->cdata, &ctx->adata, ivsize, ctx->authsize, alg->caam.geniv, is_rfc3686, nonce, ctx1_iv_off, true); if (!alg->caam.geniv) goto skip_givenc; /* aead_givencrypt shared descriptor */ if (desc_inline_query(DESC_QI_AEAD_GIVENC_LEN + (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0), DESC_JOB_IO_LEN, data_len, &inl_mask, ARRAY_SIZE(data_len)) < 0) return -EINVAL; if (inl_mask & 1) ctx->adata.key_virt = ctx->key; else ctx->adata.key_dma = ctx->key_dma; if (inl_mask & 2) ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad; else ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad; ctx->adata.key_inline = !!(inl_mask & 1); ctx->cdata.key_inline = !!(inl_mask & 2); cnstr_shdsc_aead_givencap(ctx->sh_desc_enc, &ctx->cdata, &ctx->adata, ivsize, ctx->authsize, is_rfc3686, nonce, ctx1_iv_off, true); skip_givenc: return 0; } static int aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct caam_ctx *ctx = crypto_aead_ctx(authenc); ctx->authsize = authsize; aead_set_sh_desc(authenc); return 0; } static int aead_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; struct crypto_authenc_keys keys; int ret = 0; if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) goto badkey; #ifdef DEBUG dev_err(jrdev, "keylen %d enckeylen %d authkeylen %d\n", keys.authkeylen + keys.enckeylen, keys.enckeylen, keys.authkeylen); print_hex_dump(KERN_ERR, "key in @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); #endif ret = gen_split_key(jrdev, ctx->key, &ctx->adata, keys.authkey, keys.authkeylen, CAAM_MAX_KEY_SIZE - keys.enckeylen); if (ret) goto badkey; /* postpend encryption key to auth split key */ memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey, keys.enckeylen); dma_sync_single_for_device(jrdev, ctx->key_dma, ctx->adata.keylen_pad + keys.enckeylen, DMA_TO_DEVICE); #ifdef DEBUG print_hex_dump(KERN_ERR, "ctx.key@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, ctx->key, ctx->adata.keylen_pad + keys.enckeylen, 1); #endif ctx->cdata.keylen = keys.enckeylen; ret = aead_set_sh_desc(aead); if (ret) goto badkey; /* Now update the driver contexts with the new shared descriptor */ if (ctx->drv_ctx[ENCRYPT]) { ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT], ctx->sh_desc_enc); if (ret) { dev_err(jrdev, "driver enc context update failed\n"); goto badkey; } } if (ctx->drv_ctx[DECRYPT]) { ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT], ctx->sh_desc_dec); if (ret) { dev_err(jrdev, "driver dec context update failed\n"); goto badkey; } } return ret; badkey: crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher); struct crypto_tfm *tfm = crypto_ablkcipher_tfm(ablkcipher); const char *alg_name = crypto_tfm_alg_name(tfm); struct device *jrdev = ctx->jrdev; unsigned int ivsize = crypto_ablkcipher_ivsize(ablkcipher); u32 ctx1_iv_off = 0; const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) == OP_ALG_AAI_CTR_MOD128); const bool is_rfc3686 = (ctr_mode && strstr(alg_name, "rfc3686")); int ret = 0; memcpy(ctx->key, key, keylen); #ifdef DEBUG print_hex_dump(KERN_ERR, "key in @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); #endif /* * AES-CTR needs to load IV in CONTEXT1 reg * at an offset of 128bits (16bytes) * CONTEXT1[255:128] = IV */ if (ctr_mode) ctx1_iv_off = 16; /* * RFC3686 specific: * | CONTEXT1[255:128] = {NONCE, IV, COUNTER} * | *key = {KEY, NONCE} */ if (is_rfc3686) { ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE; keylen -= CTR_RFC3686_NONCE_SIZE; } dma_sync_single_for_device(jrdev, ctx->key_dma, keylen, DMA_TO_DEVICE); ctx->cdata.keylen = keylen; ctx->cdata.key_virt = ctx->key; ctx->cdata.key_inline = true; /* ablkcipher encrypt, decrypt, givencrypt shared descriptors */ cnstr_shdsc_ablkcipher_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize, is_rfc3686, ctx1_iv_off); cnstr_shdsc_ablkcipher_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize, is_rfc3686, ctx1_iv_off); cnstr_shdsc_ablkcipher_givencap(ctx->sh_desc_givenc, &ctx->cdata, ivsize, is_rfc3686, ctx1_iv_off); /* Now update the driver contexts with the new shared descriptor */ if (ctx->drv_ctx[ENCRYPT]) { ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT], ctx->sh_desc_enc); if (ret) { dev_err(jrdev, "driver enc context update failed\n"); goto badkey; } } if (ctx->drv_ctx[DECRYPT]) { ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT], ctx->sh_desc_dec); if (ret) { dev_err(jrdev, "driver dec context update failed\n"); goto badkey; } } if (ctx->drv_ctx[GIVENCRYPT]) { ret = caam_drv_ctx_update(ctx->drv_ctx[GIVENCRYPT], ctx->sh_desc_givenc); if (ret) { dev_err(jrdev, "driver givenc context update failed\n"); goto badkey; } } return ret; badkey: crypto_ablkcipher_set_flags(ablkcipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } static int xts_ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher); struct device *jrdev = ctx->jrdev; int ret = 0; if (keylen != 2 * AES_MIN_KEY_SIZE && keylen != 2 * AES_MAX_KEY_SIZE) { crypto_ablkcipher_set_flags(ablkcipher, CRYPTO_TFM_RES_BAD_KEY_LEN); dev_err(jrdev, "key size mismatch\n"); return -EINVAL; } memcpy(ctx->key, key, keylen); dma_sync_single_for_device(jrdev, ctx->key_dma, keylen, DMA_TO_DEVICE); ctx->cdata.keylen = keylen; ctx->cdata.key_virt = ctx->key; ctx->cdata.key_inline = true; /* xts ablkcipher encrypt, decrypt shared descriptors */ cnstr_shdsc_xts_ablkcipher_encap(ctx->sh_desc_enc, &ctx->cdata); cnstr_shdsc_xts_ablkcipher_decap(ctx->sh_desc_dec, &ctx->cdata); /* Now update the driver contexts with the new shared descriptor */ if (ctx->drv_ctx[ENCRYPT]) { ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT], ctx->sh_desc_enc); if (ret) { dev_err(jrdev, "driver enc context update failed\n"); goto badkey; } } if (ctx->drv_ctx[DECRYPT]) { ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT], ctx->sh_desc_dec); if (ret) { dev_err(jrdev, "driver dec context update failed\n"); goto badkey; } } return ret; badkey: crypto_ablkcipher_set_flags(ablkcipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return 0; } /* * aead_edesc - s/w-extended aead descriptor * @src_nents: number of segments in input scatterlist * @dst_nents: number of segments in output scatterlist * @iv_dma: dma address of iv for checking continuity and link table * @qm_sg_bytes: length of dma mapped h/w link table * @qm_sg_dma: bus physical mapped address of h/w link table * @assoclen: associated data length, in CAAM endianness * @assoclen_dma: bus physical mapped address of req->assoclen * @drv_req: driver-specific request structure * @sgt: the h/w link table */ struct aead_edesc { int src_nents; int dst_nents; dma_addr_t iv_dma; int qm_sg_bytes; dma_addr_t qm_sg_dma; unsigned int assoclen; dma_addr_t assoclen_dma; struct caam_drv_req drv_req; #define CAAM_QI_MAX_AEAD_SG \ ((CAAM_QI_MEMCACHE_SIZE - offsetof(struct aead_edesc, sgt)) / \ sizeof(struct qm_sg_entry)) struct qm_sg_entry sgt[0]; }; /* * ablkcipher_edesc - s/w-extended ablkcipher descriptor * @src_nents: number of segments in input scatterlist * @dst_nents: number of segments in output scatterlist * @iv_dma: dma address of iv for checking continuity and link table * @qm_sg_bytes: length of dma mapped h/w link table * @qm_sg_dma: bus physical mapped address of h/w link table * @drv_req: driver-specific request structure * @sgt: the h/w link table */ struct ablkcipher_edesc { int src_nents; int dst_nents; dma_addr_t iv_dma; int qm_sg_bytes; dma_addr_t qm_sg_dma; struct caam_drv_req drv_req; #define CAAM_QI_MAX_ABLKCIPHER_SG \ ((CAAM_QI_MEMCACHE_SIZE - offsetof(struct ablkcipher_edesc, sgt)) / \ sizeof(struct qm_sg_entry)) struct qm_sg_entry sgt[0]; }; static struct caam_drv_ctx *get_drv_ctx(struct caam_ctx *ctx, enum optype type) { /* * This function is called on the fast path with values of 'type' * known at compile time. Invalid arguments are not expected and * thus no checks are made. */ struct caam_drv_ctx *drv_ctx = ctx->drv_ctx[type]; u32 *desc; if (unlikely(!drv_ctx)) { spin_lock(&ctx->lock); /* Read again to check if some other core init drv_ctx */ drv_ctx = ctx->drv_ctx[type]; if (!drv_ctx) { int cpu; if (type == ENCRYPT) desc = ctx->sh_desc_enc; else if (type == DECRYPT) desc = ctx->sh_desc_dec; else /* (type == GIVENCRYPT) */ desc = ctx->sh_desc_givenc; cpu = smp_processor_id(); drv_ctx = caam_drv_ctx_init(ctx->qidev, &cpu, desc); if (likely(!IS_ERR_OR_NULL(drv_ctx))) drv_ctx->op_type = type; ctx->drv_ctx[type] = drv_ctx; } spin_unlock(&ctx->lock); } return drv_ctx; } static void caam_unmap(struct device *dev, struct scatterlist *src, struct scatterlist *dst, int src_nents, int dst_nents, dma_addr_t iv_dma, int ivsize, enum optype op_type, dma_addr_t qm_sg_dma, int qm_sg_bytes) { if (dst != src) { if (src_nents) dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE); dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE); } else { dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL); } if (iv_dma) dma_unmap_single(dev, iv_dma, ivsize, op_type == GIVENCRYPT ? DMA_FROM_DEVICE : DMA_TO_DEVICE); if (qm_sg_bytes) dma_unmap_single(dev, qm_sg_dma, qm_sg_bytes, DMA_TO_DEVICE); } static void aead_unmap(struct device *dev, struct aead_edesc *edesc, struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); int ivsize = crypto_aead_ivsize(aead); caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents, edesc->iv_dma, ivsize, edesc->drv_req.drv_ctx->op_type, edesc->qm_sg_dma, edesc->qm_sg_bytes); dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE); } static void ablkcipher_unmap(struct device *dev, struct ablkcipher_edesc *edesc, struct ablkcipher_request *req) { struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); int ivsize = crypto_ablkcipher_ivsize(ablkcipher); caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents, edesc->iv_dma, ivsize, edesc->drv_req.drv_ctx->op_type, edesc->qm_sg_dma, edesc->qm_sg_bytes); } static void aead_done(struct caam_drv_req *drv_req, u32 status) { struct device *qidev; struct aead_edesc *edesc; struct aead_request *aead_req = drv_req->app_ctx; struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); struct caam_ctx *caam_ctx = crypto_aead_ctx(aead); int ecode = 0; qidev = caam_ctx->qidev; if (unlikely(status)) { caam_jr_strstatus(qidev, status); ecode = -EIO; } edesc = container_of(drv_req, typeof(*edesc), drv_req); aead_unmap(qidev, edesc, aead_req); aead_request_complete(aead_req, ecode); qi_cache_free(edesc); } /* * allocate and map the aead extended descriptor */ static struct aead_edesc *aead_edesc_alloc(struct aead_request *req, bool encrypt) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead), typeof(*alg), aead); struct device *qidev = ctx->qidev; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0; struct