/* * drivers/net/wireless/mwl8k.c * Driver for Marvell TOPDOG 802.11 Wireless cards * * Copyright (C) 2008, 2009, 2010 Marvell Semiconductor Inc. * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MWL8K_DESC "Marvell TOPDOG(R) 802.11 Wireless Network Driver" #define MWL8K_NAME KBUILD_MODNAME #define MWL8K_VERSION "0.12" /* Module parameters */ static unsigned ap_mode_default; module_param(ap_mode_default, bool, 0); MODULE_PARM_DESC(ap_mode_default, "Set to 1 to make ap mode the default instead of sta mode"); /* Register definitions */ #define MWL8K_HIU_GEN_PTR 0x00000c10 #define MWL8K_MODE_STA 0x0000005a #define MWL8K_MODE_AP 0x000000a5 #define MWL8K_HIU_INT_CODE 0x00000c14 #define MWL8K_FWSTA_READY 0xf0f1f2f4 #define MWL8K_FWAP_READY 0xf1f2f4a5 #define MWL8K_INT_CODE_CMD_FINISHED 0x00000005 #define MWL8K_HIU_SCRATCH 0x00000c40 /* Host->device communications */ #define MWL8K_HIU_H2A_INTERRUPT_EVENTS 0x00000c18 #define MWL8K_HIU_H2A_INTERRUPT_STATUS 0x00000c1c #define MWL8K_HIU_H2A_INTERRUPT_MASK 0x00000c20 #define MWL8K_HIU_H2A_INTERRUPT_CLEAR_SEL 0x00000c24 #define MWL8K_HIU_H2A_INTERRUPT_STATUS_MASK 0x00000c28 #define MWL8K_H2A_INT_DUMMY (1 << 20) #define MWL8K_H2A_INT_RESET (1 << 15) #define MWL8K_H2A_INT_DOORBELL (1 << 1) #define MWL8K_H2A_INT_PPA_READY (1 << 0) /* Device->host communications */ #define MWL8K_HIU_A2H_INTERRUPT_EVENTS 0x00000c2c #define MWL8K_HIU_A2H_INTERRUPT_STATUS 0x00000c30 #define MWL8K_HIU_A2H_INTERRUPT_MASK 0x00000c34 #define MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL 0x00000c38 #define MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK 0x00000c3c #define MWL8K_A2H_INT_DUMMY (1 << 20) #define MWL8K_A2H_INT_BA_WATCHDOG (1 << 14) #define MWL8K_A2H_INT_CHNL_SWITCHED (1 << 11) #define MWL8K_A2H_INT_QUEUE_EMPTY (1 << 10) #define MWL8K_A2H_INT_RADAR_DETECT (1 << 7) #define MWL8K_A2H_INT_RADIO_ON (1 << 6) #define MWL8K_A2H_INT_RADIO_OFF (1 << 5) #define MWL8K_A2H_INT_MAC_EVENT (1 << 3) #define MWL8K_A2H_INT_OPC_DONE (1 << 2) #define MWL8K_A2H_INT_RX_READY (1 << 1) #define MWL8K_A2H_INT_TX_DONE (1 << 0) #define MWL8K_A2H_EVENTS (MWL8K_A2H_INT_DUMMY | \ MWL8K_A2H_INT_CHNL_SWITCHED | \ MWL8K_A2H_INT_QUEUE_EMPTY | \ MWL8K_A2H_INT_RADAR_DETECT | \ MWL8K_A2H_INT_RADIO_ON | \ MWL8K_A2H_INT_RADIO_OFF | \ MWL8K_A2H_INT_MAC_EVENT | \ MWL8K_A2H_INT_OPC_DONE | \ MWL8K_A2H_INT_RX_READY | \ MWL8K_A2H_INT_TX_DONE | \ MWL8K_A2H_INT_BA_WATCHDOG) #define MWL8K_RX_QUEUES 1 #define MWL8K_TX_WMM_QUEUES 4 #define MWL8K_MAX_AMPDU_QUEUES 8 #define MWL8K_MAX_TX_QUEUES (MWL8K_TX_WMM_QUEUES + MWL8K_MAX_AMPDU_QUEUES) #define mwl8k_tx_queues(priv) (MWL8K_TX_WMM_QUEUES + (priv)->num_ampdu_queues) struct rxd_ops { int rxd_size; void (*rxd_init)(void *rxd, dma_addr_t next_dma_addr); void (*rxd_refill)(void *rxd, dma_addr_t addr, int len); int (*rxd_process)(void *rxd, struct ieee80211_rx_status *status, __le16 *qos, s8 *noise); }; struct mwl8k_device_info { char *part_name; char *helper_image; char *fw_image_sta; char *fw_image_ap; struct rxd_ops *ap_rxd_ops; u32 fw_api_ap; }; struct mwl8k_rx_queue { int rxd_count; /* hw receives here */ int head; /* refill descs here */ int tail; void *rxd; dma_addr_t rxd_dma; struct { struct sk_buff *skb; DEFINE_DMA_UNMAP_ADDR(dma); } *buf; }; struct mwl8k_tx_queue { /* hw transmits here */ int head; /* sw appends here */ int tail; unsigned int len; struct mwl8k_tx_desc *txd; dma_addr_t txd_dma; struct sk_buff **skb; }; enum { AMPDU_NO_STREAM, AMPDU_STREAM_NEW, AMPDU_STREAM_IN_PROGRESS, AMPDU_STREAM_ACTIVE, }; struct mwl8k_ampdu_stream { struct ieee80211_sta *sta; u8 tid; u8 state; u8 idx; u8 txq_idx; /* index of this stream in priv->txq */ }; struct mwl8k_priv { struct ieee80211_hw *hw; struct pci_dev *pdev; int irq; struct mwl8k_device_info *device_info; void __iomem *sram; void __iomem *regs; /* firmware */ const struct firmware *fw_helper; const struct firmware *fw_ucode; /* hardware/firmware parameters */ bool ap_fw; struct rxd_ops *rxd_ops; struct ieee80211_supported_band band_24; struct ieee80211_channel channels_24[14]; struct ieee80211_rate rates_24[14]; struct ieee80211_supported_band band_50; struct ieee80211_channel channels_50[4]; struct ieee80211_rate rates_50[9]; u32 ap_macids_supported; u32 sta_macids_supported; /* Ampdu stream information */ u8 num_ampdu_queues; spinlock_t stream_lock; struct mwl8k_ampdu_stream ampdu[MWL8K_MAX_AMPDU_QUEUES]; struct work_struct watchdog_ba_handle; /* firmware access */ struct mutex fw_mutex; struct task_struct *fw_mutex_owner; int fw_mutex_depth; struct completion *hostcmd_wait; /* lock held over TX and TX reap */ spinlock_t tx_lock; /* TX quiesce completion, protected by fw_mutex and tx_lock */ struct completion *tx_wait; /* List of interfaces. */ u32 macids_used; struct list_head vif_list; /* power management status cookie from firmware */ u32 *cookie; dma_addr_t cookie_dma; u16 num_mcaddrs; u8 hw_rev; u32 fw_rev; /* * Running count of TX packets in flight, to avoid * iterating over the transmit rings each time. */ int pending_tx_pkts; struct mwl8k_rx_queue rxq[MWL8K_RX_QUEUES]; struct mwl8k_tx_queue txq[MWL8K_MAX_TX_QUEUES]; u32 txq_offset[MWL8K_MAX_TX_QUEUES]; bool radio_on; bool radio_short_preamble; bool sniffer_enabled; bool wmm_enabled; /* XXX need to convert this to handle multiple interfaces */ bool capture_beacon; u8 capture_bssid[ETH_ALEN]; struct sk_buff *beacon_skb; /* * This FJ worker has to be global as it is scheduled from the * RX handler. At this point we don't know which interface it * belongs to until the list of bssids waiting to complete join * is checked. */ struct work_struct finalize_join_worker; /* Tasklet to perform TX reclaim. */ struct tasklet_struct poll_tx_task; /* Tasklet to perform RX. */ struct tasklet_struct poll_rx_task; /* Most recently reported noise in dBm */ s8 noise; /* * preserve the queue configurations so they can be restored if/when * the firmware image is swapped. */ struct ieee80211_tx_queue_params wmm_params[MWL8K_TX_WMM_QUEUES]; /* async firmware loading state */ unsigned fw_state; char *fw_pref; char *fw_alt; struct completion firmware_loading_complete; }; #define MAX_WEP_KEY_LEN 13 #define NUM_WEP_KEYS 4 /* Per interface specific private data */ struct mwl8k_vif { struct list_head list; struct ieee80211_vif *vif; /* Firmware macid for this vif. */ int macid; /* Non AMPDU sequence number assigned by driver. */ u16 seqno; /* Saved WEP keys */ struct { u8 enabled; u8 key[sizeof(struct ieee80211_key_conf) + MAX_WEP_KEY_LEN]; } wep_key_conf[NUM_WEP_KEYS]; /* BSSID */ u8 bssid[ETH_ALEN]; /* A flag to indicate is HW crypto is enabled for this bssid */ bool is_hw_crypto_enabled; }; #define MWL8K_VIF(_vif) ((struct mwl8k_vif *)&((_vif)->drv_priv)) #define IEEE80211_KEY_CONF(_u8) ((struct ieee80211_key_conf *)(_u8)) struct tx_traffic_info { u32 start_time; u32 pkts; }; #define MWL8K_MAX_TID 8 struct mwl8k_sta { /* Index into station database. Returned by UPDATE_STADB. */ u8 peer_id; u8 is_ampdu_allowed; struct tx_traffic_info tx_stats[MWL8K_MAX_TID]; }; #define MWL8K_STA(_sta) ((struct mwl8k_sta *)&((_sta)->drv_priv)) static const struct ieee80211_channel mwl8k_channels_24[] = { { .center_freq = 2412, .hw_value = 1, }, { .center_freq = 2417, .hw_value = 2, }, { .center_freq = 2422, .hw_value = 3, }, { .center_freq = 2427, .hw_value = 4, }, { .center_freq = 2432, .hw_value = 5, }, { .center_freq = 2437, .hw_value = 6, }, { .center_freq = 2442, .hw_value = 7, }, { .center_freq = 2447, .hw_value = 8, }, { .center_freq = 2452, .hw_value = 9, }, { .center_freq = 2457, .hw_value = 10, }, { .center_freq = 2462, .hw_value = 11, }, { .center_freq = 2467, .hw_value = 12, }, { .center_freq = 2472, .hw_value = 13, }, { .center_freq = 2484, .hw_value = 14, }, }; static const struct ieee80211_rate mwl8k_rates_24[] = { { .bitrate = 10, .hw_value = 2, }, { .bitrate = 20, .hw_value = 4, }, { .bitrate = 55, .hw_value = 11, }, { .bitrate = 110, .hw_value = 22, }, { .bitrate = 220, .hw_value = 44, }, { .bitrate = 60, .hw_value = 12, }, { .bitrate = 90, .hw_value = 18, }, { .bitrate = 120, .hw_value = 24, }, { .bitrate = 180, .hw_value = 36, }, { .bitrate = 240, .hw_value = 48, }, { .bitrate = 360, .hw_value = 72, }, { .bitrate = 480, .hw_value = 96, }, { .bitrate = 540, .hw_value = 108, }, { .bitrate = 720, .hw_value = 144, }, }; static const struct ieee80211_channel mwl8k_channels_50[] = { { .center_freq = 5180, .hw_value = 36, }, { .center_freq = 5200, .hw_value = 40, }, { .center_freq = 5220, .hw_value = 44, }, { .center_freq = 5240, .hw_value = 48, }, }; static const struct ieee80211_rate mwl8k_rates_50[] = { { .bitrate = 60, .hw_value = 12, }, { .bitrate = 90, .hw_value = 18, }, { .bitrate = 120, .hw_value = 24, }, { .bitrate = 180, .hw_value = 36, }, { .bitrate = 240, .hw_value = 48, }, { .bitrate = 360, .hw_value = 72, }, { .bitrate = 480, .hw_value = 96, }, { .bitrate = 540, .hw_value = 108, }, { .bitrate = 720, .hw_value = 144, }, }; /* Set or get info from Firmware */ #define MWL8K_CMD_GET 0x0000 #define MWL8K_CMD_SET 0x0001 #define MWL8K_CMD_SET_LIST 0x0002 /* Firmware command codes */ #define MWL8K_CMD_CODE_DNLD 0x0001 #define MWL8K_CMD_GET_HW_SPEC 0x0003 #define MWL8K_CMD_SET_HW_SPEC 0x0004 #define MWL8K_CMD_MAC_MULTICAST_ADR 0x0010 #define MWL8K_CMD_GET_STAT 0x0014 #define MWL8K_CMD_RADIO_CONTROL 0x001c #define MWL8K_CMD_RF_TX_POWER 0x001e #define MWL8K_CMD_TX_POWER 0x001f #define MWL8K_CMD_RF_ANTENNA 0x0020 #define MWL8K_CMD_SET_BEACON 0x0100 /* per-vif */ #define MWL8K_CMD_SET_PRE_SCAN 0x0107 #define MWL8K_CMD_SET_POST_SCAN 0x0108 #define MWL8K_CMD_SET_RF_CHANNEL 0x010a #define MWL8K_CMD_SET_AID 0x010d #define MWL8K_CMD_SET_RATE 0x0110 #define MWL8K_CMD_SET_FINALIZE_JOIN 0x0111 #define MWL8K_CMD_RTS_THRESHOLD 0x0113 #define MWL8K_CMD_SET_SLOT 0x0114 #define MWL8K_CMD_SET_EDCA_PARAMS 0x0115 #define MWL8K_CMD_SET_WMM_MODE 0x0123 #define MWL8K_CMD_MIMO_CONFIG 0x0125 #define MWL8K_CMD_USE_FIXED_RATE 0x0126 #define MWL8K_CMD_ENABLE_SNIFFER 0x0150 #define MWL8K_CMD_SET_MAC_ADDR 0x0202 /* per-vif */ #define MWL8K_CMD_SET_RATEADAPT_MODE 0x0203 #define MWL8K_CMD_GET_WATCHDOG_BITMAP 0x0205 #define MWL8K_CMD_BSS_START 0x1100 /* per-vif */ #define MWL8K_CMD_SET_NEW_STN 0x1111 /* per-vif */ #define MWL8K_CMD_UPDATE_ENCRYPTION 0x1122 /* per-vif */ #define MWL8K_CMD_UPDATE_STADB 0x1123 #define MWL8K_CMD_BASTREAM 0x1125 static const char *mwl8k_cmd_name(__le16 cmd, char *buf, int bufsize) { u16 command = le16_to_cpu(cmd); #define MWL8K_CMDNAME(x) case MWL8K_CMD_##x: do {\ snprintf(buf, bufsize, "%s", #x);\ return buf;\ } while (0) switch (command & ~0x8000) { MWL8K_CMDNAME(CODE_DNLD); MWL8K_CMDNAME(GET_HW_SPEC); MWL8K_CMDNAME(SET_HW_SPEC); MWL8K_CMDNAME(MAC_MULTICAST_ADR); MWL8K_CMDNAME(GET_STAT); MWL8K_CMDNAME(RADIO_CONTROL); MWL8K_CMDNAME(RF_TX_POWER); MWL8K_CMDNAME(TX_POWER); MWL8K_CMDNAME(RF_ANTENNA); MWL8K_CMDNAME(SET_BEACON); MWL8K_CMDNAME(SET_PRE_SCAN); MWL8K_CMDNAME(SET_POST_SCAN); MWL8K_CMDNAME(SET_RF_CHANNEL); MWL8K_CMDNAME(SET_AID); MWL8K_CMDNAME(SET_RATE); MWL8K_CMDNAME(SET_FINALIZE_JOIN); MWL8K_CMDNAME(RTS_THRESHOLD); MWL8K_CMDNAME(SET_SLOT); MWL8K_CMDNAME(SET_EDCA_PARAMS); MWL8K_CMDNAME(SET_WMM_MODE); MWL8K_CMDNAME(MIMO_CONFIG); MWL8K_CMDNAME(USE_FIXED_RATE); MWL8K_CMDNAME(ENABLE_SNIFFER); MWL8K_CMDNAME(SET_MAC_ADDR); MWL8K_CMDNAME(SET_RATEADAPT_MODE); MWL8K_CMDNAME(BSS_START); MWL8K_CMDNAME(SET_NEW_STN); MWL8K_CMDNAME(UPDATE_ENCRYPTION); MWL8K_CMDNAME(UPDATE_STADB); MWL8K_CMDNAME(BASTREAM); MWL8K_CMDNAME(GET_WATCHDOG_BITMAP); default: snprintf(buf, bufsize, "0x%x", cmd); } #undef MWL8K_CMDNAME return buf; } /* Hardware and firmware reset */ static void mwl8k_hw_reset(struct mwl8k_priv *priv) { iowrite32(MWL8K_H2A_INT_RESET, priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); iowrite32(MWL8K_H2A_INT_RESET, priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); msleep(20); } /* Release fw image */ static void mwl8k_release_fw(const struct firmware **fw) { if (*fw == NULL) return; release_firmware(*fw); *fw = NULL; } static void mwl8k_release_firmware(struct