/* * Copyright (c) 2009, Microsoft Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, see . * * Authors: * Haiyang Zhang * Hank Janssen */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hyperv_net.h" struct net_device_context { /* point back to our device context */ struct hv_device *device_ctx; struct delayed_work dwork; struct work_struct work; }; #define RING_SIZE_MIN 64 static int ring_size = 128; module_param(ring_size, int, S_IRUGO); MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); static void do_set_multicast(struct work_struct *w) { struct net_device_context *ndevctx = container_of(w, struct net_device_context, work); struct netvsc_device *nvdev; struct rndis_device *rdev; nvdev = hv_get_drvdata(ndevctx->device_ctx); if (nvdev == NULL || nvdev->ndev == NULL) return; rdev = nvdev->extension; if (rdev == NULL) return; if (nvdev->ndev->flags & IFF_PROMISC) rndis_filter_set_packet_filter(rdev, NDIS_PACKET_TYPE_PROMISCUOUS); else rndis_filter_set_packet_filter(rdev, NDIS_PACKET_TYPE_BROADCAST | NDIS_PACKET_TYPE_ALL_MULTICAST | NDIS_PACKET_TYPE_DIRECTED); } static void netvsc_set_multicast_list(struct net_device *net) { struct net_device_context *net_device_ctx = netdev_priv(net); schedule_work(&net_device_ctx->work); } static int netvsc_open(struct net_device *net) { struct net_device_context *net_device_ctx = netdev_priv(net); struct hv_device *device_obj = net_device_ctx->device_ctx; struct netvsc_device *nvdev; struct rndis_device *rdev; int ret = 0; netif_carrier_off(net); /* Open up the device */ ret = rndis_filter_open(device_obj); if (ret != 0) { netdev_err(net, "unable to open device (ret %d).\n", ret); return ret; } netif_tx_start_all_queues(net); nvdev = hv_get_drvdata(device_obj); rdev = nvdev->extension; if (!rdev->link_state) netif_carrier_on(net); return ret; } static int netvsc_close(struct net_device *net) { struct net_device_context *net_device_ctx = netdev_priv(net); struct hv_device *device_obj = net_device_ctx->device_ctx; int ret; netif_tx_disable(net); /* Make sure netvsc_set_multicast_list doesn't re-enable filter! */ cancel_work_sync(&net_device_ctx->work); ret = rndis_filter_close(device_obj); if (ret != 0) netdev_err(net, "unable to close device (ret %d).\n", ret); return ret; } static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size, int pkt_type) { struct rndis_packet *rndis_pkt; struct rndis_per_packet_info *ppi; rndis_pkt = &msg->msg.pkt; rndis_pkt->data_offset += ppi_size; ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt + rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len); ppi->size = ppi_size; ppi->type = pkt_type; ppi->ppi_offset = sizeof(struct rndis_per_packet_info); rndis_pkt->per_pkt_info_len += ppi_size; return ppi; } union sub_key { u64 k; struct { u8 pad[3]; u8 kb; u32 ka; }; }; /* Toeplitz hash function * data: network byte order * return: host byte order */ static u32 comp_hash(u8 *key, int klen, void *data, int dlen) { union sub_key subk; int k_next = 4; u8 dt; int i, j; u32 ret = 0; subk.k = 0; subk.ka = ntohl(*(u32 *)key); for (i = 0; i < dlen; i++) { subk.kb = key[k_next]; k_next = (k_next + 1) % klen; dt = ((u8 *)data)[i]; for (j = 0; j < 8; j++) { if (dt & 0x80) ret ^= subk.ka; dt <<= 1; subk.k <<= 1; } } return ret; } static bool netvsc_set_hash(u32 *hash, struct sk_buff *skb) { struct flow_keys flow; int data_len; if (!skb_flow_dissect(skb, &flow) || !