aead_edesc *edesc; dma_addr_t qm_sg_dma, iv_dma = 0; int ivsize = 0; unsigned int authsize = ctx->authsize; int qm_sg_index = 0, qm_sg_ents = 0, qm_sg_bytes; int in_len, out_len; struct qm_sg_entry *sg_table, *fd_sgt; struct caam_drv_ctx *drv_ctx; enum optype op_type = encrypt ? ENCRYPT : DECRYPT; drv_ctx = get_drv_ctx(ctx, op_type); if (unlikely(IS_ERR_OR_NULL(drv_ctx))) return (struct aead_edesc *)drv_ctx; /* allocate space for base edesc and hw desc commands, link tables */ edesc = qi_cache_alloc(GFP_DMA | flags); if (unlikely(!edesc)) { dev_err(qidev, "could not allocate extended descriptor\n"); return ERR_PTR(-ENOMEM); } if (likely(req->src == req->dst)) { src_nents = sg_nents_for_len(req->src, req->assoclen + req->cryptlen + (encrypt ? authsize : 0)); if (unlikely(src_nents < 0)) { dev_err(qidev, "Insufficient bytes (%d) in src S/G\n", req->assoclen + req->cryptlen + (encrypt ? authsize : 0)); qi_cache_free(edesc); return ERR_PTR(src_nents); } mapped_src_nents = dma_map_sg(qidev, req->src, src_nents, DMA_BIDIRECTIONAL); if (unlikely(!mapped_src_nents)) { dev_err(qidev, "unable to map source\n"); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } } else { src_nents = sg_nents_for_len(req->src, req->assoclen + req->cryptlen); if (unlikely(src_nents < 0)) { dev_err(qidev, "Insufficient bytes (%d) in src S/G\n", req->assoclen + req->cryptlen); qi_cache_free(edesc); return ERR_PTR(src_nents); } dst_nents = sg_nents_for_len(req->dst, req->assoclen + req->cryptlen + (encrypt ? authsize : (-authsize))); if (unlikely(dst_nents < 0)) { dev_err(qidev, "Insufficient bytes (%d) in dst S/G\n", req->assoclen + req->cryptlen + (encrypt ? authsize : (-authsize))); qi_cache_free(edesc); return ERR_PTR(dst_nents); } if (src_nents) { mapped_src_nents = dma_map_sg(qidev, req->src, src_nents, DMA_TO_DEVICE); if (unlikely(!mapped_src_nents)) { dev_err(qidev, "unable to map source\n"); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } } else { mapped_src_nents = 0; } mapped_dst_nents = dma_map_sg(qidev, req->dst, dst_nents, DMA_FROM_DEVICE); if (unlikely(!mapped_dst_nents)) { dev_err(qidev, "unable to map destination\n"); dma_unmap_sg(qidev, req->src, src_nents, DMA_TO_DEVICE); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } } if ((alg->caam.rfc3686 && encrypt) || !alg->caam.geniv) { ivsize = crypto_aead_ivsize(aead); iv_dma = dma_map_single(qidev, req->iv, ivsize, DMA_TO_DEVICE); if (dma_mapping_error(qidev, iv_dma)) { dev_err(qidev, "unable to map IV\n"); caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0, 0, op_type, 0, 0); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } } /* * Create S/G table: req->assoclen, [IV,] req->src [, req->dst]. * Input is not contiguous. */ qm_sg_ents = 1 + !!ivsize + mapped_src_nents + (mapped_dst_nents > 1 ? mapped_dst_nents : 0); if (unlikely(qm_sg_ents > CAAM_QI_MAX_AEAD_SG)) { dev_err(qidev, "Insufficient S/G entries: %d > %zu\n", qm_sg_ents, CAAM_QI_MAX_AEAD_SG); caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, iv_dma, ivsize, op_type, 0, 0); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } sg_table = &edesc->sgt[0]; qm_sg_bytes = qm_sg_ents * sizeof(*sg_table); edesc->src_nents = src_nents; edesc->dst_nents = dst_nents; edesc->iv_dma = iv_dma; edesc->drv_req.app_ctx = req; edesc->drv_req.cbk = aead_done; edesc->drv_req.drv_ctx = drv_ctx; edesc->assoclen = cpu_to_caam32(req->assoclen); edesc->assoclen_dma = dma_map_single(qidev, &edesc->assoclen, 4, DMA_TO_DEVICE); if (dma_mapping_error(qidev, edesc->assoclen_dma)) { dev_err(qidev, "unable to map assoclen\n"); caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, iv_dma, ivsize, op_type, 0, 0); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } dma_to_qm_sg_one(sg_table, edesc->assoclen_dma, 4, 0); qm_sg_index++; if (ivsize) { dma_to_qm_sg_one(sg_table + qm_sg_index, iv_dma, ivsize, 0); qm_sg_index++; } sg_to_qm_sg_last(req->src, mapped_src_nents, sg_table + qm_sg_index, 0); qm_sg_index += mapped_src_nents; if (mapped_dst_nents > 1) sg_to_qm_sg_last(req->dst, mapped_dst_nents, sg_table + qm_sg_index, 0); qm_sg_dma = dma_map_single(qidev, sg_table, qm_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(qidev, qm_sg_dma)) { dev_err(qidev, "unable to map S/G table\n"); dma_unmap_single(qidev, edesc->assoclen_dma, 4, DMA_TO_DEVICE); caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, iv_dma, ivsize, op_type, 0, 0); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } edesc->qm_sg_dma = qm_sg_dma; edesc->qm_sg_bytes = qm_sg_bytes; out_len = req->assoclen + req->cryptlen + (encrypt ? ctx->authsize : (-ctx->authsize)); in_len = 4 + ivsize + req->assoclen + req->cryptlen; fd_sgt = &edesc->drv_req.fd_sgt[0]; dma_to_qm_sg_one_last_ext(&fd_sgt[1], qm_sg_dma, in_len, 0); if (req->dst == req->src) { if (mapped_src_nents == 1) dma_to_qm_sg_one(&fd_sgt[0], sg_dma_address(req->src), out_len, 0); else dma_to_qm_sg_one_ext(&fd_sgt[0], qm_sg_dma + (1 + !!ivsize) * sizeof(*sg_table), out_len, 0); } else if (mapped_dst_nents == 1) { dma_to_qm_sg_one(&fd_sgt[0], sg_dma_address(req->dst), out_len, 0); } else { dma_to_qm_sg_one_ext(&fd_sgt[0], qm_sg_dma + sizeof(*sg_table) * qm_sg_index, out_len, 0); } return edesc; } static inline int aead_crypt(struct aead_request *req, bool encrypt) { struct aead_edesc *edesc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); int ret; if (unlikely(caam_congested)) return -EAGAIN; /* allocate extended descriptor */ edesc = aead_edesc_alloc(req, encrypt); if (IS_ERR_OR_NULL(edesc)) return PTR_ERR(edesc); /* Create and submit job descriptor */ ret = caam_qi_enqueue(ctx->qidev, &edesc->drv_req); if (!ret) { ret = -EINPROGRESS; } else { aead_unmap(ctx->qidev, edesc, req); qi_cache_free(edesc); } return ret; } static int aead_encrypt(struct aead_request *req) { return aead_crypt(req, true); } static int aead_decrypt(struct aead_request *req) { return aead_crypt(req, false); } static void ablkcipher_done(struct caam_drv_req *drv_req, u32 status) { struct ablkcipher_edesc *edesc; struct ablkcipher_request *req = drv_req->app_ctx; struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); struct caam_ctx *caam_ctx = crypto_ablkcipher_ctx(ablkcipher); struct device *qidev = caam_ctx->qidev; int ivsize = crypto_ablkcipher_ivsize(ablkcipher); #ifdef DEBUG dev_err(qidev, "%s %d: status 0x%x\n", __func__, __LINE__, status); #endif edesc = container_of(drv_req, typeof(*edesc), drv_req); if (status) caam_jr_strstatus(qidev, status); #ifdef DEBUG print_hex_dump(KERN_ERR, "dstiv @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->info, edesc->src_nents > 1 ? 100 : ivsize, 1); caam_dump_sg(KERN_ERR, "dst @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->dst, edesc->dst_nents > 1 ? 100 : req->nbytes, 1); #endif ablkcipher_unmap(qidev, edesc, req); qi_cache_free(edesc); /* * The crypto API expects us to set the IV (req->info) to the last * ciphertext block. This is used e.g. by the CTS mode. */ scatterwalk_map_and_copy(req->info, req->dst, req->nbytes - ivsize, ivsize, 0); ablkcipher_request_complete(req, status); } static struct ablkcipher_edesc *ablkcipher_edesc_alloc(struct ablkcipher_request *req, bool encrypt) { struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher); struct device *qidev = ctx->qidev; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0; struct ablkcipher_edesc *edesc; dma_addr_t iv_dma; bool in_contig; int ivsize = crypto_ablkcipher_ivsize(ablkcipher); int dst_sg_idx, qm_sg_ents; struct qm_sg_entry *sg_table, *fd_sgt; struct caam_drv_ctx *drv_ctx; enum optype op_type = encrypt ? ENCRYPT : DECRYPT; drv_ctx = get_drv_ctx(ctx, op_type); if (unlikely(IS_ERR_OR_NULL(drv_ctx))) return (struct ablkcipher_edesc *)drv_ctx; src_nents = sg_nents_for_len(req->src, req->nbytes); if (unlikely(src_nents < 0)) { dev_err(qidev, "Insufficient bytes (%d) in src S/G\n", req->nbytes); return ERR_PTR(src_nents); } if (unlikely(req->src != req->dst)) { dst_nents = sg_nents_for_len(req->dst, req->nbytes); if (unlikely(dst_nents < 0)) { dev_err(qidev, "Insufficient bytes (%d) in dst S/G\n", req->nbytes); return ERR_PTR(dst_nents); } mapped_src_nents = dma_map_sg(qidev, req->src, src_nents, DMA_TO_DEVICE); if (unlikely(!mapped_src_nents)) { dev_err(qidev, "unable to map source\n"); return ERR_PTR(-ENOMEM); } mapped_dst_nents = dma_map_sg(qidev, req->dst, dst_nents, DMA_FROM_DEVICE); if (unlikely(!mapped_dst_nents)) { dev_err(qidev, "unable to map destination\n"); dma_unmap_sg(qidev, req->src, src_nents, DMA_TO_DEVICE); return ERR_PTR(-ENOMEM); } } else { mapped_src_nents = dma_map_sg(qidev, req->src, src_nents, DMA_BIDIRECTIONAL); if (unlikely(!mapped_src_nents)) { dev_err(qidev, "unable to map source\n"); return ERR_PTR(-ENOMEM); } } iv_dma = dma_map_single(qidev, req->info, ivsize, DMA_TO_DEVICE); if (dma_mapping_error(qidev, iv_dma)) { dev_err(qidev, "unable to map IV\n"); caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0, 0, 0, 0, 0); return ERR_PTR(-ENOMEM); } if (mapped_src_nents == 1 && iv_dma + ivsize == sg_dma_address(req->src)) { in_contig = true; qm_sg_ents = 0; } else { in_contig = false; qm_sg_ents = 1 + mapped_src_nents; } dst_sg_idx = qm_sg_ents; qm_sg_ents += mapped_dst_nents > 1 ? mapped_dst_nents : 0; if (unlikely(qm_sg_ents > CAAM_QI_MAX_ABLKCIPHER_SG)) { dev_err(qidev, "Insufficient S/G entries: %d > %zu\n", qm_sg_ents, CAAM_QI_MAX_ABLKCIPHER_SG); caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, iv_dma, ivsize, op_type, 0, 0); return ERR_PTR(-ENOMEM); } /* allocate space for base edesc and link tables */ edesc = qi_cache_alloc(GFP_DMA | flags); if (unlikely(!edesc)) { dev_err(qidev, "could not allocate extended descriptor\n"); caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, iv_dma, ivsize, op_type, 0, 0); return ERR_PTR(-ENOMEM); } edesc->src_nents = src_nents; edesc->dst_nents = dst_nents; edesc->iv_dma = iv_dma; sg_table = &edesc->sgt[0]; edesc->qm_sg_bytes = qm_sg_ents * sizeof(*sg_table); edesc->drv_req.app_ctx = req; edesc->drv_req.cbk = ablkcipher_done; edesc->drv_req.drv_ctx = drv_ctx; if (!in_contig) { dma_to_qm_sg_one(sg_table, iv_dma, ivsize, 0); sg_to_qm_sg_last(req->src, mapped_src_nents, sg_table + 1, 0); } if (mapped_dst_nents > 1) sg_to_qm_sg_last(req->dst, mapped_dst_nents, sg_table + dst_sg_idx, 0); edesc->qm_sg_dma = dma_map_single(qidev, sg_table, edesc->qm_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(qidev, edesc->qm_sg_dma)) { dev_err(qidev, "unable to map S/G table\n"); caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, iv_dma, ivsize, op_type, 0, 0); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } fd_sgt = &edesc->drv_req.fd_sgt[0]; if (!in_contig) dma_to_qm_sg_one_last_ext(&fd_sgt[1], edesc->qm_sg_dma, ivsize + req->nbytes, 0); else dma_to_qm_sg_one_last(&fd_sgt[1], iv_dma, ivsize + req->nbytes, 0); if (req->src == req->dst) { if (!in_contig) dma_to_qm_sg_one_ext(&fd_sgt[0], edesc->qm_sg_dma + sizeof(*sg_table), req->nbytes, 0); else dma_to_qm_sg_one(&fd_sgt[0], sg_dma_address(req->src), req->nbytes, 0); } else if (mapped_dst_nents > 1) { dma_to_qm_sg_one_ext(&fd_sgt[0], edesc->qm_sg_dma + dst_sg_idx * sizeof(*sg_table), req->nbytes, 0); } else { dma_to_qm_sg_one(&fd_sgt[0], sg_dma_address(req->dst), req->nbytes, 0); } return edesc; } static struct ablkcipher_edesc *ablkcipher_giv_edesc_alloc( struct skcipher_givcrypt_request *creq) { struct ablkcipher_request *req = &creq->creq; struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher); struct device *qidev = ctx->qidev; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; int src_nents, mapped_src_nents, dst_nents, mapped_dst_nents; struct ablkcipher_edesc *edesc; dma_addr_t iv_dma; bool out_contig; int ivsize = crypto_ablkcipher_ivsize(ablkcipher); struct qm_sg_entry *sg_table, *fd_sgt; int dst_sg_idx, qm_sg_ents; struct caam_drv_ctx *drv_ctx; drv_ctx = get_drv_ctx(ctx, GIVENCRYPT); if (unlikely(IS_ERR_OR_NULL(drv_ctx))) return (struct ablkcipher_edesc *)drv_ctx; src_nents = sg_nents_for_len(req->src, req->nbytes); if (unlikely(src_nents < 0)) { dev_err(qidev, "Insufficient bytes (%d) in src S/G\n", req->nbytes); return ERR_PTR(src_nents); } if (unlikely(req->src != req->dst)) { dst_nents = sg_nents_for_len(req->dst, req->nbytes); if (unlikely(dst_nents < 0)) { dev_err(qidev, "Insufficient bytes (%d) in dst S/G\n", req->nbytes); return ERR_PTR(dst_nents); } mapped_src_nents = dma_map_sg(qidev, req->src, src_nents, DMA_TO_DEVICE); if (unlikely(!mapped_src_nents)) { dev_err(qidev, "unable to map source\n"); return ERR_PTR(-ENOMEM); } mapped_dst_nents = dma_map_sg(qidev, req->dst, dst_nents, DMA_FROM_DEVICE); if (unlikely(!mapped_dst_nents)) { dev_err(qidev, "unable to map destination\n"); dma_unmap_sg(qidev, req->src, src_nents, DMA_TO_DEVICE); return ERR_PTR(-ENOMEM); } } else { mapped_src_nents = dma_map_sg(qidev, req->src, src_nents, DMA_BIDIRECTIONAL); if (unlikely(!mapped_src_nents)) { dev_err(qidev, "unable to map source\n"); return ERR_PTR(-ENOMEM); } dst_nents = src_nents; mapped_dst_nents = src_nents; } iv_dma = dma_map_single(qidev, creq->giv, ivsize, DMA_FROM_DEVICE); if (dma_mapping_error(qidev, iv_dma)) { dev_err(qidev, "unable to map IV\n"); caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0, 0, 0, 0, 0); return ERR_PTR(-ENOMEM); } qm_sg_ents = mapped_src_nents > 1 ? mapped_src_nents : 0; dst_sg_idx = qm_sg_ents; if (mapped_dst_nents == 1 && iv_dma + ivsize == sg_dma_address(req->dst)) { out_contig = true; } else { out_contig = false; qm_sg_ents += 1 + mapped_dst_nents; } if (unlikely(qm_sg_ents > CAAM_QI_MAX_ABLKCIPHER_SG)) { dev_err(qidev, "Insufficient S/G entries: %d > %zu\n", qm_sg_ents, CAAM_QI_MAX_ABLKCIPHER_SG); caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, iv_dma, ivsize, GIVENCRYPT, 0, 0); return ERR_PTR(-ENOMEM); } /* allocate space for base edesc and link tables */ edesc = qi_cache_alloc(GFP_DMA | flags); if (!edesc) { dev_err(qidev, "could not allocate extended descriptor\n"); caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, iv_dma, ivsize, GIVENCRYPT, 0, 0); return ERR_PTR(-ENOMEM); } edesc->src_nents = src_nents; edesc->dst_nents = dst_nents; edesc->iv_dma = iv_dma; sg_table = &edesc->sgt[0]; edesc->qm_sg_bytes = qm_sg_ents * sizeof(*sg_table); edesc->drv_req.app_ctx = req; edesc->drv_req.cbk = ablkcipher_done; edesc->drv_req.drv_ctx = drv_ctx; if (mapped_src_nents > 1) sg_to_qm_sg_last(req->src, mapped_src_nents, sg_table, 0); if (!out_contig) { dma_to_qm_sg_one(sg_table + dst_sg_idx, iv_dma, ivsize, 0); sg_to_qm_sg_last(req->dst, mapped_dst_nents, sg_table + dst_sg_idx + 1, 0); } edesc->qm_sg_dma = dma_map_single(qidev, sg_table, edesc->qm_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(qidev, edesc->qm_sg_dma)) { dev_err(qidev, "unable to map S/G table\n"); caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, iv_dma, ivsize, GIVENCRYPT, 0, 0); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } fd_sgt = &edesc->drv_req.fd_sgt[0]; if (mapped_src_nents > 1) dma_to_qm_sg_one_ext(&fd_sgt[1], edesc->qm_sg_dma, req->nbytes, 0); else dma_to_qm_sg_one(&fd_sgt[1], sg_dma_address(req->src), req->nbytes, 0); if (!out_contig) dma_to_qm_sg_one_ext(&fd_sgt[0], edesc->qm_sg_dma + dst_sg_idx * sizeof(*sg_table), ivsize + req->nbytes, 0); else dma_to_qm_sg_one(&fd_sgt[0], sg_dma_address(req->dst), ivsize + req->nbytes, 0); return edesc; } static inline int ablkcipher_crypt(struct ablkcipher_request *req, bool encrypt) { struct ablkcipher_edesc *edesc; struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher); int ret; if (unlikely(caam_congested)) return -EAGAIN; /* allocate extended descriptor */ edesc = ablkcipher_edesc_alloc(req, encrypt); if (IS_ERR(edesc)) return PTR_ERR(edesc); ret = caam_qi_enqueue(ctx->qidev, &edesc->drv_req); if (!ret) { ret = -EINPROGRESS; } else { ablkcipher_unmap(ctx->qidev, edesc, req); qi_cache_free(edesc); } return ret; } static int ablkcipher_encrypt(struct ablkcipher_request *req) { return