// SPDX-License-Identifier: GPL-2.0-only /* * fs/userfaultfd.c * * Copyright (C) 2007 Davide Libenzi * Copyright (C) 2008-2009 Red Hat, Inc. * Copyright (C) 2015 Red Hat, Inc. * * Some part derived from fs/eventfd.c (anon inode setup) and * mm/ksm.c (mm hashing). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int sysctl_unprivileged_userfaultfd __read_mostly = 1; static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; enum userfaultfd_state { UFFD_STATE_WAIT_API, UFFD_STATE_RUNNING, }; /* * Start with fault_pending_wqh and fault_wqh so they're more likely * to be in the same cacheline. * * Locking order: * fd_wqh.lock * fault_pending_wqh.lock * fault_wqh.lock * event_wqh.lock * * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's * also taken in IRQ context. */ struct userfaultfd_ctx { /* waitqueue head for the pending (i.e. not read) userfaults */ wait_queue_head_t fault_pending_wqh; /* waitqueue head for the userfaults */ wait_queue_head_t fault_wqh; /* waitqueue head for the pseudo fd to wakeup poll/read */ wait_queue_head_t fd_wqh; /* waitqueue head for events */ wait_queue_head_t event_wqh; /* a refile sequence protected by fault_pending_wqh lock */ struct seqcount refile_seq; /* pseudo fd refcounting */ refcount_t refcount; /* userfaultfd syscall flags */ unsigned int flags; /* features requested from the userspace */ unsigned int features; /* state machine */ enum userfaultfd_state state; /* released */ bool released; /* memory mappings are changing because of non-cooperative event */ bool mmap_changing; /* mm with one ore more vmas attached to this userfaultfd_ctx */ struct mm_struct *mm; }; struct userfaultfd_fork_ctx { struct userfaultfd_ctx *orig; struct userfaultfd_ctx *new; struct list_head list; }; struct userfaultfd_unmap_ctx { struct userfaultfd_ctx *ctx; unsigned long start; unsigned long end; struct list_head list; }; struct userfaultfd_wait_queue { struct uffd_msg msg; wait_queue_entry_t wq; struct userfaultfd_ctx *ctx; bool waken; }; struct userfaultfd_wake_range { unsigned long start; unsigned long len; }; static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, int wake_flags, void *key) { struct userfaultfd_wake_range *range = key; int ret; struct userfaultfd_wait_queue *uwq; unsigned long start, len; uwq = container_of(wq, struct userfaultfd_wait_queue, wq); ret = 0; /* len == 0 means wake all */ start = range->start; len = range->len; if (len && (start > uwq->msg.arg.pagefault.address || start + len <= uwq->msg.arg.pagefault.address)) goto out; WRITE_ONCE(uwq->waken, true); /* * The Program-Order guarantees provided by the scheduler * ensure uwq->waken is visible before the task is woken. */ ret = wake_up_state(wq->private, mode); if (ret) { /* * Wake only once, autoremove behavior. * * After the effect of list_del_init is visible to the other * CPUs, the waitqueue may disappear from under us, see the * !list_empty_careful() in handle_userfault(). * * try_to_wake_up() has an implicit smp_mb(), and the * wq->private is read before calling the extern function * "wake_up_state" (which in turns calls try_to_wake_up). */ list_del_init(&wq->entry); } out: return ret; } /** * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd * context. * @ctx: [in] Pointer to the userfaultfd context. */ static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) { refcount_inc(&ctx->refcount); } /** * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd * context. * @ctx: [in] Pointer to userfaultfd context. * * The userfaultfd context reference must have been previously acquired either * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). */ static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) { if (refcount_dec_and_test(&ctx->refcount)) { VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); mmdrop(ctx->mm); kmem_cache_free(userfaultfd_ctx_cachep, ctx); } } static inline void msg_init(struct uffd_msg *msg) { BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); /* * Must use memset to zero out the paddings or kernel data is * leaked to userland. */ memset(msg, 0, sizeof(struct uffd_msg)); } static inline struct uffd_msg userfault_msg(unsigned long address, unsigned int flags, unsigned long reason, unsigned int features) { struct uffd_msg msg; msg_init(&msg); msg.event = UFFD_EVENT_PAGEFAULT; msg.arg.pagefault.address = address; if (flags & FAULT_FLAG_WRITE) /* * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE * was not set in a UFFD_EVENT_PAGEFAULT, it means it * was a read fault, otherwise if set it means it's * a write fault. */ msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; if (reason & VM_UFFD_WP) /* * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was * not set in a UFFD_EVENT_PAGEFAULT, it means it was * a missing fault, otherwise if set it means it's a * write protect fault. */ msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; if (features & UFFD_FEATURE_THREAD_ID) msg.arg.pagefault.feat.ptid = task_pid_vnr(current); return msg; } #ifdef CONFIG_HUGETLB_PAGE /* * Same functionality as userfaultfd_must_wait below with modifications for * hugepmd ranges. */ static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, struct vm_area_struct *vma, unsigned long address, unsigned long flags, unsigned long reason) { struct mm_struct *mm = ctx->mm; pte_t *ptep, pte; bool ret = true; mmap_assert_locked(mm); ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); if (!ptep) goto out; ret = false; pte = huge_ptep_get(ptep); /* * Lockless access: we're in a wait_event so it's ok if it * changes under us. */ if (huge_pte_none(pte)) ret = true; if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) ret = true; out: return ret; } #else static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, struct vm_area_struct *vma, unsigned long address, unsigned long flags, unsigned long reason) { return false; /* should never get here */ } #endif /* CONFIG_HUGETLB_PAGE */ /* * Verify the pagetables are still not ok after having reigstered into * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any * userfault that has already been resolved, if userfaultfd_read and * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different * threads. */ static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, unsigned long address, unsigned long flags, unsigned long reason) { struct mm_struct *mm = ctx->mm; pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd, _pmd; pte_t *pte; bool ret = true; mmap_assert_locked(mm); pgd = pgd_offset(mm, address); if (!pgd_present(*pgd)) goto out; p4d = p4d_offset(pgd, address); if (!p4d_present(*p4d)) goto out; pud = pud_offset(p4d, address); if (!pud_present(*pud)) goto out; pmd = pmd_offset(pud, address); /* * READ_ONCE must function as a barrier with narrower scope * and it must be equivalent to: * _pmd = *pmd; barrier(); * * This is to deal with the instability (as in * pmd_trans_unstable) of the pmd. */ _pmd = READ_ONCE(*pmd); if (pmd_none(_pmd)) goto out; ret = false; if (!pmd_present(_pmd)) goto out; if (pmd_trans_huge(_pmd)) { if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) ret = true; goto out; } /* * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it * and use the standard pte_offset_map() instead of parsing _pmd. */ pte = pte_offset_map(pmd, address); /* * Lockless access: we're in a wait_event so it's ok if it * changes under us. */ if (pte_none(*pte)) ret = true; if (!pte_write(*pte) && (reason & VM_UFFD_WP)) ret = true; pte_unmap(pte); out: return ret; } /* Should pair with userfaultfd_signal_pending() */ static inline long userfaultfd_get_blocking_state(unsigned int flags) { if (flags & FAULT_FLAG_INTERRUPTIBLE) return TASK_INTERRUPTIBLE; if (flags & FAULT_FLAG_KILLABLE) return TASK_KILLABLE; return TASK_UNINTERRUPTIBLE; } /* Should pair with userfaultfd_get_blocking_state() */ static inline bool userfaultfd_signal_pending(unsigned int flags) { if (flags & FAULT_FLAG_INTERRUPTIBLE) return signal_pending(current); if (flags & FAULT_FLAG_KILLABLE) return fatal_signal_pending(current); return false; } /* * The locking rules involved in returning VM_FAULT_RETRY depending on * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" * recommendation in __lock_page_or_retry is not an understatement. * * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is * not set. * * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not * set, VM_FAULT_RETRY can still be returned if and only if there are * fatal_signal_pending()s, and the mmap_sem must be released before * returning it. */ vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) { struct mm_struct *mm = vmf->vma->vm_mm; struct userfaultfd_ctx *ctx; struct userfaultfd_wait_queue uwq; vm_fault_t ret = VM_FAULT_SIGBUS; bool must_wait; long blocking_state; /* * We don't do userfault handling for the final child pid update. * * We also don't do userfault handling during * coredumping. hugetlbfs has the special * follow_hugetlb_page() to skip missing pages in the * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with * the no_page_table() helper in follow_page_mask(), but the * shmem_vm_ops->fault method is invoked even during * coredumping without mmap_sem and it ends up here. */ if (current->flags & (PF_EXITING|PF_DUMPCORE)) goto out; /* * Coredumping runs without mmap_sem so we can only check that * the mmap_sem is held, if PF_DUMPCORE was not set. */ mmap_assert_locked(mm); ctx = vmf->vma->vm_userfaultfd_ctx.ctx; if (!ctx) goto out; BUG_ON(ctx->mm != mm); VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); if (ctx->features & UFFD_FEATURE_SIGBUS) goto out; /* * If it's already released don't get it. This avoids to loop * in __get_user_pages if userfaultfd_release waits on the * caller of handle_userfault to release the mmap_sem. */ if (unlikely(READ_ONCE(ctx->released))) { /* * Don't return VM_FAULT_SIGBUS in this case, so a non * cooperative manager can close the uffd after the * last UFFDIO_COPY, without risking to trigger an * involuntary SIGBUS if the process was starting the * userfaultfd while the userfaultfd was still armed * (but after the last UFFDIO_COPY). If the uffd * wasn't already closed when the userfault reached * this point, that would normally be solved by * userfaultfd_must_wait returning 'false'. * * If we were to return VM_FAULT_SIGBUS here, the non * cooperative manager would be instead forced to * always call UFFDIO_UNREGISTER before it can safely * close the uffd. */ ret = VM_FAULT_NOPAGE; goto out; } /* * Check that we can return VM_FAULT_RETRY. * * NOTE: it should become possible to return VM_FAULT_RETRY * even if FAULT_FLAG_TRIED is set without leading to gup() * -EBUSY failures, if the userfaultfd is to be extended for * VM_UFFD_WP tracking and we intend to arm the userfault * without first stopping userland access to the memory. For * VM_UFFD_MISSING userfaults this is enough for now. */ if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { /* * Validate the invariant that nowait must allow retry * to be sure not to return SIGBUS erroneously on * nowait invocations. */ BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); #ifdef CONFIG_DEBUG_VM if (printk_ratelimit()) { printk(KERN_WARNING "FAULT_FLAG_ALLOW_RETRY missing %x\n", vmf->flags); dump_stack(); } #endif goto out; } /* * Handle nowait, not much to do other than tell it to retry * and wait. */ ret = VM_FAULT_RETRY; if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) goto out; /* take the reference before dropping the mmap_sem */ userfaultfd_ctx_get(ctx); init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); uwq.wq.private = current; uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, ctx->features); uwq.ctx = ctx; uwq.waken = false; blocking_state = userfaultfd_get_blocking_state(vmf->flags); spin_lock_irq(&ctx->fault_pending_wqh.lock); /* * After the __add_wait_queue the uwq is visible to userland * through poll/read(). */ __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); /* * The smp_mb() after __set_current_state prevents the reads * following the spin_unlock to happen before the list_add in * __add_wait_queue. */ set_current_state(blocking_state); spin_unlock_irq(&ctx->fault_pending_wqh.lock); if (!is_vm_hugetlb_page(vmf->vma)) must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, reason); else must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, vmf->address, vmf->flags, reason); mmap_read_unlock(mm); if (likely(must_wait && !READ_ONCE(ctx->released) && !userfaultfd_signal_pending(vmf->flags))) { wake_up_poll(&ctx->fd_wqh, EPOLLIN); schedule(); ret |= VM_FAULT_MAJOR; /* * False wakeups can orginate even from rwsem before * up_read() however userfaults will wait either for a * targeted wakeup on the specific uwq waitqueue from * wake_userfault() or for signals or for uffd * release. */ while (!READ_ONCE(uwq.waken)) { /* * This needs the full smp_store_mb() * guarantee as the state write must be * visible to other CPUs before reading * uwq.waken from other CPUs. */ set_current_state(blocking_state); if (READ_ONCE(uwq.waken) || READ_ONCE(ctx->released) || userfaultfd_signal_pending(vmf->flags)) break; schedule(); } } __set_current_state(TASK_RUNNING); /* * Here we race with the list_del; list_add in * userfaultfd_ctx_read(), however because we don't ever run * list_del_init() to refile across the two lists, the prev * and next pointers will never point to self. list_add also * would never let any of the two pointers to point to * self. So list_empty_careful won't risk to see both pointers * pointing to self at any time during the list refile. The * only case where list_del_init() is called is the full * removal in the wake function and there we don't re-list_add * and it's fine not to block on the spinlock. The uwq on this * kernel stack can be released after the list_del_init. */ if (!list_empty_careful(&uwq.wq.entry)) { spin_lock_irq(&ctx->fault_pending_wqh.lock); /* * No need of list_del_init(), the uwq on the stack * will be freed shortly anyway. */ list_del(&uwq.wq.entry); spin_unlock_irq(&ctx->fault_pending_wqh.lock); } /* * ctx may go away after this if the userfault pseudo fd is * already released. */ userfaultfd_ctx_put(ctx); out: return ret; } static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, struct userfaultfd_wait_queue *ewq) { struct userfaultfd_ctx *release_new_ctx; if (WARN_ON_ONCE(current->flags & PF_EXITING)) goto out; ewq->ctx = ctx; init_waitqueue_entry(&ewq->wq, current); release_new_ctx = NULL; spin_lock_irq(&ctx->event_wqh.lock); /* * After the __add_wait_queue the uwq is visible to userland * through poll/read(). */ __add_wait_queue(&ctx->event_wqh, &ewq->wq); for (;;) { set_current_state(TASK_KILLABLE); if (ewq->msg.event == 0) break; if (READ_ONCE(ctx->released) || fatal_signal_pending(current)) { /* * &ewq->wq may be queued in fork_event, but * __remove_wait_queue ignores the head * parameter. It would be a problem if it * didn't. */ __remove_wait_queue(&ctx->event_wqh, &ewq->wq); if (ewq->msg.event == UFFD_EVENT_FORK) { struct userfaultfd_ctx *new; new = (struct userfaultfd_ctx *) (unsigned long) ewq->msg.arg.reserved.reserved1; release_new_ctx = new; } break; } spin_unlock_irq(&ctx->event_wqh.lock); wake_up_poll(&ctx->fd_wqh, EPOLLIN); schedule(); spin_lock_irq(&ctx->event_wqh.lock); } __set_current_state(TASK_RUNNING); spin_unlock_irq(&ctx->event_wqh.lock); if (release_new_ctx) { struct vm_area_struct *vma; struct mm_struct *mm = release_new_ctx->mm; /* the various vma->vm_userfaultfd_ctx still points to it */ mmap_write_lock(mm); /* no task can run (and in turn coredump) yet */ VM_WARN_ON(!mmget_still_valid(mm)); for (vma = mm->mmap; vma; vma = vma->vm_next) if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); } mmap_write_unlock(mm); userfaultfd_ctx_put(release_new_ctx); } /* * ctx may go away after this if the userfault pseudo fd is * already released. */ out: WRITE_ONCE(ctx->mmap_changing, false); userfaultfd_ctx_put(ctx); } static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, struct userfaultfd_wait_queue *ewq) { ewq->msg.event = 0; wake_up_locked(&ctx->event_wqh); __remove_wait_queue(&ctx->event_wqh, &ewq->wq); } int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) { struct userfaultfd_ctx *ctx = NULL, *octx; struct userfaultfd_fork_ctx *fctx; octx = vma->vm_userfaultfd_ctx.ctx; if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); return 0; } list_for_each_entry(fctx, fcs, list) if (fctx->orig == octx) { ctx = fctx->new; break; } if (!ctx) { fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); if (!fctx) return -ENOMEM; ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); if (!ctx) { kfree(fctx); return -ENOMEM; } refcount_set(&ctx->refcount, 1); ctx->flags = octx->flags; ctx->state = UFFD_STATE_RUNNING; ctx->features = octx->features; ctx->released = false; ctx->mmap_changing = false; ctx->mm = vma->vm_mm; mmgrab(ctx->mm); userfaultfd_ctx_get(octx); WRITE_ONCE(octx->mmap_changing, true); fctx->orig = octx; fctx->new = ctx; list_add_tail(&fctx->list, fcs); } vma->vm_userfaultfd_ctx.ctx = ctx; return 0; } static void dup_fctx(struct userfaultfd_fork_ctx *fctx) { struct userfaultfd_ctx *ctx = fctx->orig; struct userfaultfd_wait_queue ewq; msg_init(&ewq.msg); ewq.msg.event = UFFD_EVENT_FORK; ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; userfaultfd_event_wait_completion(ctx, &ewq); } void dup_userfaultfd_complete(struct list_head *fcs) { struct userfaultfd_fork_ctx *fctx, *n; list_for_each_entry_safe(fctx, n, fcs, list) { dup_fctx(fctx); list_del(&fctx->list); kfree(fctx); } } void mremap_userfaultfd_prep(struct vm_area_struct *vma, struct vm_userfaultfd_ctx *vm_ctx) { struct userfaultfd_ctx *ctx; ctx = vma->vm_userfaultfd_ctx.ctx; if (!ctx) return; if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { vm_ctx->ctx = ctx; userfaultfd_ctx_get(ctx); WRITE_ONCE(ctx->mmap_changing, true); } else { /* Drop uffd context if remap feature not enabled */ vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); } } void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, unsigned long from, unsigned long to, unsigned long len) { struct userfaultfd_ctx *ctx = vm_ctx->ctx; struct userfaultfd_wait_queue ewq; if (!ctx) return; if (to & ~PAGE_MASK) { userfaultfd_ctx_put(ctx); return; } msg_init(&ewq.msg); ewq.msg.event = UFFD_EVENT_REMAP; ewq.msg.arg.remap.from = from; ewq.msg.arg.remap.to = to; ewq.msg.arg.remap.len = len; userfaultfd_event_wait_completion(ctx, &ewq); } bool userfaultfd_remove(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; struct userfaultfd_ctx *ctx; struct userfaultfd_wait_queue ewq; ctx = vma->vm_userfaultfd_ctx.ctx; if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) return true; userfaultfd_ctx_get(ctx); WRITE_ONCE(ctx->mmap_changing, true); mmap_read_unlock(mm); msg_init(&ewq.msg); ewq.msg.event = UFFD_EVENT_REMOVE; ewq.msg.arg.remove.start = start; ewq.msg.arg.remove.end = end; userfaultfd_event_wait_completion(ctx, &ewq); return false; } static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, unsigned long start, unsigned long end) { struct userfaultfd_unmap_ctx *unmap_ctx; list_for_each_entry(unmap_ctx, unmaps, list) if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && unmap_ctx->end == end) return true; return false; } int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, unsigned long end, struct list_head *unmaps) { for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { struct userfaultfd_unmap_ctx *unmap_ctx; struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || has_unmap_ctx(ctx, unmaps, start, end)) continue; unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); if (!unmap_ctx) return -ENOMEM; userfaultfd_ctx_get(ctx); WRITE_ONCE(ctx->mmap_changing, true); unmap_ctx->ctx = ctx; unmap_ctx->start = start; unmap_ctx->end = end; list_add_tail(&unmap_ctx->list, unmaps); } return 0; } void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) { struct userfaultfd_unmap_ctx *ctx, *n; struct userfaultfd_wait_queue ewq; list_for_each_entry_safe(ctx, n, uf, list) { msg_init(&ewq.msg); ewq.msg.event = UFFD_EVENT_UNMAP; ewq.msg.arg.remove.start = ctx->start; ewq.msg.arg.remove.end = ctx->end; userfaultfd_event_wait_completion(ctx->ctx, &ewq); list_del(&ctx->list); kfree(ctx); } } static int userfaultfd_release(struct inode *inode, struct file *file) { struct userfaultfd_ctx *ctx = file->private_data; struct mm_struct *mm = ctx->mm; struct vm_area_struct *vma, *prev; /* len == 0 means wake all */ struct userfaultfd_wake_range range = { .len = 0, }; unsigned long new_flags; bool still_valid; WRITE_ONCE(ctx->released, true); if (!mmget_not_zero(mm)) goto wakeup; /* * Flush page faults out of all CPUs. NOTE: all page faults * must be retried without returning VM_FAULT_SIGBUS if * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx * changes while handle_userfault released the mmap_sem. So * it's critical that released is set to true (above), before * taking the mmap_sem for writing. */ mmap_write_lock(mm); still_valid = mmget_still_valid(mm); prev = NULL; for (vma = mm->mmap; vma; vma = vma->vm_next) { cond_resched(); BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); if (vma->vm_userfaultfd_ctx.ctx != ctx) { prev = vma; continue; } new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); if (still_valid) { prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, new_flags, vma->anon_vma, vma->vm_file, vma->vm_pgoff, vma_policy(vma), NULL_VM_UFFD_CTX); if (prev) vma = prev; else prev = vma; } vma->vm_flags = new_flags; vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; } mmap_write_unlock(mm); mmput(mm); wakeup: /* * After no new page faults can wait on this fault_*wqh, flush * the last page faults that may have been already waiting on * the fault_*wqh. */ spin_lock_irq(&ctx->fault_pending_wqh.lock); __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); spin_unlock_irq(&ctx->fault_pending_wqh.lock); /* Flush pending events that may still wait on event_wqh */ wake_up_all(&ctx->event_wqh); wake_up_poll(&ctx->fd_wqh, EPOLLHUP); userfaultfd_ctx_put(ctx); return 0; } /* fault_pending_wqh.lock must be hold by the caller */ static inline struct userfaultfd_wait_queue *find_userfault_in( wait_queue_head_t *wqh) { wait_queue_entry_t *wq; struct userfaultfd_wait_queue *uwq; lockdep_assert_held(&wqh->lock); uwq = NULL; if (!waitqueue_active(wqh)) goto out; /* walk in reverse to provide FIFO behavior to read userfaults */ wq = list_last_entry(&wqh->head, typeof(*wq), entry); uwq = container_of(wq, struct userfaultfd_wait_queue, wq); out: return uwq; } static inline struct userfaultfd_wait_queue *find_userfault( struct userfaultfd_ctx *ctx) { return find_userfault_in(&ctx->fault_pending_wqh); } static inline struct userfaultfd_wait_queue *find_userfault_evt( struct userfaultfd_ctx *ctx) { return find_userfault_in(&ctx->event_wqh); } static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) { struct userfaultfd_ctx *ctx = file->private_data; __poll_t ret; poll_wait(file, &ctx->fd_wqh, wait); switch (ctx->state) { case UFFD_STATE_WAIT_API: return EPOLLERR; case UFFD_STATE_RUNNING: /* * poll() never guarantees that read won't block. * userfaults can be waken before they're read(). */ if (unlikely(!