(flow.n_proto == htons(ETH_P_IP) || flow.n_proto == htons(ETH_P_IPV6))) return false; if (flow.ip_proto == IPPROTO_TCP) data_len = 12; else data_len = 8; *hash = comp_hash(netvsc_hash_key, HASH_KEYLEN, &flow, data_len); return true; } static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, void *accel_priv, select_queue_fallback_t fallback) { struct net_device_context *net_device_ctx = netdev_priv(ndev); struct hv_device *hdev = net_device_ctx->device_ctx; struct netvsc_device *nvsc_dev = hv_get_drvdata(hdev); u32 hash; u16 q_idx = 0; if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1) return 0; if (netvsc_set_hash(&hash, skb)) { q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] % ndev->real_num_tx_queues; skb_set_hash(skb, hash, PKT_HASH_TYPE_L3); } return q_idx; } void netvsc_xmit_completion(void *context) { struct hv_netvsc_packet *packet = (struct hv_netvsc_packet *)context; struct sk_buff *skb = (struct sk_buff *) (unsigned long)packet->send_completion_tid; if (!packet->part_of_skb) kfree(packet); if (skb) dev_kfree_skb_any(skb); } static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, struct hv_page_buffer *pb) { int j = 0; /* Deal with compund pages by ignoring unused part * of the page. */ page += (offset >> PAGE_SHIFT); offset &= ~PAGE_MASK; while (len > 0) { unsigned long bytes; bytes = PAGE_SIZE - offset; if (bytes > len) bytes = len; pb[j].pfn = page_to_pfn(page); pb[j].offset = offset; pb[j].len = bytes; offset += bytes; len -= bytes; if (offset == PAGE_SIZE && len) { page++; offset = 0; j++; } } return j + 1; } static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, struct hv_page_buffer *pb) { u32 slots_used = 0; char *data = skb->data; int frags = skb_shinfo(skb)->nr_frags; int i; /* The packet is laid out thus: * 1. hdr * 2. skb linear data * 3. skb fragment data */ if (hdr != NULL) slots_used += fill_pg_buf(virt_to_page(hdr), offset_in_page(hdr), len, &pb[slots_used]); slots_used += fill_pg_buf(virt_to_page(data), offset_in_page(data), skb_headlen(skb), &pb[slots_used]); for (i = 0; i < frags; i++) { skb_frag_t *frag = skb_shinfo(skb)->frags + i; slots_used += fill_pg_buf(skb_frag_page(frag), frag->page_offset, skb_frag_size(frag), &pb[slots_used]); } return slots_used; } static int count_skb_frag_slots(struct sk_buff *skb) { int i, frags = skb_shinfo(skb)->nr_frags; int pages = 0; for (i = 0; i < frags; i++) { skb_frag_t *frag = skb_shinfo(skb)->frags + i; unsigned long size = skb_frag_size(frag); unsigned long offset = frag->page_offset; /* Skip unused frames from start of page */ offset &= ~PAGE_MASK; pages += PFN_UP(offset + size); } return pages; } static int netvsc_get_slots(struct sk_buff *skb) { char *data = skb->data; unsigned int offset = offset_in_page(data); unsigned int len = skb_headlen(skb); int slots; int frag_slots; slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); frag_slots = count_skb_frag_slots(skb); return slots + frag_slots; } static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off) { u32 ret_val = TRANSPORT_INFO_NOT_IP; if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) && (eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) { goto not_ip; } *trans_off = skb_transport_offset(skb); if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) { struct iphdr *iphdr = ip_hdr(skb); if (iphdr->protocol == IPPROTO_TCP) ret_val = TRANSPORT_INFO_IPV4_TCP; else if (iphdr->protocol == IPPROTO_UDP) ret_val = TRANSPORT_INFO_IPV4_UDP; } else { if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) ret_val = TRANSPORT_INFO_IPV6_TCP; else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP) ret_val = TRANSPORT_INFO_IPV6_UDP; } not_ip: return ret_val; } static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net) { struct net_device_context *net_device_ctx = netdev_priv(net); struct hv_netvsc_packet *packet = NULL; int ret; unsigned int num_data_pgs; struct rndis_message *rndis_msg; struct rndis_packet *rndis_pkt; u32 rndis_msg_size; bool isvlan; bool linear = false; struct rndis_per_packet_info *ppi; struct ndis_tcp_ip_checksum_info *csum_info; struct ndis_tcp_lso_info *lso_info; int hdr_offset; u32 net_trans_info; u32 hash; u32 