mwl8k_priv *priv) { mwl8k_release_fw(&priv->fw_ucode); mwl8k_release_fw(&priv->fw_helper); } /* states for asynchronous f/w loading */ static void mwl8k_fw_state_machine(const struct firmware *fw, void *context); enum { FW_STATE_INIT = 0, FW_STATE_LOADING_PREF, FW_STATE_LOADING_ALT, FW_STATE_ERROR, }; /* Request fw image */ static int mwl8k_request_fw(struct mwl8k_priv *priv, const char *fname, const struct firmware **fw, bool nowait) { /* release current image */ if (*fw != NULL) mwl8k_release_fw(fw); if (nowait) return request_firmware_nowait(THIS_MODULE, 1, fname, &priv->pdev->dev, GFP_KERNEL, priv, mwl8k_fw_state_machine); else return request_firmware(fw, fname, &priv->pdev->dev); } static int mwl8k_request_firmware(struct mwl8k_priv *priv, char *fw_image, bool nowait) { struct mwl8k_device_info *di = priv->device_info; int rc; if (di->helper_image != NULL) { if (nowait) rc = mwl8k_request_fw(priv, di->helper_image, &priv->fw_helper, true); else rc = mwl8k_request_fw(priv, di->helper_image, &priv->fw_helper, false); if (rc) printk(KERN_ERR "%s: Error requesting helper fw %s\n", pci_name(priv->pdev), di->helper_image); if (rc || nowait) return rc; } if (nowait) { /* * if we get here, no helper image is needed. Skip the * FW_STATE_INIT state. */ priv->fw_state = FW_STATE_LOADING_PREF; rc = mwl8k_request_fw(priv, fw_image, &priv->fw_ucode, true); } else rc = mwl8k_request_fw(priv, fw_image, &priv->fw_ucode, false); if (rc) { printk(KERN_ERR "%s: Error requesting firmware file %s\n", pci_name(priv->pdev), fw_image); mwl8k_release_fw(&priv->fw_helper); return rc; } return 0; } struct mwl8k_cmd_pkt { __le16 code; __le16 length; __u8 seq_num; __u8 macid; __le16 result; char payload[0]; } __packed; /* * Firmware loading. */ static int mwl8k_send_fw_load_cmd(struct mwl8k_priv *priv, void *data, int length) { void __iomem *regs = priv->regs; dma_addr_t dma_addr; int loops; dma_addr = pci_map_single(priv->pdev, data, length, PCI_DMA_TODEVICE); if (pci_dma_mapping_error(priv->pdev, dma_addr)) return -ENOMEM; iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR); iowrite32(0, regs + MWL8K_HIU_INT_CODE); iowrite32(MWL8K_H2A_INT_DOORBELL, regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); iowrite32(MWL8K_H2A_INT_DUMMY, regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); loops = 1000; do { u32 int_code; int_code = ioread32(regs + MWL8K_HIU_INT_CODE); if (int_code == MWL8K_INT_CODE_CMD_FINISHED) { iowrite32(0, regs + MWL8K_HIU_INT_CODE); break; } cond_resched(); udelay(1); } while (--loops); pci_unmap_single(priv->pdev, dma_addr, length, PCI_DMA_TODEVICE); return loops ? 0 : -ETIMEDOUT; } static int mwl8k_load_fw_image(struct mwl8k_priv *priv, const u8 *data, size_t length) { struct mwl8k_cmd_pkt *cmd; int done; int rc = 0; cmd = kmalloc(sizeof(*cmd) + 256, GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->code = cpu_to_le16(MWL8K_CMD_CODE_DNLD); cmd->seq_num = 0; cmd->macid = 0; cmd->result = 0; done = 0; while (length) { int block_size = length > 256 ? 256 : length; memcpy(cmd->payload, data + done, block_size); cmd->length = cpu_to_le16(block_size); rc = mwl8k_send_fw_load_cmd(priv, cmd, sizeof(*cmd) + block_size); if (rc) break; done += block_size; length -= block_size; } if (!rc) { cmd->length = 0; rc = mwl8k_send_fw_load_cmd(priv, cmd, sizeof(*cmd)); } kfree(cmd); return rc; } static int mwl8k_feed_fw_image(struct mwl8k_priv *priv, const u8 *data, size_t length) { unsigned char *buffer; int may_continue, rc = 0; u32 done, prev_block_size; buffer = kmalloc(1024, GFP_KERNEL); if (buffer == NULL) return -ENOMEM; done = 0; prev_block_size = 0; may_continue = 1000; while (may_continue > 0) { u32 block_size; block_size = ioread32(priv->regs + MWL8K_HIU_SCRATCH); if (block_size & 1) { block_size &= ~1; may_continue--; } else { done += prev_block_size; length -= prev_block_size; } if (block_size > 1024 || block_size > length) { rc = -EOVERFLOW; break; } if (length == 0) { rc = 0; break; } if (block_size == 0) { rc = -EPROTO; may_continue--; udelay(1); continue; } prev_block_size = block_size; memcpy(buffer, data + done, block_size); rc = mwl8k_send_fw_load_cmd(priv, buffer, block_size); if (rc) break; } if (!rc && length != 0) rc = -EREMOTEIO; kfree(buffer); return rc; } static int mwl8k_load_firmware(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; const struct firmware *fw = priv->fw_ucode; int rc; int loops; if (!memcmp(fw->data, "\x01\x00\x00\x00", 4)) { const struct firmware *helper = priv->fw_helper; if (helper == NULL) { printk(KERN_ERR "%s: helper image needed but none " "given\n", pci_name(priv->pdev)); return -EINVAL; } rc = mwl8k_load_fw_image(priv, helper->data, helper->size); if (rc) { printk(KERN_ERR "%s: unable to load firmware " "helper image\n", pci_name(priv->pdev)); return rc; } msleep(20); rc = mwl8k_feed_fw_image(priv, fw->data, fw->size); } else { rc = mwl8k_load_fw_image(priv, fw->data, fw->size); } if (rc) { printk(KERN_ERR "%s: unable to load firmware image\n", pci_name(priv->pdev)); return rc; } iowrite32(MWL8K_MODE_STA, priv->regs + MWL8K_HIU_GEN_PTR); loops = 500000; do { u32 ready_code; ready_code = ioread32(priv->regs + MWL8K_HIU_INT_CODE); if (ready_code == MWL8K_FWAP_READY) { priv->ap_fw = 1; break; } else if (ready_code == MWL8K_FWSTA_READY) { priv->ap_fw = 0; break; } cond_resched(); udelay(1); } while (--loops); return loops ? 