(file->f_flags & O_NONBLOCK))) return EPOLLERR; /* * lockless access to see if there are pending faults * __pollwait last action is the add_wait_queue but * the spin_unlock would allow the waitqueue_active to * pass above the actual list_add inside * add_wait_queue critical section. So use a full * memory barrier to serialize the list_add write of * add_wait_queue() with the waitqueue_active read * below. */ ret = 0; smp_mb(); if (waitqueue_active(&ctx->fault_pending_wqh)) ret = EPOLLIN; else if (waitqueue_active(&ctx->event_wqh)) ret = EPOLLIN; return ret; default: WARN_ON_ONCE(1); return EPOLLERR; } } static const struct file_operations userfaultfd_fops; static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, struct userfaultfd_ctx *new, struct uffd_msg *msg) { int fd; fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); if (fd < 0) return fd; msg->arg.reserved.reserved1 = 0; msg->arg.fork.ufd = fd; return 0; } static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, struct uffd_msg *msg) { ssize_t ret; DECLARE_WAITQUEUE(wait, current); struct userfaultfd_wait_queue *uwq; /* * Handling fork event requires sleeping operations, so * we drop the event_wqh lock, then do these ops, then * lock it back and wake up the waiter. While the lock is * dropped the ewq may go away so we keep track of it * carefully. */ LIST_HEAD(fork_event); struct userfaultfd_ctx *fork_nctx = NULL; /* always take the fd_wqh lock before the fault_pending_wqh lock */ spin_lock_irq(&ctx->fd_wqh.lock); __add_wait_queue(&ctx->fd_wqh, &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); spin_lock(&ctx->fault_pending_wqh.lock); uwq = find_userfault(ctx); if (uwq) { /* * Use a seqcount to repeat the lockless check * in wake_userfault() to avoid missing * wakeups because during the refile both * waitqueue could become empty if this is the * only userfault. */ write_seqcount_begin(&ctx->refile_seq); /* * The fault_pending_wqh.lock prevents the uwq * to disappear from under us. * * Refile this userfault from * fault_pending_wqh to fault_wqh, it's not * pending anymore after we read it. * * Use list_del() by hand (as * userfaultfd_wake_function also uses * list_del_init() by hand) to be sure nobody * changes __remove_wait_queue() to use * list_del_init() in turn breaking the * !list_empty_careful() check in * handle_userfault(). The uwq->wq.head list * must never be empty at any time during the * refile, or the waitqueue could disappear * from under us. The "wait_queue_head_t" * parameter of __remove_wait_queue() is unused * anyway. */ list_del(&uwq->wq.entry); add_wait_queue(&ctx->fault_wqh, &uwq->wq); write_seqcount_end(&ctx->refile_seq); /* careful to always initialize msg if ret == 0 */ *msg = uwq->msg; spin_unlock(&ctx->fault_pending_wqh.lock); ret = 0; break; } spin_unlock(&ctx->fault_pending_wqh.lock); spin_lock(&ctx->event_wqh.lock); uwq = find_userfault_evt(ctx); if (uwq) { *msg = uwq->msg; if (uwq->msg.event == UFFD_EVENT_FORK) { fork_nctx = (struct userfaultfd_ctx *) (unsigned long) uwq->msg.arg.reserved.reserved1; list_move(&uwq->wq.entry, &fork_event); /* * fork_nctx can be freed as soon as * we drop the lock, unless we take a * reference on it. */ userfaultfd_ctx_get(fork_nctx); spin_unlock(&ctx->event_wqh.lock); ret = 0; break; } userfaultfd_event_complete(ctx, uwq); spin_unlock(&ctx->event_wqh.lock); ret = 0; break; } spin_unlock(&ctx->event_wqh.lock); if (signal_pending(current)) { ret = -ERESTARTSYS; break; } if (no_wait) { ret = -EAGAIN; break; } spin_unlock_irq(&ctx->fd_wqh.lock); schedule(); spin_lock_irq(&ctx->fd_wqh.lock); } __remove_wait_queue(&ctx->fd_wqh, &wait); __set_current_state(TASK_RUNNING); spin_unlock_irq(&ctx->fd_wqh.lock); if (!ret && msg->event == UFFD_EVENT_FORK) { ret = resolve_userfault_fork(ctx, fork_nctx, msg); spin_lock_irq(&ctx->event_wqh.lock); if (!list_empty(&fork_event)) { /* * The fork thread didn't abort, so we can * drop the temporary refcount. */ userfaultfd_ctx_put(fork_nctx); uwq = list_first_entry(&fork_event, typeof(*uwq), wq.entry); /* * If fork_event list wasn't empty and in turn * the event wasn't already released by fork * (the event is allocated on fork kernel * stack), put the event back to its place in * the event_wq. fork_event head will be freed * as soon as we return so the event cannot * stay queued there no matter the current * "ret" value. */ list_del(&uwq->wq.entry); __add_wait_queue(&ctx->event_wqh, &uwq->wq); /* * Leave the event in the waitqueue and report * error to userland if we failed to resolve * the userfault fork. */ if (likely(!ret)) userfaultfd_event_complete(ctx, uwq); } else { /* * Here the fork thread aborted and the * refcount from the fork thread on fork_nctx * has already been released. We still hold * the reference we took before releasing the * lock above. If resolve_userfault_fork * failed we've to drop it because the * fork_nctx has to be freed in such case. If * it succeeded we'll hold it because the new * uffd references it. */ if (ret) userfaultfd_ctx_put(fork_nctx); } spin_unlock_irq(&ctx->event_wqh.lock); } return ret; } static ssize_t userfaultfd_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct userfaultfd_ctx *ctx = file->private_data; ssize_t _ret, ret = 0; struct uffd_msg msg; int no_wait = file->f_flags & O_NONBLOCK; if (ctx->state == UFFD_STATE_WAIT_API) return -EINVAL; for (;;) { if (count < sizeof(msg)) return ret ? ret : -EINVAL; _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); if (_ret < 0) return ret ? ret : _ret; if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) return ret ? ret : -EFAULT; ret += sizeof(msg); buf += sizeof(msg); count -= sizeof(msg); /* * Allow to read more than one fault at time but only * block if waiting for the very first one. */ no_wait = O_NONBLOCK; } } static void __wake_userfault(struct userfaultfd_ctx *ctx, struct userfaultfd_wake_range *range) { spin_lock_irq(&ctx->fault_pending_wqh.lock); /* wake all in the range and autoremove */ if (waitqueue_active(&ctx->fault_pending_wqh)) __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, range); if (waitqueue_active(&ctx->fault_wqh)) __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); spin_unlock_irq(&ctx->fault_pending_wqh.lock); } static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, struct userfaultfd_wake_range *range) { unsigned seq; bool need_wakeup; /* * To be sure waitqueue_active() is not reordered by the CPU * before the pagetable update, use an explicit SMP memory * barrier here. PT lock release or mmap_read_unlock(mm) still * have release semantics that can allow the * waitqueue_active() to be reordered before the pte update. */ smp_mb(); /* * Use waitqueue_active because it's very frequent to * change the address space atomically even