ablkcipher_crypt(req, true); } static int ablkcipher_decrypt(struct ablkcipher_request *req) { return ablkcipher_crypt(req, false); } static int ablkcipher_givencrypt(struct skcipher_givcrypt_request *creq) { struct ablkcipher_request *req = &creq->creq; struct ablkcipher_edesc *edesc; struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher); int ret; if (unlikely(caam_congested)) return -EAGAIN; /* allocate extended descriptor */ edesc = ablkcipher_giv_edesc_alloc(creq); if (IS_ERR(edesc)) return PTR_ERR(edesc); ret = caam_qi_enqueue(ctx->qidev, &edesc->drv_req); if (!ret) { ret = -EINPROGRESS; } else { ablkcipher_unmap(ctx->qidev, edesc, req); qi_cache_free(edesc); } return ret; } #define template_ablkcipher template_u.ablkcipher struct caam_alg_template { char name[CRYPTO_MAX_ALG_NAME]; char driver_name[CRYPTO_MAX_ALG_NAME]; unsigned int blocksize; u32 type; union { struct ablkcipher_alg ablkcipher; } template_u; u32 class1_alg_type; u32 class2_alg_type; }; static struct caam_alg_template driver_algs[] = { /* ablkcipher descriptor */ { .name = "cbc(aes)", .driver_name = "cbc-aes-caam-qi", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_GIVCIPHER, .template_ablkcipher = { .setkey = ablkcipher_setkey, .encrypt = ablkcipher_encrypt, .decrypt = ablkcipher_decrypt, .givencrypt = ablkcipher_givencrypt, .geniv = "", .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, }, { .name = "cbc(des3_ede)", .driver_name = "cbc-3des-caam-qi", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_GIVCIPHER, .template_ablkcipher = { .setkey = ablkcipher_setkey, .encrypt = ablkcipher_encrypt, .decrypt = ablkcipher_decrypt, .givencrypt = ablkcipher_givencrypt, .geniv = "", .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, }, { .name = "cbc(des)", .driver_name = "cbc-des-caam-qi", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_GIVCIPHER, .template_ablkcipher = { .setkey = ablkcipher_setkey, .encrypt = ablkcipher_encrypt, .decrypt = ablkcipher_decrypt, .givencrypt = ablkcipher_givencrypt, .geniv = "", .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, }, { .name = "ctr(aes)", .driver_name = "ctr-aes-caam-qi", .blocksize = 1, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = ablkcipher_setkey, .encrypt = ablkcipher_encrypt, .decrypt = ablkcipher_decrypt, .geniv = "chainiv", .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, }, { .name = "rfc3686(ctr(aes))", .driver_name = "rfc3686-ctr-aes-caam-qi", .blocksize = 1, .type = CRYPTO_ALG_TYPE_GIVCIPHER, .template_ablkcipher = { .setkey = ablkcipher_setkey, .encrypt = ablkcipher_encrypt, .decrypt = ablkcipher_decrypt, .givencrypt = ablkcipher_givencrypt, .geniv = "", .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .ivsize = CTR_RFC3686_IV_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, }, { .name = "xts(aes)", .driver_name = "xts-aes-caam-qi", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .template_ablkcipher = { .setkey = xts_ablkcipher_setkey, .encrypt = ablkcipher_encrypt, .decrypt = ablkcipher_decrypt, .geniv = "eseqiv", .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XTS, }, }; static struct caam_aead_alg driver_aeads[] = { /* single-pass ipsec_esp descriptor */ { .aead = { .base = { .cra_name = "authenc(hmac(md5),cbc(aes))", .cra_driver_name = "authenc-hmac-md5-" "cbc-aes-caam-qi", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(md5)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-hmac-md5-" "cbc-aes-caam-qi", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "authenc-hmac-sha1-" "cbc-aes-caam-qi", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha1)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha1-cbc-aes-caam-qi", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha224),cbc(aes))", .cra_driver_name = "authenc-hmac-sha224-" "cbc-aes-caam-qi", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha224)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha224-cbc-aes-caam-qi", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "authenc-hmac-sha256-" "cbc-aes-caam-qi", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha256)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha256-cbc-aes-" "caam-qi", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha384),cbc(aes))", .cra_driver_name = "authenc-hmac-sha384-" "cbc-aes-caam-qi", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha384)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha384-cbc-aes-" "caam-qi", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha512),cbc(aes))", .cra_driver_name = "authenc-hmac-sha512-" "cbc-aes-caam-qi", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha512)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha512-cbc-aes-" "caam-qi", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(md5),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-md5-" "cbc-des3_ede-caam-qi", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(md5)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-hmac-md5-" "cbc-des3_ede-caam-qi", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha1)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha1-" "cbc-des3_ede-caam-qi", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha1)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha1-" "cbc-des3_ede-caam-qi", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha224)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha224-" "cbc-des3_ede-caam-qi", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha224)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha224-" "cbc-des3_ede-caam-qi", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha256)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha256-" "cbc-des3_ede-caam-qi", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha256)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha256-" "cbc-des3_ede-caam-qi", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha384)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha384-" "cbc-des3_ede-caam-qi", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha384)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha384-" "cbc-des3_ede-caam-qi", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha512)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha512-" "cbc-des3_ede-caam-qi", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha512)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha512-" "cbc-des3_ede-caam-qi", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(md5),cbc(des))", .cra_driver_name = "authenc-hmac-md5-" "cbc-des-caam-qi", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(md5)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-hmac-md5-" "cbc-des-caam-qi", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha1),cbc(des))", .cra_driver_name = "authenc-hmac-sha1-" "cbc-des-caam-qi", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha1)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha1-cbc-des-caam-qi", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha224),cbc(des))", .cra_driver_name = "authenc-hmac-sha224-" "cbc-des-caam-qi", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha224)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha224-cbc-des-" "caam-qi", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha256),cbc(des))", .cra_driver_name = "authenc-hmac-sha256-" "cbc-des-caam-qi", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha256)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha256-cbc-des-" "caam-qi", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha384),cbc(des))", .cra_driver_name = "authenc-hmac-sha384-" "cbc-des-caam-qi", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha384)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha384-cbc-des-" "caam-qi", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha512),cbc(des))", .cra_driver_name = "authenc-hmac-sha512-" "cbc-des-caam-qi", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha512)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha512-cbc-des-" "caam-qi", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, }; struct caam_crypto_alg { struct list_head entry; struct crypto_alg crypto_alg; struct caam_alg_entry caam; }; static int caam_init_common(struct caam_ctx *ctx, struct caam_alg_entry *caam) { struct caam_drv_private *priv; /* * distribute tfms across job rings to ensure in-order * crypto request processing per tfm */ ctx->jrdev = caam_jr_alloc(); if (IS_ERR(ctx->jrdev)) { pr_err("Job Ring Device allocation for transform failed\n"); return PTR_ERR(ctx->jrdev); } ctx->key_dma = dma_map_single(ctx->jrdev, ctx->key, sizeof(ctx->key), DMA_TO_DEVICE); if (dma_mapping_error(ctx->jrdev, ctx->key_dma)) { dev_err(ctx->jrdev, "unable to map key\n"); caam_jr_free(ctx->jrdev); return -ENOMEM; } /* copy descriptor header template value */ ctx->cdata.algtype = OP_TYPE_CLASS1_ALG | caam->class1_alg_type; ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam->class2_alg_type; priv = dev_get_drvdata(ctx->jrdev->parent); ctx->qidev = priv->qidev; spin_lock_init(&ctx->lock); ctx->drv_ctx[ENCRYPT] = NULL; ctx->drv_ctx[DECRYPT] = NULL; ctx->drv_ctx[GIVENCRYPT] = NULL; return 0; } static int caam_cra_init(struct crypto_tfm *tfm) { struct crypto_alg *alg = tfm->__crt_alg; struct caam_crypto_alg *caam_alg = container_of(alg, typeof(*caam_alg), crypto_alg); struct caam_ctx *ctx = crypto_tfm_ctx(tfm); return caam_init_common(ctx, &caam_alg->caam); } static int caam_aead_init(struct crypto_aead *tfm) { struct aead_alg *alg = crypto_aead_alg(tfm); struct caam_aead_alg *caam_alg = container_of(alg, typeof(*caam_alg), aead); struct caam_ctx *ctx = crypto_aead_ctx(tfm); return caam_init_common(ctx, &caam_alg->caam); } static void caam_exit_common(struct caam_ctx *ctx) { caam_drv_ctx_rel(ctx->drv_ctx[ENCRYPT]); caam_drv_ctx_rel(ctx->drv_ctx[DECRYPT]); caam_drv_ctx_rel(ctx->drv_ctx[GIVENCRYPT]); dma_unmap_single(ctx->jrdev, ctx->key_dma, sizeof(ctx->key), DMA_TO_DEVICE); caam_jr_free(ctx->jrdev); } static void caam_cra_exit(struct crypto_tfm *tfm) { caam_exit_common(crypto_tfm_ctx(tfm)); } static void caam_aead_exit(struct crypto_aead *tfm) { caam_exit_common(crypto_aead_ctx(tfm)); } static struct list_head alg_list; static void __exit caam_qi_algapi_exit(void) { struct caam_crypto_alg *t_alg, *n; int i; for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) { struct caam_aead_alg *t_alg = driver_aeads + i; if (t_alg->registered) crypto_unregister_aead(&t_alg->aead); } if (!alg_list.next) return; list_for_each_entry_safe(t_alg, n, &alg_list, entry) { crypto_unregister_alg(&t_alg->crypto_alg); list_del(&t_alg->entry); kfree(t_alg); } } static