0 : -ETIMEDOUT; } /* DMA header used by firmware and hardware. */ struct mwl8k_dma_data { __le16 fwlen; struct ieee80211_hdr wh; char data[0]; } __packed; /* Routines to add/remove DMA header from skb. */ static inline void mwl8k_remove_dma_header(struct sk_buff *skb, __le16 qos) { struct mwl8k_dma_data *tr; int hdrlen; tr = (struct mwl8k_dma_data *)skb->data; hdrlen = ieee80211_hdrlen(tr->wh.frame_control); if (hdrlen != sizeof(tr->wh)) { if (ieee80211_is_data_qos(tr->wh.frame_control)) { memmove(tr->data - hdrlen, &tr->wh, hdrlen - 2); *((__le16 *)(tr->data - 2)) = qos; } else { memmove(tr->data - hdrlen, &tr->wh, hdrlen); } } if (hdrlen != sizeof(*tr)) skb_pull(skb, sizeof(*tr) - hdrlen); } static void mwl8k_add_dma_header(struct sk_buff *skb, int tail_pad) { struct ieee80211_hdr *wh; int hdrlen; int reqd_hdrlen; struct mwl8k_dma_data *tr; /* * Add a firmware DMA header; the firmware requires that we * present a 2-byte payload length followed by a 4-address * header (without QoS field), followed (optionally) by any * WEP/ExtIV header (but only filled in for CCMP). */ wh = (struct ieee80211_hdr *)skb->data; hdrlen = ieee80211_hdrlen(wh->frame_control); reqd_hdrlen = sizeof(*tr); if (hdrlen != reqd_hdrlen) skb_push(skb, reqd_hdrlen - hdrlen); if (ieee80211_is_data_qos(wh->frame_control)) hdrlen -= IEEE80211_QOS_CTL_LEN; tr = (struct mwl8k_dma_data *)skb->data; if (wh != &tr->wh) memmove(&tr->wh, wh, hdrlen); if (hdrlen != sizeof(tr->wh)) memset(((void *)&tr->wh) + hdrlen, 0, sizeof(tr->wh) - hdrlen); /* * Firmware length is the length of the fully formed "802.11 * payload". That is, everything except for the 802.11 header. * This includes all crypto material including the MIC. */ tr->fwlen = cpu_to_le16(skb->len - sizeof(*tr) + tail_pad); } static void mwl8k_encapsulate_tx_frame(struct sk_buff *skb) { struct ieee80211_hdr *wh; struct ieee80211_tx_info *tx_info; struct ieee80211_key_conf *key_conf; int data_pad; wh = (struct ieee80211_hdr *)skb->data; tx_info = IEEE80211_SKB_CB(skb); key_conf = NULL; if (ieee80211_is_data(wh->frame_control)) key_conf = tx_info->control.hw_key; /* * Make sure the packet header is in the DMA header format (4-address * without QoS), the necessary crypto padding between the header and the * payload has already been provided by mac80211, but it doesn't add * tail padding when HW crypto is enabled. * * We have the following trailer padding requirements: * - WEP: 4 trailer bytes (ICV) * - TKIP: 12 trailer bytes (8 MIC + 4 ICV) * - CCMP: 8 trailer bytes (MIC) */ data_pad = 0; if (key_conf != NULL) { switch (key_conf->cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: data_pad = 4; break; case WLAN_CIPHER_SUITE_TKIP: data_pad = 12; break; case WLAN_CIPHER_SUITE_CCMP: data_pad = 8; break; } } mwl8k_add_dma_header(skb, data_pad); } /* * Packet reception for 88w8366 AP firmware. */ struct mwl8k_rxd_8366_ap { __le16 pkt_len; __u8 sq2; __u8 rate; __le32 pkt_phys_addr; __le32 next_rxd_phys_addr; __le16 qos_control; __le16 htsig2; __le32 hw_rssi_info; __le32 hw_noise_floor_info; __u8 noise_floor; __u8 pad0[3]; __u8 rssi; __u8 rx_status; __u8 channel; __u8 rx_ctrl; } __packed; #define MWL8K_8366_AP_RATE_INFO_MCS_FORMAT 0x80 #define MWL8K_8366_AP_RATE_INFO_40MHZ 0x40 #define MWL8K_8366_AP_RATE_INFO_RATEID(x) ((x) & 0x3f) #define MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST 0x80 /* 8366 AP rx_status bits */ #define MWL8K_8366_AP_RXSTAT_DECRYPT_ERR_MASK 0x80 #define MWL8K_8366_AP_RXSTAT_GENERAL_DECRYPT_ERR 0xFF #define MWL8K_8366_AP_RXSTAT_TKIP_DECRYPT_MIC_ERR 0x02 #define MWL8K_8366_AP_RXSTAT_WEP_DECRYPT_ICV_ERR 0x04 #define MWL8K_8366_AP_RXSTAT_TKIP_DECRYPT_ICV_ERR 0x08 static void mwl8k_rxd_8366_ap_init(void *_rxd, dma_addr_t next_dma_addr) { struct mwl8k_rxd_8366_ap *rxd = _rxd; rxd->next_rxd_phys_addr = cpu_to_le32(next_dma_addr); rxd->rx_ctrl = MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST; } static void mwl8k_rxd_8366_ap_refill(void *_rxd, dma_addr_t addr, int len) { struct mwl8k_rxd_8366_ap *rxd = _rxd; rxd->pkt_len = cpu_to_le16(len); rxd->pkt_phys_addr = cpu_to_le32(addr); wmb(); rxd->rx_ctrl = 0; } static int mwl8k_rxd_8366_ap_process(void *_rxd, struct ieee80211_rx_status *status, __le16 *qos, s8 *noise) { struct mwl8k_rxd_8366_ap *rxd = _rxd; if (!(rxd->rx_ctrl & MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST)) return -1; rmb(); memset(status, 0, sizeof(*status)); status->signal = -rxd->rssi; *noise = -rxd->noise_floor; if (rxd->rate & MWL8K_8366_AP_RATE_INFO_MCS_FORMAT) { status->flag |= RX_FLAG_HT; if (rxd->rate & MWL8K_8366_AP_RATE_INFO_40MHZ) status->flag |= RX_FLAG_40MHZ; status->rate_idx = MWL8K_8366_AP_RATE_INFO_RATEID(rxd->rate); } else { int i; for (i = 0; i < ARRAY_SIZE(mwl8k_rates_24); i++) { if (mwl8k_rates_24[i].hw_value == rxd->rate) { status->rate_idx = i; break; } } } if (rxd->channel > 14) { status->band = IEEE80211_BAND_5GHZ; if (!(status->flag & RX_FLAG_HT)) status->rate_idx -= 5; } else { status->band = IEEE80211_BAND_2GHZ; } status->freq = ieee80211_channel_to_frequency(rxd->channel, status->band); *qos = rxd->qos_control; if ((rxd->rx_status != MWL8K_8366_AP_RXSTAT_GENERAL_DECRYPT_ERR) && (rxd->rx_status & MWL8K_8366_AP_RXSTAT_DECRYPT_ERR_MASK) && (rxd->rx_status & MWL8K_8366_AP_RXSTAT_TKIP_DECRYPT_MIC_ERR)) status->flag |= RX_FLAG_MMIC_ERROR; return le16_to_cpu(rxd->pkt_len); } static struct rxd_ops rxd_8366_ap_ops = { .rxd_size = sizeof(struct mwl8k_rxd_8366_ap), .rxd_init = mwl8k_rxd_8366_ap_init, .rxd_refill = mwl8k_rxd_8366_ap_refill, .rxd_process = mwl8k_rxd_8366_ap_process, }; /* * Packet reception for STA firmware. */ struct mwl8k_rxd_sta { __le16 pkt_len; __u8 link_quality; __u8 noise_level; __le32 pkt_phys_addr; __le32 next_rxd_phys_addr; __le16 qos_control; __le16 rate_info; __le32 pad0[4]; __u8 rssi; __u8 channel; __le16 pad1; __u8 rx_ctrl; __u8 rx_status; __u8 pad2[2]; } __packed; #define MWL8K_STA_RATE_INFO_SHORTPRE 0x8000 #define MWL8K_STA_RATE_INFO_ANTSELECT(x) (((x) >> 11) & 0x3) #define MWL8K_STA_RATE_INFO_RATEID(x) (((x) >> 3) & 0x3f) #define MWL8K_STA_RATE_INFO_40MHZ 0x0004 #define MWL8K_STA_RATE_INFO_SHORTGI 0x0002 #define MWL8K_STA_RATE_INFO_MCS_FORMAT 0x0001 #define MWL8K_STA_RX_CTRL_OWNED_BY_HOST 0x02 #define MWL8K_STA_RX_CTRL_DECRYPT_ERROR 0x04 /* ICV=0 or MIC=1 */ #define MWL8K_STA_RX_CTRL_DEC_ERR_TYPE 0x08 /* Key is uploaded only in failure case */ #define MWL8K_STA_RX_CTRL_KEY_INDEX 0x30 static void mwl8k_rxd_sta_init(void *_rxd, dma_addr_t next_dma_addr) { struct mwl8k_rxd_sta *rxd = _rxd; rxd->next_rxd_phys_addr = cpu_to_le32(next_dma_addr); rxd->rx_ctrl = MWL8K_STA_RX_CTRL_OWNED_BY_HOST; } static void mwl8k_rxd_sta_refill(void *_rxd, dma_addr_t addr, int len) { struct mwl8k_rxd_sta *rxd = _rxd; rxd->pkt_len = cpu_to_le16(len); rxd->pkt_phys_addr = cpu_to_le32(addr); wmb(); rxd->rx_ctrl = 0; } static int mwl8k_rxd_sta_process(void *_rxd, struct ieee80211_rx_status *status, __le16 *qos, s8 *noise) { struct mwl8k_rxd_sta *rxd = _rxd; u16 rate_info; if (!