skb_length; u32 head_room; u32 pkt_sz; struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT]; /* We will atmost need two pages to describe the rndis * header. We can only transmit MAX_PAGE_BUFFER_COUNT number * of pages in a single packet. If skb is scattered around * more pages we try linearizing it. */ check_size: skb_length = skb->len; head_room = skb_headroom(skb); num_data_pgs = netvsc_get_slots(skb) + 2; if (num_data_pgs > MAX_PAGE_BUFFER_COUNT && linear) { net_alert_ratelimited("packet too big: %u pages (%u bytes)\n", num_data_pgs, skb->len); ret = -EFAULT; goto drop; } else if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { if (skb_linearize(skb)) { net_alert_ratelimited("failed to linearize skb\n"); ret = -ENOMEM; goto drop; } linear = true; goto check_size; } pkt_sz = sizeof(struct hv_netvsc_packet) + RNDIS_AND_PPI_SIZE; if (head_room < pkt_sz) { packet = kmalloc(pkt_sz, GFP_ATOMIC); if (!packet) { /* out of memory, drop packet */ netdev_err(net, "unable to alloc hv_netvsc_packet\n"); ret = -ENOMEM; goto drop; } packet->part_of_skb = false; } else { /* Use the headroom for building up the packet */ packet = (struct hv_netvsc_packet *)skb->head; packet->part_of_skb = true; } packet->status = 0; packet->xmit_more = skb->xmit_more; packet->vlan_tci = skb->vlan_tci; packet->page_buf = page_buf; packet->q_idx = skb_get_queue_mapping(skb); packet->is_data_pkt = true; packet->total_data_buflen = skb->len; packet->rndis_msg = (struct rndis_message *)((unsigned long)packet + sizeof(struct hv_netvsc_packet)); memset(packet->rndis_msg, 0, RNDIS_AND_PPI_SIZE); /* Set the completion routine */ packet->send_completion = netvsc_xmit_completion; packet->send_completion_ctx = packet; packet->send_completion_tid = (unsigned long)skb; isvlan = packet->vlan_tci & VLAN_TAG_PRESENT; /* Add the rndis header */ rndis_msg = packet->rndis_msg; rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; rndis_msg->msg_len = packet->total_data_buflen; rndis_pkt = &rndis_msg->msg.pkt; rndis_pkt->data_offset = sizeof(struct rndis_packet); rndis_pkt->data_len = packet->total_data_buflen; rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet); rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); hash = skb_get_hash_raw(skb); if (hash != 0 && net->real_num_tx_queues > 1) { rndis_msg_size += NDIS_HASH_PPI_SIZE; ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, NBL_HASH_VALUE); *(u32 *)((void *)ppi + ppi->ppi_offset) = hash; } if (isvlan) { struct ndis_pkt_8021q_info *vlan; rndis_msg_size += NDIS_VLAN_PPI_SIZE; ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, IEEE_8021Q_INFO); vlan = (struct ndis_pkt_8021q_info *)((void *)ppi + ppi->ppi_offset); vlan->vlanid = packet->vlan_tci & VLAN_VID_MASK; vlan->pri = (packet->vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; } net_trans_info = get_net_transport_info(skb, &hdr_offset); if (net_trans_info == TRANSPORT_INFO_NOT_IP) goto do_send; /* * Setup the sendside checksum offload only if this is not a * GSO packet. */ if (skb_is_gso(skb)) goto do_lso; if ((skb->ip_summed == CHECKSUM_NONE) || (skb->ip_summed == CHECKSUM_UNNECESSARY)) goto do_send; rndis_msg_size += NDIS_CSUM_PPI_SIZE; ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, TCPIP_CHKSUM_PKTINFO); csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi + ppi->ppi_offset); if (net_trans_info & (INFO_IPV4 << 16)) csum_info->transmit.is_ipv4 = 1; else csum_info->transmit.is_ipv6 = 1; if (net_trans_info & INFO_TCP) { csum_info->transmit.tcp_checksum = 1; csum_info->transmit.tcp_header_offset = hdr_offset; } else if (net_trans_info & INFO_UDP) { /* UDP checksum offload is not supported on ws2008r2. * Furthermore, on ws2012 and ws2012r2, there are some * issues with udp checksum offload from Linux guests. * (these are host