if there are no * userfaults yet. So we take the spinlock only when we're * sure we've userfaults to wake. */ do { seq = read_seqcount_begin(&ctx->refile_seq); need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || waitqueue_active(&ctx->fault_wqh); cond_resched(); } while (read_seqcount_retry(&ctx->refile_seq, seq)); if (need_wakeup) __wake_userfault(ctx, range); } static __always_inline int validate_range(struct mm_struct *mm, __u64 *start, __u64 len) { __u64 task_size = mm->task_size; *start = untagged_addr(*start); if (*start & ~PAGE_MASK) return -EINVAL; if (len & ~PAGE_MASK) return -EINVAL; if (!len) return -EINVAL; if (*start < mmap_min_addr) return -EINVAL; if (*start >= task_size) return -EINVAL; if (len > task_size - *start) return -EINVAL; return 0; } static inline bool vma_can_userfault(struct vm_area_struct *vma, unsigned long vm_flags) { /* FIXME: add WP support to hugetlbfs and shmem */ return vma_is_anonymous(vma) || ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) && !(vm_flags & VM_UFFD_WP)); } static int userfaultfd_register(struct userfaultfd_ctx *ctx, unsigned long arg) { struct mm_struct *mm = ctx->mm; struct vm_area_struct *vma, *prev, *cur; int ret; struct uffdio_register uffdio_register; struct uffdio_register __user *user_uffdio_register; unsigned long vm_flags, new_flags; bool found; bool basic_ioctls; unsigned long start, end, vma_end; user_uffdio_register = (struct uffdio_register __user *) arg; ret = -EFAULT; if (copy_from_user(&uffdio_register, user_uffdio_register, sizeof(uffdio_register)-sizeof(__u64))) goto out; ret = -EINVAL; if (!uffdio_register.mode) goto out; if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| UFFDIO_REGISTER_MODE_WP)) goto out; vm_flags = 0; if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) vm_flags |= VM_UFFD_MISSING; if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) vm_flags |= VM_UFFD_WP; ret = validate_range(mm, &uffdio_register.range.start, uffdio_register.range.len); if (ret) goto out; start = uffdio_register.range.start; end = start + uffdio_register.range.len; ret = -ENOMEM; if (!mmget_not_zero(mm)) goto out; mmap_write_lock(mm); if (!mmget_still_valid(mm)) goto out_unlock; vma = find_vma_prev(mm, start, &prev); if (!vma) goto out_unlock; /* check that there's at least one vma in the range */ ret = -EINVAL; if (vma->vm_start >= end) goto out_unlock; /* * If the first vma contains huge pages, make sure start address * is aligned to huge page size. */ if (is_vm_hugetlb_page(vma)) { unsigned long vma_hpagesize = vma_kernel_pagesize(vma); if (start & (vma_hpagesize - 1)) goto out_unlock; } /* * Search for not compatible vmas. */ found = false; basic_ioctls = false; for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { cond_resched(); BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); /* check not compatible vmas */ ret = -EINVAL; if (!vma_can_userfault(cur, vm_flags)) goto out_unlock; /* * UFFDIO_COPY will fill file holes even without * PROT_WRITE. This check enforces that if this is a * MAP_SHARED, the process has write permission to the backing * file. If VM_MAYWRITE is set it also enforces that on a * MAP_SHARED vma: there is no F_WRITE_SEAL and no further * F_WRITE_SEAL can be taken until the vma is destroyed. */ ret = -EPERM; if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) goto out_unlock; /* * If this vma contains ending address, and huge pages * check alignment. */ if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && end > cur->vm_start) { unsigned long vma_hpagesize = vma_kernel_pagesize(cur); ret = -EINVAL; if (end & (vma_hpagesize - 1)) goto out_unlock; } if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) goto out_unlock; /* * Check that this vma isn't already owned by a * different userfaultfd. We can't allow more than one * userfaultfd to own a single vma simultaneously or we * wouldn't know which one to deliver the userfaults to. */ ret = -EBUSY; if (cur->vm_userfaultfd_ctx.ctx && cur->vm_userfaultfd_ctx.ctx != ctx) goto out_unlock; /* * Note vmas containing huge pages */ if (is_vm_hugetlb_page(cur)) basic_ioctls = true; found = true; } BUG_ON(!found); if (vma->vm_start < start) prev = vma; ret = 0; do { cond_resched(); BUG_ON(!vma_can_userfault(vma, vm_flags)); BUG_ON(vma->vm_userfaultfd_ctx.ctx && vma->vm_userfaultfd_ctx.ctx != ctx); WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); /* * Nothing to do: this vma is already registered into this * userfaultfd and with the right tracking mode too. */ if (vma->vm_userfaultfd_ctx.ctx == ctx && (vma->vm_flags & vm_flags) == vm_flags) goto skip; if (vma->vm_start > start) start = vma->vm_start; vma_end = min(end, vma->vm_end); new_flags = (vma->vm_flags & ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags; prev = vma_merge(mm, prev, start, vma_end, new_flags, vma->anon_vma, vma->vm_file, vma->vm_pgoff, vma_policy(vma), ((struct vm_userfaultfd_ctx){ ctx })); if (prev) { vma = prev; goto next; } if (vma->vm_start < start) { ret = split_vma(mm, vma, start, 1); if (ret) break; } if (vma->vm_end > end) { ret = split_vma(mm, vma, end, 0); if (ret) break; } next: /* * In the vma_merge() successful mprotect-like case 8: * the next vma was merged into the current one and * the current one has not been updated yet. */ vma->vm_flags = new_flags; vma->vm_userfaultfd_ctx.ctx = ctx; skip: prev = vma; start = vma->vm_end; vma = vma->vm_next; } while (vma && vma->vm_start < end); out_unlock: mmap_write_unlock(mm); mmput(mm); if (!ret) { __u64 ioctls_out; ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : UFFD_API_RANGE_IOCTLS; /* * Declare the WP ioctl only if the WP mode is * specified and all checks passed with the range */ if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); /* * Now that we scanned all vmas we can already tell * userland which ioctls methods are guaranteed to * succeed on this range. */ if (put_user(ioctls_out, &user_uffdio_register->ioctls)) ret = -EFAULT; } out: return