(rxd->rx_ctrl & MWL8K_STA_RX_CTRL_OWNED_BY_HOST)) return -1; rmb(); rate_info = le16_to_cpu(rxd->rate_info); memset(status, 0, sizeof(*status)); status->signal = -rxd->rssi; *noise = -rxd->noise_level; status->antenna = MWL8K_STA_RATE_INFO_ANTSELECT(rate_info); status->rate_idx = MWL8K_STA_RATE_INFO_RATEID(rate_info); if (rate_info & MWL8K_STA_RATE_INFO_SHORTPRE) status->flag |= RX_FLAG_SHORTPRE; if (rate_info & MWL8K_STA_RATE_INFO_40MHZ) status->flag |= RX_FLAG_40MHZ; if (rate_info & MWL8K_STA_RATE_INFO_SHORTGI) status->flag |= RX_FLAG_SHORT_GI; if (rate_info & MWL8K_STA_RATE_INFO_MCS_FORMAT) status->flag |= RX_FLAG_HT; if (rxd->channel > 14) { status->band = IEEE80211_BAND_5GHZ; if (!(status->flag & RX_FLAG_HT)) status->rate_idx -= 5; } else { status->band = IEEE80211_BAND_2GHZ; } status->freq = ieee80211_channel_to_frequency(rxd->channel, status->band); *qos = rxd->qos_control; if ((rxd->rx_ctrl & MWL8K_STA_RX_CTRL_DECRYPT_ERROR) && (rxd->rx_ctrl & MWL8K_STA_RX_CTRL_DEC_ERR_TYPE)) status->flag |= RX_FLAG_MMIC_ERROR; return le16_to_cpu(rxd->pkt_len); } static struct rxd_ops rxd_sta_ops = { .rxd_size = sizeof(struct mwl8k_rxd_sta), .rxd_init = mwl8k_rxd_sta_init, .rxd_refill = mwl8k_rxd_sta_refill, .rxd_process = mwl8k_rxd_sta_process, }; #define MWL8K_RX_DESCS 256 #define MWL8K_RX_MAXSZ 3800 static int mwl8k_rxq_init(struct ieee80211_hw *hw, int index) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_rx_queue *rxq = priv->rxq + index; int size; int i; rxq->rxd_count = 0; rxq->head = 0; rxq->tail = 0; size = MWL8K_RX_DESCS * priv->rxd_ops->rxd_size; rxq->rxd = pci_alloc_consistent(priv->pdev, size, &rxq->rxd_dma); if (rxq->rxd == NULL) { wiphy_err(hw->wiphy, "failed to alloc RX descriptors\n"); return -ENOMEM; } memset(rxq->rxd, 0, size); rxq->buf = kcalloc(MWL8K_RX_DESCS, sizeof(*rxq->buf), GFP_KERNEL); if (rxq->buf == NULL) { wiphy_err(hw->wiphy, "failed to alloc RX skbuff list\n"); pci_free_consistent(priv->pdev, size, rxq->rxd, rxq->rxd_dma); return -ENOMEM; } for (i = 0; i < MWL8K_RX_DESCS; i++) { int desc_size; void *rxd; int nexti; dma_addr_t next_dma_addr; desc_size = priv->rxd_ops->rxd_size; rxd = rxq->rxd + (i * priv->rxd_ops->rxd_size); nexti = i + 1; if (nexti == MWL8K_RX_DESCS) nexti = 0; next_dma_addr = rxq->rxd_dma + (nexti * desc_size); priv->rxd_ops->rxd_init(rxd, next_dma_addr); } return 0; } static int rxq_refill(struct ieee80211_hw *hw, int index, int limit) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_rx_queue *rxq = priv->rxq + index; int refilled; refilled = 0; while (rxq->rxd_count < MWL8K_RX_DESCS && limit--) { struct sk_buff *skb; dma_addr_t addr; int rx; void *rxd; skb = dev_alloc_skb(MWL8K_RX_MAXSZ); if (skb == NULL) break; addr = pci_map_single(priv->pdev, skb->data, MWL8K_RX_MAXSZ, DMA_FROM_DEVICE); rxq->rxd_count++; rx = rxq->tail++; if (rxq->tail == MWL8K_RX_DESCS) rxq->tail = 0; rxq->buf[rx].skb = skb; dma_unmap_addr_set(&rxq->buf[rx], dma, addr); rxd = rxq->rxd + (rx * priv->rxd_ops->rxd_size); priv->rxd_ops->rxd_refill(rxd, addr, MWL8K_RX_MAXSZ); refilled++; } return refilled; } /* Must be called only when the card's reception is completely halted */ static void mwl8k_rxq_deinit(struct ieee80211_hw *hw, int index) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_rx_queue *rxq = priv->rxq + index; int i; if (rxq->rxd == NULL) return; for (i = 0; i < MWL8K_RX_DESCS; i++) { if (rxq->buf[i].skb != NULL) { pci_unmap_single(priv->pdev, dma_unmap_addr(&rxq->buf[i], dma), MWL8K_RX_MAXSZ, PCI_DMA_FROMDEVICE); dma_unmap_addr_set(&rxq->buf[i], dma, 0); kfree_skb(rxq->buf[i].skb); rxq->buf[i].skb = NULL; } } kfree(rxq->buf); rxq->buf = NULL; pci_free_consistent(priv->pdev, MWL8K_RX_DESCS * priv->rxd_ops->rxd_size, rxq->rxd, rxq->rxd_dma); rxq->rxd = NULL; } /* * Scan a list of BSSIDs to process for finalize join. * Allows for extension to process multiple BSSIDs. */ static inline int mwl8k_capture_bssid(struct mwl8k_priv *priv, struct ieee80211_hdr *wh) { return priv->capture_beacon && ieee80211_is_beacon(wh->frame_control) && !compare_ether_addr(wh->addr3, priv->capture_bssid); } static inline void mwl8k_save_beacon(struct ieee80211_hw *hw, struct sk_buff *skb) { struct mwl8k_priv *priv = hw->priv; priv->capture_beacon = false; memset(priv->capture_bssid, 0, ETH_ALEN); /* * Use GFP_ATOMIC as rxq_process is called from * the primary interrupt handler, memory allocation call * must not sleep. */ priv->beacon_skb = skb_copy(skb, GFP_ATOMIC); if (priv->beacon_skb != NULL) ieee80211_queue_work(hw, &priv->finalize_join_worker); } static inline struct mwl8k_vif *mwl8k_find_vif_bss(struct list_head *vif_list, u8 *bssid) { struct mwl8k_vif *mwl8k_vif; list_for_each_entry(mwl8k_vif, vif_list, list) { if (memcmp(bssid, mwl8k_vif->bssid, ETH_ALEN) == 0) return mwl8k_vif; } return NULL; } static int rxq_process(struct ieee80211_hw *hw, int index, int limit) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_vif *mwl8k_vif = NULL; struct mwl8k_rx_queue *rxq = priv->rxq + index; int processed; processed = 0; while (rxq->rxd_count && limit--) { struct sk_buff *skb; void *rxd; int pkt_len; struct ieee80211_rx_status status; struct ieee80211_hdr *wh; __le16 qos; skb = rxq->buf[rxq->head].skb; if (skb == NULL) break; rxd = rxq->rxd + (rxq->head * priv->rxd_ops->rxd_size); pkt_len = priv->rxd_ops->rxd_process(rxd, &status, &qos, &priv->noise); if (pkt_len < 0) break; rxq->buf[rxq->head].skb = NULL; pci_unmap_single(priv->pdev, dma_unmap_addr(&rxq->buf[rxq->head], dma), MWL8K_RX_MAXSZ, PCI_DMA_FROMDEVICE); dma_unmap_addr_set(&rxq->buf[rxq->head], dma, 0); rxq->head++; if (rxq->head == MWL8K_RX_DESCS) rxq->head = 0; rxq->rxd_count--; wh = &((struct