issues). * For now compute the checksum here. */ struct udphdr *uh; u16 udp_len; ret = skb_cow_head(skb, 0); if (ret) goto drop; uh = udp_hdr(skb); udp_len = ntohs(uh->len); uh->check = 0; uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, udp_len, IPPROTO_UDP, csum_partial(uh, udp_len, 0)); if (uh->check == 0) uh->check = CSUM_MANGLED_0; csum_info->transmit.udp_checksum = 0; } goto do_send; do_lso: rndis_msg_size += NDIS_LSO_PPI_SIZE; ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, TCP_LARGESEND_PKTINFO); lso_info = (struct ndis_tcp_lso_info *)((void *)ppi + ppi->ppi_offset); lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; if (net_trans_info & (INFO_IPV4 << 16)) { lso_info->lso_v2_transmit.ip_version = NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; ip_hdr(skb)->tot_len = 0; ip_hdr(skb)->check = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } else { lso_info->lso_v2_transmit.ip_version = NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; ipv6_hdr(skb)->payload_len = 0; tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset; lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; do_send: /* Start filling in the page buffers with the rndis hdr */ rndis_msg->msg_len += rndis_msg_size; packet->total_data_buflen = rndis_msg->msg_len; packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, skb, &page_buf[0]); ret = netvsc_send(net_device_ctx->device_ctx, packet); drop: if (ret == 0) { net->stats.tx_bytes += skb_length; net->stats.tx_packets++; } else { if (packet && !packet->part_of_skb) kfree(packet); if (ret != -EAGAIN) { dev_kfree_skb_any(skb); net->stats.tx_dropped++; } } return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK; } /* * netvsc_linkstatus_callback - Link up/down notification */ void netvsc_linkstatus_callback(struct hv_device *device_obj, struct rndis_message *resp) { struct rndis_indicate_status *indicate = &resp->msg.indicate_status; struct net_device *net; struct net_device_context *ndev_ctx; struct netvsc_device *net_device; struct rndis_device *rdev; net_device = hv_get_drvdata(device_obj); rdev = net_device->extension; switch (indicate->status) { case RNDIS_STATUS_MEDIA_CONNECT: rdev->link_state = false; break; case RNDIS_STATUS_MEDIA_DISCONNECT: rdev->link_state = true; break; case RNDIS_STATUS_NETWORK_CHANGE: rdev->link_change = true; break; default: return; } net = net_device->ndev; if (!net || net->reg_state != NETREG_REGISTERED) return; ndev_ctx = netdev_priv(net); if (!rdev->link_state) { schedule_delayed_work(&ndev_ctx->dwork, 0); schedule_delayed_work(&ndev_ctx->dwork, msecs_to_jiffies(20)); } else { schedule_delayed_work(&ndev_ctx->dwork, 0); } } /* * netvsc_recv_callback - Callback when we receive a packet from the * "wire" on the specified device. */ int netvsc_recv_callback(struct hv_device *device_obj, struct hv_netvsc_packet *packet, struct ndis_tcp_ip_checksum_info *csum_info) { struct net_device *net; struct sk_buff *skb; net = ((struct netvsc_device *)hv_get_drvdata(device_obj))->ndev; if (!net || net->reg_state != NETREG_REGISTERED) { packet->status = NVSP_STAT_FAIL; return 0; } /* Allocate a skb - TODO direct I/O to pages? */ skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen); if (unlikely(!skb)) { ++net->stats.rx_dropped; packet->status = NVSP_STAT_FAIL; return 0; } /* * Copy to skb. This copy is needed here since the memory pointed by * hv_netvsc_packet cannot be deallocated */ memcpy(skb_put(skb, packet->total_data_buflen), packet->data, packet->total_data_buflen); skb->protocol = eth_type_trans(skb, net); if (csum_info) { /* We only look at the IP checksum here. * Should we be dropping the packet if checksum * failed? How do we deal with other checksums - TCP/UDP? */ if (csum_info->receive.ip_checksum_succeeded) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; } if (packet->vlan_tci & VLAN_TAG_PRESENT) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), packet->vlan_tci); skb_record_rx_queue(skb, packet->channel-> offermsg.offer.sub_channel_index); net->stats.rx_packets++; net->stats.rx_bytes += packet->total_data_buflen; /* * Pass the skb back up. Network stack will deallocate the skb when it * is done. * TODO - use NAPI? */ netif_rx(skb); return 0; } static void netvsc_get_drvinfo(struct net_device *net, struct ethtool_drvinfo *info) { strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); } static void netvsc_get_channels(struct net_device *net, struct ethtool_channels *channel) { struct net_device_context *net_device_ctx = netdev_priv(net); struct hv_device *dev = net_device_ctx->device_ctx; struct netvsc_device *nvdev = hv_get_drvdata(dev); if (nvdev) { channel->max_combined = nvdev->max_chn; channel->combined_count = nvdev->num_chn; } } static int netvsc_change_mtu(struct net_device *ndev, int mtu) { struct net_device_context *ndevctx = netdev_priv(ndev); struct hv_device *hdev = ndevctx->device_ctx; struct netvsc_device *nvdev = hv_get_drvdata(hdev); struct netvsc_device_info device_info; int limit = ETH_DATA_LEN; if (nvdev == NULL || nvdev->destroy) return -ENODEV; if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) limit = NETVSC_MTU - ETH_HLEN; /* Hyper-V hosts don't support MTU < ETH_DATA_LEN (1500) */ if (mtu < ETH_DATA_LEN || mtu > limit) return -EINVAL; nvdev->start_remove = true; cancel_work_sync(&ndevctx->work); netif_tx_disable(ndev); rndis_filter_device_remove(hdev); ndev->mtu = mtu; ndevctx->device_ctx = hdev; hv_set_drvdata(hdev, ndev); device_info.ring_size = ring_size; rndis_filter_device_add(hdev, &device_info); netif_tx_wake_all_queues(ndev); return 0; } static int netvsc_set_mac_addr(struct net_device *ndev, void *p) { struct net_device_context *ndevctx = netdev_priv(ndev); struct hv_device *hdev = ndevctx->device_ctx; struct sockaddr *addr = p; char save_adr[ETH_ALEN]; unsigned char save_aatype; int err; memcpy(save_adr, ndev->dev_addr, ETH_ALEN); save_aatype = ndev->addr_assign_type; err = eth_mac_addr(ndev, p); if (err != 0) return err; err = rndis_filter_set_device_mac(hdev, addr->sa_data); if (err != 0) { /* roll back to saved MAC */ memcpy(ndev->dev_addr, save_adr, ETH_ALEN); ndev->addr_assign_type = save_aatype; } return err; } #ifdef CONFIG_NET_POLL_CONTROLLER static void netvsc_poll_controller(struct net_device *net) { /* As netvsc_start_xmit() works synchronous we don't have to * trigger anything here. */ } #endif static const struct ethtool_ops ethtool_ops = { .get_drvinfo = netvsc_get_drvinfo, .get_link = ethtool_op_get_link, .get_channels = netvsc_get_channels, }; static const struct net_device_ops device_ops = { .ndo_open = netvsc_open, .ndo_stop = netvsc_close, .ndo_start_xmit = netvsc_start_xmit, .ndo_set_rx_mode = netvsc_set_multicast_list, .ndo_change_mtu = netvsc_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = netvsc_set_mac_addr, .ndo_select_queue = netvsc_select_queue, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = netvsc_poll_controller, #endif }; /* * Send GARP packet to network peers after migrations. * After Quick Migration, the network is not immediately operational in the * current context when receiving RNDIS_STATUS_MEDIA_CONNECT event. So, add * another netif_notify_peers() into a delayed work, otherwise GARP packet * will not be sent after quick migration, and cause network disconnection. * Also, we update the carrier status here. */ static void netvsc_link_change(struct work_struct *w) { struct net_device_context *ndev_ctx; struct net_device *net; struct netvsc_device *net_device; struct rndis_device *rdev; bool notify, refresh = false; char *argv[] = { "/etc/init.d/network", "restart", NULL }; char *envp[] = { "HOME=/", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL }; rtnl_lock(); ndev_ctx = container_of(w, struct net_device_context, dwork.work); net_device = hv_get_drvdata(ndev_ctx->device_ctx); rdev = net_device->extension; net = net_device->ndev; if (rdev->link_state) { netif_carrier_off(net); notify = false; } else { netif_carrier_on(net); notify = true; if (rdev->link_change) { rdev->link_change = false; refresh = true; } } rtnl_unlock(); if (refresh) call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); if (notify) netdev_notify_peers(net); } static int netvsc_probe(struct hv_device *dev, const struct hv_vmbus_device_id *dev_id) { struct net_device *net = NULL; struct net_device_context *net_device_ctx; struct netvsc_device_info device_info; struct netvsc_device *nvdev; int ret; u32 max_needed_headroom; net = alloc_etherdev_mq(sizeof(struct net_device_context), num_online_cpus()); if (!net) return -ENOMEM; max_needed_headroom = sizeof(struct hv_netvsc_packet) + RNDIS_AND_PPI_SIZE; netif_carrier_off(net); net_device_ctx = netdev_priv(net); net_device_ctx->device_ctx = dev; hv_set_drvdata(dev, net); INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); INIT_WORK(&net_device_ctx->work, do_set_multicast); net->netdev_ops = &device_ops; net->hw_features = NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; net->features = NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_SG | NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_TSO; net->ethtool_ops = ðtool_ops; SET_NETDEV_DEV(net, &dev->device); /* * Request additional head room in the skb. * We will use this space to build the rndis * heaser and other state we need to maintain. */ net->needed_headroom = max_needed_headroom; /* Notify the netvsc driver of the new device */ device_info.ring_size = ring_size; ret = rndis_filter_device_add(dev, &device_info); if (ret != 0) { netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); free_netdev(net); hv_set_drvdata(dev, NULL); return ret; } memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN); nvdev = hv_get_drvdata(dev); netif_set_real_num_tx_queues(net, nvdev->num_chn); netif_set_real_num_rx_queues(net, nvdev->num_chn); ret = register_netdev(net); if (ret != 0) { pr_err("Unable to register netdev.\n"); rndis_filter_device_remove(dev); free_netdev(net); } else { schedule_delayed_work(&net_device_ctx->dwork, 0); } return ret; } static int netvsc_remove(struct hv_device *dev) { struct net_device *net; struct net_device_context *ndev_ctx; struct netvsc_device *net_device; net_device = hv_get_drvdata(dev); net = net_device->ndev; if (net == NULL) { dev_err(&dev->device, "No net device to remove\n"); return 0; } net_device->start_remove = true; ndev_ctx = netdev_priv(net); cancel_delayed_work_sync(&ndev_ctx->dwork); cancel_work_sync(&ndev_ctx->work); /* Stop outbound asap */ netif_tx_disable(net); unregister_netdev(net); /* * Call to the vsc driver to let it know that the device is being * removed */ rndis_filter_device_remove(dev); free_netdev(net); return 0; } static const struct hv_vmbus_device_id id_table[] = { /* Network guid */ { HV_NIC_GUID, }, { }, }; MODULE_DEVICE_TABLE(vmbus, id_table); /* The one and only one */ static struct hv_driver netvsc_drv = { .name = KBUILD_MODNAME, .id_table = id_table, .probe = netvsc_probe, .remove = netvsc_remove, }; static void __exit netvsc_drv_exit(void) { vmbus_driver_unregister(&netvsc_drv); } static int __init netvsc_drv_init(void) { if (ring_size < RING_SIZE_MIN) { ring_size = RING_SIZE_MIN; pr_info("Increased ring_size to %d (min allowed)\n", ring_size); } return vmbus_driver_register(&netvsc_drv); } MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); module_init(netvsc_drv_init); module_exit(netvsc_drv_exit);