ret; } static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, unsigned long arg) { struct mm_struct *mm = ctx->mm; struct vm_area_struct *vma, *prev, *cur; int ret; struct uffdio_range uffdio_unregister; unsigned long new_flags; bool found; unsigned long start, end, vma_end; const void __user *buf = (void __user *)arg; ret = -EFAULT; if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) goto out; ret = validate_range(mm, &uffdio_unregister.start, uffdio_unregister.len); if (ret) goto out; start = uffdio_unregister.start; end = start + uffdio_unregister.len; ret = -ENOMEM; if (!mmget_not_zero(mm)) goto out; mmap_write_lock(mm); if (!mmget_still_valid(mm)) goto out_unlock; vma = find_vma_prev(mm, start, &prev); if (!vma) goto out_unlock; /* check that there's at least one vma in the range */ ret = -EINVAL; if (vma->vm_start >= end) goto out_unlock; /* * If the first vma contains huge pages, make sure start address * is aligned to huge page size. */ if (is_vm_hugetlb_page(vma)) { unsigned long vma_hpagesize = vma_kernel_pagesize(vma); if (start & (vma_hpagesize - 1)) goto out_unlock; } /* * Search for not compatible vmas. */ found = false; ret = -EINVAL; for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { cond_resched(); BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); /* * Check not compatible vmas, not strictly required * here as not compatible vmas cannot have an * userfaultfd_ctx registered on them, but this * provides for more strict behavior to notice * unregistration errors. */ if (!vma_can_userfault(cur, cur->vm_flags)) goto out_unlock; found = true; } BUG_ON(!found); if (vma->vm_start < start) prev = vma; ret = 0; do { cond_resched(); BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); /* * Nothing to do: this vma is already registered into this * userfaultfd and with the right tracking mode too. */ if (!vma->vm_userfaultfd_ctx.ctx) goto skip; WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); if (vma->vm_start > start) start = vma->vm_start; vma_end = min(end, vma->vm_end); if (userfaultfd_missing(vma)) { /* * Wake any concurrent pending userfault while * we unregister, so they will not hang * permanently and it avoids userland to call * UFFDIO_WAKE explicitly. */ struct userfaultfd_wake_range range; range.start = start; range.len = vma_end - start; wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); } new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); prev = vma_merge(mm, prev, start, vma_end, new_flags, vma->anon_vma, vma->vm_file, vma->vm_pgoff, vma_policy(vma), NULL_VM_UFFD_CTX); if (prev) { vma = prev; goto next; } if (vma->vm_start < start) { ret = split_vma(mm, vma, start, 1); if (ret) break; } if (vma->vm_end > end) { ret = split_vma(mm, vma, end, 0); if (ret) break; } next: /* * In the vma_merge() successful mprotect-like case 8: * the next vma was merged into the current one and * the current one has not been updated yet. */ vma->vm_flags = new_flags; vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; skip: prev = vma; start = vma->vm_end; vma = vma->vm_next; } while (vma && vma->vm_start < end); out_unlock: mmap_write_unlock(mm); mmput(mm); out: return ret; } /* * userfaultfd_wake may be used in combination with the * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. */ static int userfaultfd_wake(struct userfaultfd_ctx *ctx, unsigned long arg) { int ret; struct uffdio_range uffdio_wake; struct userfaultfd_wake_range range; const void __user *buf = (void __user *)arg; ret = -EFAULT; if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) goto out; ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len); if (ret) goto out; range.start = uffdio_wake.start; range.len = uffdio_wake.len; /* * len == 0 means wake all and we don't want to wake all here, * so check it again to be sure. */ VM_BUG_ON(!range.len); wake_userfault(ctx, &range); ret = 0; out: return ret; } static int userfaultfd_copy(struct userfaultfd_ctx *ctx, unsigned long arg) { __s64 ret; struct uffdio_copy uffdio_copy; struct uffdio_copy __user *user_uffdio_copy; struct userfaultfd_wake_range range; user_uffdio_copy = (struct uffdio_copy __user *) arg; ret = -EAGAIN; if (READ_ONCE(ctx->mmap_changing)) goto out; ret = -EFAULT; if (copy_from_user(&uffdio_copy, user_uffdio_copy, /* don't copy "copy" last field */ sizeof(uffdio_copy)-sizeof(__s64))) goto out; ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len); if (ret) goto out; /* * double check for wraparound just in case. copy_from_user() * will later check uffdio_copy.src + uffdio_copy.len to fit * in the userland range. */ ret = -EINVAL; if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) goto out; if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) goto out; if (mmget_not_zero(ctx->mm)) { ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, uffdio_copy.len, &ctx->mmap_changing, uffdio_copy.mode); mmput(ctx->mm); } else { return -ESRCH; } if (unlikely(put_user(ret, &user_uffdio_copy->copy))) return -EFAULT; if (ret < 0) goto out; BUG_ON(!ret); /* len == 0 would wake all */ range.len = ret; if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { range.start = uffdio_copy.dst; wake_userfault(ctx, &range); } ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; out: return ret; } static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, unsigned long arg) { __s64 ret; struct uffdio_zeropage uffdio_zeropage; struct uffdio_zeropage __user *user_uffdio_zeropage; struct userfaultfd_wake_range range; user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; ret = -EAGAIN; if (READ_ONCE(ctx->mmap_changing)) goto out; ret = -EFAULT; if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, /* don't copy "zeropage" last field */ sizeof(uffdio_zeropage)-sizeof(__s64))) goto out; ret = validate_range(ctx->mm, &uffdio_zeropage.range.start, uffdio_zeropage.range.len); if (ret) goto out; ret = -EINVAL; if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) goto out; if (mmget_not_zero(ctx->mm)) { ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, uffdio_zeropage.range.len, &ctx->mmap_changing); mmput(ctx->mm); } else { return -ESRCH; } if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) return -EFAULT; if (ret < 0) goto out; /* len == 0 would wake all */ BUG_ON(!ret); range.len = ret; if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { range.start = uffdio_zeropage.range.start; wake_userfault(ctx, &range); } ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; out: return ret; } static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, unsigned long arg) { int ret; struct uffdio_writeprotect uffdio_wp; struct uffdio_writeprotect __user *user_uffdio_wp; struct userfaultfd_wake_range range; bool mode_wp, mode_dontwake; if (READ_ONCE(ctx->mmap_changing)) return -EAGAIN; user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; if (copy_from_user(&uffdio_wp, user_uffdio_wp, sizeof(struct uffdio_writeprotect))) return -EFAULT; ret = validate_range(ctx->mm, &uffdio_wp.range.start, uffdio_wp.range.len); if (ret) return ret; if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | UFFDIO_WRITEPROTECT_MODE_WP)) return -EINVAL; mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; if (mode_wp && mode_dontwake) return -EINVAL; ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, uffdio_wp.range.len, mode_wp, &ctx->mmap_changing); if (ret) return ret; if (!mode_wp && !mode_dontwake) { range.start = uffdio_wp.range.start; range.len = uffdio_wp.range.len; wake_userfault(ctx, &range); } return ret; } static inline unsigned int uffd_ctx_features(__u64 user_features) { /* * For the current set of features the bits just coincide */ return (unsigned int)user_features; } /* * userland asks for a certain API version and we return which bits * and ioctl commands are implemented in this kernel for such API * version or -EINVAL if unknown. */ static int userfaultfd_api(struct userfaultfd_ctx *ctx, unsigned long arg) { struct uffdio_api uffdio_api; void __user *buf = (void __user *)arg; int ret; __u64 features; ret = -EINVAL; if (ctx->state != UFFD_STATE_WAIT_API) goto out; ret = -EFAULT; if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) goto out; features = uffdio_api.features; ret = -EINVAL; if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) goto err_out; ret = -EPERM; if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) goto err_out; /* report all available features and ioctls to userland */ uffdio_api.features = UFFD_API_FEATURES; uffdio_api.ioctls = UFFD_API_IOCTLS; ret = -EFAULT; if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) goto out; ctx->state = UFFD_STATE_RUNNING; /* only enable the requested features for this uffd context */ ctx->features = uffd_ctx_features(features); ret = 0; out: return ret; err_out: memset(&uffdio_api, 0, sizeof(uffdio_api)); if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) ret = -EFAULT; goto out; } static long userfaultfd_ioctl(struct file *file, unsigned cmd, unsigned long arg) { int ret = -EINVAL; struct userfaultfd_ctx *ctx = file->private_data; if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) return -EINVAL; switch(cmd) { case UFFDIO_API: ret = userfaultfd_api(ctx, arg); break; case UFFDIO_REGISTER: ret = userfaultfd_register(ctx, arg); break; case UFFDIO_UNREGISTER: ret = userfaultfd_unregister(ctx, arg); break; case UFFDIO_WAKE: ret = userfaultfd_wake(ctx, arg); break; case UFFDIO_COPY: ret = userfaultfd_copy(ctx, arg); break; case UFFDIO_ZEROPAGE: ret = userfaultfd_zeropage(ctx, arg); break; case UFFDIO_WRITEPROTECT: ret = userfaultfd_writeprotect(ctx, arg); break; } return ret; } #ifdef CONFIG_PROC_FS static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) { struct userfaultfd_ctx *ctx = f->private_data; wait_queue_entry_t *wq; unsigned long pending = 0, total = 0; spin_lock_irq(&ctx->fault_pending_wqh.lock); list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { pending++; total++; } list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { total++; } spin_unlock_irq(&ctx->fault_pending_wqh.lock); /* * If more protocols will be added, there will be all shown * separated by a space. Like this: * protocols: aa:... bb:... */ seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", pending, total, UFFD_API, ctx->features, UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); } #endif static const struct file_operations userfaultfd_fops = { #ifdef CONFIG_PROC_FS .show_fdinfo = userfaultfd_show_fdinfo, #endif .release = userfaultfd_release, .poll = userfaultfd_poll, .read = userfaultfd_read, .unlocked_ioctl = userfaultfd_ioctl, .compat_ioctl = compat_ptr_ioctl, .llseek = noop_llseek, }; static void init_once_userfaultfd_ctx(void *mem) { struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; init_waitqueue_head(&ctx->fault_pending_wqh); init_waitqueue_head(&ctx->fault_wqh); init_waitqueue_head(&ctx->event_wqh); init_waitqueue_head(&ctx->fd_wqh); seqcount_init(&ctx->refile_seq); } SYSCALL_DEFINE1(userfaultfd, int, flags) { struct userfaultfd_ctx *ctx; int fd; if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE)) return -EPERM; BUG_ON(!current->mm); /* Check the UFFD_* constants for consistency. */ BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); if (flags & ~UFFD_SHARED_FCNTL_FLAGS) return -EINVAL; ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); if (!ctx) return -ENOMEM; refcount_set(&ctx->refcount, 1); ctx->flags = flags; ctx->features = 0; ctx->state = UFFD_STATE_WAIT_API; ctx->released = false; ctx->mmap_changing = false; ctx->mm = current->mm; /* prevent the mm struct to be freed */ mmgrab(ctx->mm); fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); if (fd < 0) { mmdrop(ctx->mm); kmem_cache_free(userfaultfd_ctx_cachep, ctx); } return fd; } static int __init userfaultfd_init(void) { userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", sizeof(struct userfaultfd_ctx), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, init_once_userfaultfd_ctx); return 0; } __initcall(userfaultfd_init);