mwl8k_dma_data *)skb->data)->wh; /* * Check for a pending join operation. Save a * copy of the beacon and schedule a tasklet to * send a FINALIZE_JOIN command to the firmware. */ if (mwl8k_capture_bssid(priv, (void *)skb->data)) mwl8k_save_beacon(hw, skb); if (ieee80211_has_protected(wh->frame_control)) { /* Check if hw crypto has been enabled for * this bss. If yes, set the status flags * accordingly */ mwl8k_vif = mwl8k_find_vif_bss(&priv->vif_list, wh->addr1); if (mwl8k_vif != NULL && mwl8k_vif->is_hw_crypto_enabled == true) { /* * When MMIC ERROR is encountered * by the firmware, payload is * dropped and only 32 bytes of * mwl8k Firmware header is sent * to the host. * * We need to add four bytes of * key information. In it * MAC80211 expects keyidx set to * 0 for triggering Counter * Measure of MMIC failure. */ if (status.flag & RX_FLAG_MMIC_ERROR) { struct mwl8k_dma_data *tr; tr = (struct mwl8k_dma_data *)skb->data; memset((void *)&(tr->data), 0, 4); pkt_len += 4; } if (!ieee80211_is_auth(wh->frame_control)) status.flag |= RX_FLAG_IV_STRIPPED | RX_FLAG_DECRYPTED | RX_FLAG_MMIC_STRIPPED; } } skb_put(skb, pkt_len); mwl8k_remove_dma_header(skb, qos); memcpy(IEEE80211_SKB_RXCB(skb), &status, sizeof(status)); ieee80211_rx_irqsafe(hw, skb); processed++; } return processed; } /* * Packet transmission. */ #define MWL8K_TXD_STATUS_OK 0x00000001 #define MWL8K_TXD_STATUS_OK_RETRY 0x00000002 #define MWL8K_TXD_STATUS_OK_MORE_RETRY 0x00000004 #define MWL8K_TXD_STATUS_MULTICAST_TX 0x00000008 #define MWL8K_TXD_STATUS_FW_OWNED 0x80000000 #define MWL8K_QOS_QLEN_UNSPEC 0xff00 #define MWL8K_QOS_ACK_POLICY_MASK 0x0060 #define MWL8K_QOS_ACK_POLICY_NORMAL 0x0000 #define MWL8K_QOS_ACK_POLICY_BLOCKACK 0x0060 #define MWL8K_QOS_EOSP 0x0010 struct mwl8k_tx_desc { __le32 status; __u8 data_rate; __u8 tx_priority; __le16 qos_control; __le32 pkt_phys_addr; __le16 pkt_len; __u8 dest_MAC_addr[ETH_ALEN]; __le32 next_txd_phys_addr; __le32 timestamp; __le16 rate_info; __u8 peer_id; __u8 tx_frag_cnt; } __packed; #define MWL8K_TX_DESCS 128 static int mwl8k_txq_init(struct ieee80211_hw *hw, int index) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_tx_queue *txq = priv->txq + index; int size; int i; txq->len = 0; txq->head = 0; txq->tail = 0; size = MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc); txq->txd = pci_alloc_consistent(priv->pdev, size, &txq->txd_dma); if (txq->txd == NULL) { wiphy_err(hw->wiphy, "failed to alloc TX descriptors\n"); return -ENOMEM; } memset(txq->txd, 0, size); txq->skb = kcalloc(MWL8K_TX_DESCS, sizeof(*txq->skb), GFP_KERNEL); if (txq->skb == NULL) { wiphy_err(hw->wiphy, "failed to alloc TX skbuff list\n"); pci_free_consistent(priv->pdev, size, txq->txd, txq->txd_dma); return -ENOMEM; } for (i = 0; i < MWL8K_TX_DESCS; i++) { struct mwl8k_tx_desc *tx_desc; int nexti; tx_desc = txq->txd + i; nexti = (i + 1) % MWL8K_TX_DESCS; tx_desc->status = 0; tx_desc->next_txd_phys_addr = cpu_to_le32(txq->txd_dma + nexti * sizeof(*tx_desc)); } return 0; } static inline void mwl8k_tx_start(struct mwl8k_priv *priv) { iowrite32(MWL8K_H2A_INT_PPA_READY, priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); iowrite32(MWL8K_H2A_INT_DUMMY, priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); ioread32(priv->regs + MWL8K_HIU_INT_CODE); } static void mwl8k_dump_tx_rings(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; int i; for (i = 0; i < mwl8k_tx_queues(priv); i++) { struct mwl8k_tx_queue *txq = priv->txq + i; int fw_owned = 0; int drv_owned = 0; int unused = 0; int desc; for (desc = 0; desc < MWL8K_TX_DESCS; desc++) { struct mwl8k_tx_desc *tx_desc = txq->txd + desc; u32 status; status = le32_to_cpu(tx_desc->status); if (status & MWL8K_TXD_STATUS_FW_OWNED) fw_owned++; else drv_owned++; if (tx_desc->pkt_len == 0) unused++; } wiphy_err(hw->wiphy, "txq[%d] len=%d head=%d tail=%d " "fw_owned=%d drv_owned=%d unused=%d\n", i, txq->len, txq->head, txq->tail, fw_owned, drv_owned, unused); } } /* * Must be called with priv->fw_mutex held and tx queues stopped. */ #define MWL8K_TX_WAIT_TIMEOUT_MS 5000 static int mwl8k_tx_wait_empty(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; DECLARE_COMPLETION_ONSTACK(tx_wait); int retry; int rc; might_sleep(); /* * The TX queues are stopped at this point, so this test * doesn't need to take ->tx_lock. */ if (!priv->pending_tx_pkts) return 0; retry = 0; rc = 0; spin_lock_bh(&priv->tx_lock); priv->tx_wait = &tx_wait; while (!rc) { int oldcount; unsigned long timeout; oldcount = priv->pending_tx_pkts; spin_unlock_bh(&priv->tx_lock); timeout = wait_for_completion_timeout(&tx_wait, msecs_to_jiffies(MWL8K_TX_WAIT_TIMEOUT_MS)); spin_lock_bh(&priv->tx_lock); if (timeout) { WARN_ON(priv->pending_tx_pkts); if (retry) wiphy_notice(hw->wiphy, "tx rings drained\n"); break; } if (priv->pending_tx_pkts < oldcount) { wiphy_notice(hw->wiphy, "waiting for tx rings to drain (%d -> %d pkts)\n", oldcount, priv->pending_tx_pkts); retry = 1; continue; } priv->tx_wait = NULL; wiphy_err(hw->wiphy, "tx rings stuck for %d ms\n", MWL8K_TX_WAIT_TIMEOUT_MS); mwl8k_dump_tx_rings(hw); rc = -ETIMEDOUT; } spin_unlock_bh(&priv->tx_lock); return rc; } #define MWL8K_TXD_SUCCESS(status) \ ((status) & (MWL8K_TXD_STATUS_OK | \ MWL8K_TXD_STATUS_OK_RETRY | \ MWL8K_TXD_STATUS_OK_MORE_RETRY)) static int mwl8k_tid_queue_mapping(u8 tid) { BUG_ON(tid > 7); switch (tid) { case 0: case 3: return IEEE80211_AC_BE; break; case 1: case 2: return IEEE80211_AC_BK; break; case 4: case 5: return IEEE80211_AC_VI; break; case 6: case 7: return IEEE80211_AC_VO; break; default: return -1; break; } } /* The firmware will fill in the rate information * for each packet that gets queued in the hardware * in this structure */ struct rateinfo { __le16 format:1; __le16 short_gi:1; __le16 band_width:1; __le16 rate_id_mcs:6; __le16 adv_coding:2; __le16 antenna:2; __le16 act_sub_chan:2; __le16 preamble_type:1; __le16 power_id:4; __le16 antenna2:1; __le16 reserved:1; __le16 tx_bf_frame:1; __le16 green_field:1; } __packed; static int