struct caam_crypto_alg *caam_alg_alloc(struct caam_alg_template *template) { struct caam_crypto_alg *t_alg; struct crypto_alg *alg; t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL); if (!t_alg) return ERR_PTR(-ENOMEM); alg = &t_alg->crypto_alg; snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name); snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", template->driver_name); alg->cra_module = THIS_MODULE; alg->cra_init = caam_cra_init; alg->cra_exit = caam_cra_exit; alg->cra_priority = CAAM_CRA_PRIORITY; alg->cra_blocksize = template->blocksize; alg->cra_alignmask = 0; alg->cra_ctxsize = sizeof(struct caam_ctx); alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | template->type; switch (template->type) { case CRYPTO_ALG_TYPE_GIVCIPHER: alg->cra_type = &crypto_givcipher_type; alg->cra_ablkcipher = template->template_ablkcipher; break; case CRYPTO_ALG_TYPE_ABLKCIPHER: alg->cra_type = &crypto_ablkcipher_type; alg->cra_ablkcipher = template->template_ablkcipher; break; } t_alg->caam.class1_alg_type = template->class1_alg_type; t_alg->caam.class2_alg_type = template->class2_alg_type; return t_alg; } static void caam_aead_alg_init(struct caam_aead_alg *t_alg) { struct aead_alg *alg = &t_alg->aead; alg->base.cra_module = THIS_MODULE; alg->base.cra_priority = CAAM_CRA_PRIORITY; alg->base.cra_ctxsize = sizeof(struct caam_ctx); alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY; alg->init = caam_aead_init; alg->exit = caam_aead_exit; } static int __init caam_qi_algapi_init(void) { struct device_node *dev_node; struct platform_device *pdev; struct device *ctrldev; struct caam_drv_private *priv; int i = 0, err = 0; u32 cha_vid, cha_inst, des_inst, aes_inst, md_inst; unsigned int md_limit = SHA512_DIGEST_SIZE; bool registered = false; dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); if (!dev_node) { dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); if (!dev_node) return -ENODEV; } pdev = of_find_device_by_node(dev_node); of_node_put(dev_node); if (!pdev) return -ENODEV; ctrldev = &pdev->dev; priv = dev_get_drvdata(ctrldev); /* * If priv is NULL, it's probably because the caam driver wasn't * properly initialized (e.g. RNG4 init failed). Thus, bail out here. */ if (!priv || !priv->qi_present) return -ENODEV; if (caam_dpaa2) { dev_info(ctrldev, "caam/qi frontend driver not suitable for DPAA 2.x, aborting...\n"); return -ENODEV; } INIT_LIST_HEAD(&alg_list); /* * Register crypto algorithms the device supports. * First, detect presence and attributes of DES, AES, and MD blocks. */ cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls); cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls); des_inst = (cha_inst & CHA_ID_LS_DES_MASK) >> CHA_ID_LS_DES_SHIFT; aes_inst = (cha_inst & CHA_ID_LS_AES_MASK) >> CHA_ID_LS_AES_SHIFT; md_inst = (cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT; /* If MD is present, limit digest size based on LP256 */ if (md_inst && ((cha_vid & CHA_ID_LS_MD_MASK) == CHA_ID_LS_MD_LP256)) md_limit = SHA256_DIGEST_SIZE; for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { struct caam_crypto_alg *t_alg; struct caam_alg_template *alg = driver_algs + i; u32 alg_sel = alg->class1_alg_type & OP_ALG_ALGSEL_MASK; /* Skip DES algorithms if not supported by device */ if (!des_inst && ((alg_sel == OP_ALG_ALGSEL_3DES) || (alg_sel == OP_ALG_ALGSEL_DES))) continue; /* Skip AES algorithms if not supported by device */ if (!aes_inst && (alg_sel == OP_ALG_ALGSEL_AES)) continue; t_alg = caam_alg_alloc(alg); if (IS_ERR(t_alg)) { err = PTR_ERR(t_alg); dev_warn(priv->qidev, "%s alg allocation failed\n", alg->driver_name); continue; } err = crypto_register_alg(&t_alg->crypto_alg); if (err) { dev_warn(priv->qidev, "%s alg registration failed\n", t_alg->crypto_alg.cra_driver_name); kfree(t_alg); continue; } list_add_tail(&t_alg->entry, &alg_list); registered = true; } for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) { struct caam_aead_alg *t_alg = driver_aeads + i; u32 c1_alg_sel = t_alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK; u32 c2_alg_sel = t_alg->caam.class2_alg_type & OP_ALG_ALGSEL_MASK; u32 alg_aai = t_alg->caam.class1_alg_type & OP_ALG_AAI_MASK; /* Skip DES algorithms if not supported by device */ if (!des_inst && ((c1_alg_sel == OP_ALG_ALGSEL_3DES) || (c1_alg_sel == OP_ALG_ALGSEL_DES))) continue; /* Skip AES algorithms if not supported by device */ if (!aes_inst && (c1_alg_sel == OP_ALG_ALGSEL_AES)) continue; /* * Check support for AES algorithms not available * on LP devices. */ if (((cha_vid & CHA_ID_LS_AES_MASK) == CHA_ID_LS_AES_LP) && (alg_aai == OP_ALG_AAI_GCM)) continue; /* * Skip algorithms requiring message digests * if MD or MD size is not supported by device. */ if (c2_alg_sel && (!md_inst || (t_alg->aead.maxauthsize > md_limit))) continue; caam_aead_alg_init(t_alg); err = crypto_register_aead(&t_alg->aead); if (err) { pr_warn("%s alg registration failed\n", t_alg->aead.base.cra_driver_name); continue; } t_alg->registered = true; registered = true; } if (registered) dev_info(priv->qidev, "algorithms registered in /proc/crypto\n"); return err; } module_init(caam_qi_algapi_init); module_exit(caam_qi_algapi_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Support for crypto API using CAAM-QI backend"); MODULE_AUTHOR("Freescale Semiconductor");