mwl8k_txq_reclaim(struct ieee80211_hw *hw, int index, int limit, int force) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_tx_queue *txq = priv->txq + index; int processed; processed = 0; while (txq->len > 0 && limit--) { int tx; struct mwl8k_tx_desc *tx_desc; unsigned long addr; int size; struct sk_buff *skb; struct ieee80211_tx_info *info; u32 status; struct ieee80211_sta *sta; struct mwl8k_sta *sta_info = NULL; u16 rate_info; struct rateinfo *rate; struct ieee80211_hdr *wh; tx = txq->head; tx_desc = txq->txd + tx; status = le32_to_cpu(tx_desc->status); if (status & MWL8K_TXD_STATUS_FW_OWNED) { if (!force) break; tx_desc->status &= ~cpu_to_le32(MWL8K_TXD_STATUS_FW_OWNED); } txq->head = (tx + 1) % MWL8K_TX_DESCS; BUG_ON(txq->len == 0); txq->len--; priv->pending_tx_pkts--; addr = le32_to_cpu(tx_desc->pkt_phys_addr); size = le16_to_cpu(tx_desc->pkt_len); skb = txq->skb[tx]; txq->skb[tx] = NULL; BUG_ON(skb == NULL); pci_unmap_single(priv->pdev, addr, size, PCI_DMA_TODEVICE); mwl8k_remove_dma_header(skb, tx_desc->qos_control); wh = (struct ieee80211_hdr *) skb->data; /* Mark descriptor as unused */ tx_desc->pkt_phys_addr = 0; tx_desc->pkt_len = 0; info = IEEE80211_SKB_CB(skb); if (ieee80211_is_data(wh->frame_control)) { sta = info->control.sta; if (sta) { sta_info = MWL8K_STA(sta); BUG_ON(sta_info == NULL); rate_info = le16_to_cpu(tx_desc->rate_info); rate = (struct rateinfo *)&rate_info; /* If rate is < 6.5 Mpbs for an ht station * do not form an ampdu. If the station is a * legacy station (format = 0), do not form an * ampdu */ if (rate->rate_id_mcs < 1 || rate->format == 0) { sta_info->is_ampdu_allowed = false; } else { sta_info->is_ampdu_allowed = true; } } } ieee80211_tx_info_clear_status(info); /* Rate control is happening in the firmware. * Ensure no tx rate is being reported. */ info->status.rates[0].idx = -1; info->status.rates[0].count = 1; if (MWL8K_TXD_SUCCESS(status)) info->flags |= IEEE80211_TX_STAT_ACK; ieee80211_tx_status_irqsafe(hw, skb); processed++; } return processed; } /* must be called only when the card's transmit is completely halted */ static void mwl8k_txq_deinit(struct ieee80211_hw *hw, int index) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_tx_queue *txq = priv->txq + index; if (txq->txd == NULL) return; mwl8k_txq_reclaim(hw, index, INT_MAX, 1); kfree(txq->skb); txq->skb = NULL; pci_free_consistent(priv->pdev, MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc), txq->txd, txq->txd_dma); txq->txd = NULL; } /* caller must hold priv->stream_lock when calling the stream functions */ static struct mwl8k_ampdu_stream * mwl8k_add_stream(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 tid) { struct mwl8k_ampdu_stream *stream; struct mwl8k_priv *priv = hw->priv; int i; for (i = 0; i < priv->num_ampdu_queues; i++) { stream = &priv->ampdu[i]; if (stream->state == AMPDU_NO_STREAM) { stream->sta = sta; stream->state = AMPDU_STREAM_NEW; stream->tid = tid; stream->idx = i; stream->txq_idx = MWL8K_TX_WMM_QUEUES + i; wiphy_debug(hw->wiphy, "Added a new stream for %pM %d", sta->addr, tid); return stream; } } return NULL; } static int mwl8k_start_stream(struct ieee80211_hw *hw, struct mwl8k_ampdu_stream *stream) { int ret; /* if the stream has already been started, don't start it again */ if (stream->state != AMPDU_STREAM_NEW) return 0; ret = ieee80211_start_tx_ba_session(stream->sta, stream->tid, 0); if (ret) wiphy_debug(hw->wiphy, "Failed to start stream for %pM %d: " "%d\n", stream->sta->addr, stream->tid, ret); else wiphy_debug(hw->wiphy, "Started stream for %pM %d\n", stream->sta->addr, stream->tid); return ret; } static void mwl8k_remove_stream(struct ieee80211_hw *hw, struct mwl8k_ampdu_stream *stream) { wiphy_debug(hw->wiphy, "Remove stream for %pM %d\n", stream->sta->addr, stream->tid); memset(stream, 0, sizeof(*stream)); } static struct mwl8k_ampdu_stream * mwl8k_lookup_stream(struct ieee80211_hw *hw, u8 *addr, u8 tid) { struct mwl8k_priv *priv = hw->priv; int i; for (i = 0 ; i < priv->num_ampdu_queues; i++) { struct mwl8k_ampdu_stream *stream; stream = &priv->ampdu[i]; if (stream->state == AMPDU_NO_STREAM) continue; if (!memcmp(stream->sta->addr, addr, ETH_ALEN) && stream->tid == tid) return stream; } return NULL; } #define MWL8K_AMPDU_PACKET_THRESHOLD 64 static inline bool mwl8k_ampdu_allowed(struct ieee80211_sta *sta, u8 tid) { struct mwl8k_sta *sta_info = MWL8K_STA(sta); struct tx_traffic_info *tx_stats; BUG_ON(tid >= MWL8K_MAX_TID); tx_stats = &sta_info->tx_stats[tid]; return sta_info->is_ampdu_allowed && tx_stats->pkts > MWL8K_AMPDU_PACKET_THRESHOLD; } static inline void mwl8k_tx_count_packet(struct ieee80211_sta *sta, u8 tid) { struct mwl8k_sta *sta_info = MWL8K_STA(sta); struct tx_traffic_info *tx_stats; BUG_ON(tid >= MWL8K_MAX_TID); tx_stats = &sta_info->tx_stats[tid]; if (tx_stats->start_time == 0) tx_stats->start_time = jiffies; /* reset the packet count after each second elapses. If the number of * packets ever exceeds the ampdu_min_traffic threshold, we will allow * an ampdu stream to be started. */ if (jiffies - tx_stats->start_time > HZ) { tx_stats->pkts = 0; tx_stats->start_time = 0; } else tx_stats->pkts++; } static void mwl8k_txq_xmit(struct ieee80211_hw *hw, int index, struct sk_buff *skb) { struct mwl8k_priv *priv = hw->priv; struct ieee80211_tx_info *tx_info; struct mwl8k_vif *mwl8k_vif; struct ieee80211_sta *sta; struct ieee80211_hdr *wh; struct mwl8k_tx_queue *txq; struct mwl8k_tx_desc *tx; dma_addr_t dma; u32 txstatus; u8 txdatarate; u16 qos; int txpriority; u8 tid = 0; struct mwl8k_ampdu_stream *stream = NULL; bool start_ba_session = false; struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; wh = (struct ieee80211_hdr *)skb->data; if (ieee80211_is_data_qos(wh->frame_control)) qos = le16_to_cpu(*((__le16 *)ieee80211_get_qos_ctl(wh))); else qos = 0; if (priv->ap_fw) mwl8k_encapsulate_tx_frame(skb); else mwl8k_add_dma_header(skb, 0); wh = &((struct mwl8k_dma_data *)skb->data)->wh; tx_info = IEEE80211_SKB_CB(skb); sta = tx_info->control.sta; mwl8k_vif = MWL8K_VIF(tx_info->control.vif); if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { wh->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); wh->seq_ctrl |= cpu_to_le16(mwl8k_vif->seqno); mwl8k_vif->seqno += 0x10; } /* Setup firmware control bit fields for each frame type. */ txstatus = 0; txdatarate = 0; if (ieee80211_is_mgmt(wh->frame_control) || ieee80211_is_ctl(wh->frame_control)) { txdatarate = 0; qos |= MWL8K_QOS_QLEN_UNSPEC | MWL8K_QOS_EOSP; } else if (ieee80211_is_data(wh->frame_control)) { txdatarate = 1; if (is_multicast_ether_addr(wh->addr1)) txstatus |= MWL8K_TXD_STATUS_MULTICAST_TX; qos &= ~MWL8K_QOS_ACK_POLICY_MASK; if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) qos |= MWL8K_QOS_ACK_POLICY_BLOCKACK; else qos |= MWL8K_QOS_ACK_POLICY_NORMAL; } /* Queue ADDBA request in the respective data queue. While setting up * the ampdu stream, mac80211 queues further packets for that * particular ra/tid pair. However, packets piled up in the hardware * for that ra/tid pair will still go out. ADDBA request and the * related data packets going out from different queues asynchronously * will cause a shift in the receiver window which might result in * ampdu packets getting dropped at the receiver after the stream has * been setup. */ if (unlikely(ieee80211_is_action(wh->frame_control) && mgmt->u.action.category == WLAN_CATEGORY_BACK && mgmt->u.action.u.addba_req.action_code == WLAN_ACTION_ADDBA_REQ && priv->ap_fw)) { u16 capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab); tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2; index = mwl8k_tid_queue_mapping(tid); } txpriority = index; if (ieee80211_is_data_qos(wh->frame_control) && skb->protocol != cpu_to_be16(ETH_P_PAE) && sta->ht_cap.ht_supported && priv->ap_fw) { tid = qos & 0xf; mwl8k_tx_count_packet(sta, tid); spin_lock(&priv->stream_lock); stream = mwl8k_lookup_stream(hw, sta->addr, tid); if (stream != NULL) { if (stream->state == AMPDU_STREAM_ACTIVE) { txpriority = stream->txq_idx; index = stream->txq_idx; } else if (stream->state == AMPDU_STREAM_NEW) { /* We get here if the driver sends us packets * after we've initiated a stream, but before * our ampdu_action routine has been called * with IEEE80211_AMPDU_TX_START to get the SSN * for the ADDBA request. So this packet can * go out with no risk of sequence number * mismatch. No special handling is required. */ } else { /* Drop packets that would go out after the * ADDBA request was sent but before the ADDBA * response is received. If we don't do this, * the recipient would probably receive it * after the ADDBA request with SSN 0. This * will cause the recipient's BA receive window * to shift, which would cause the subsequent * packets in the BA stream to be discarded. * mac80211 queues our packets for us in this * case, so this is really just a safety check. */ wiphy_warn(hw->wiphy, "Cannot send packet while ADDBA " "dialog is underway.\n"); spin_unlock(&priv->stream_lock); dev_kfree_skb(skb); return; } } else { /* Defer calling mwl8k_start_stream so that the current * skb can go out before the ADDBA request. This * prevents sequence number mismatch at the recepient * as described above. */ if (mwl8k_ampdu_allowed(sta, tid)) { stream = mwl8k_add_stream(hw, sta, tid); if (stream != NULL) start_ba_session = true; } } spin_unlock(&priv->stream_lock); } dma = pci_map_single(priv->pdev, skb->data, skb->len, PCI_DMA_TODEVICE); if (pci_dma_mapping_error(priv->pdev, dma)) { wiphy_debug(hw->wiphy, "failed to dma map skb, dropping TX frame.\n"); if (start_ba_session) { spin_lock(&priv->stream_lock); mwl8k_remove_stream(hw, stream); spin_unlock(&priv->stream_lock); } dev_kfree_skb(skb); return; } spin_lock_bh(&priv->tx_lock); txq = priv->txq + index; if (txq->len >= MWL8K_TX_DESCS) { if (start_ba_session) { spin_lock(&priv->stream_lock); mwl8k_remove_stream(hw, stream); spin_unlock(&priv->stream_lock); } spin_unlock_bh(&priv->tx_lock); dev_kfree_skb(skb); return; } BUG_ON(txq->skb[txq->tail] != NULL); txq->skb[txq->tail] = skb; tx = txq->txd + txq->tail; tx->data_rate = txdatarate; tx->tx_priority = txpriority; tx->qos_control = cpu_to_le16(qos); tx->pkt_phys_addr = cpu_to_le32(dma); tx->pkt_len = cpu_to_le16(skb->len); tx->rate_info = 0; if (!priv->ap_fw && tx_info->control.sta != NULL) tx->peer_id = MWL8K_STA(tx_info->control.sta)->peer_id; else tx->peer_id = 0; wmb(); tx->status = cpu_to_le32(MWL8K_TXD_STATUS_FW_OWNED | txstatus); txq->len++; priv->pending_tx_pkts++; txq->tail++; if (txq->tail == MWL8K_TX_DESCS) txq->tail = 0; mwl8k_tx_start(priv); spin_unlock_bh(&priv->tx_lock); /* Initiate the ampdu session here */ if (start_ba_session) { spin_lock(&priv->stream_lock); if (mwl8k_start_stream(hw, stream)) mwl8k_remove_stream(hw, stream); spin_unlock(&priv->stream_lock); } } /* * Firmware access. * * We have the following requirements for issuing firmware commands: * - Some commands require that the packet transmit path is idle when * the command is issued. (For simplicity, we'll just quiesce the * transmit path for every command.) * - There are certain sequences of commands that need to be issued to * the hardware sequentially, with no other intervening commands. * * This leads to an implementation of a "firmware lock" as a mutex that * can be taken recursively, and which is taken by both the low-level * command submission function (mwl8k_post_cmd) as well as any users of * that function that require issuing of an atomic sequence of commands, * and quiesces the transmit path whenever it's taken. */ static int mwl8k_fw_lock(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; if (priv->fw_mutex_owner != current) { int rc; mutex_lock(&priv->fw_mutex); ieee80211_stop_queues(hw); rc = mwl8k_tx_wait_empty(hw); if (rc) { ieee80211_wake_queues(hw); mutex_unlock(&priv->fw_mutex); return rc; } priv->fw_mutex_owner = current; } priv->fw_mutex_depth++; return 0; } static void mwl8k_fw_unlock(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; if (!--priv->fw_mutex_depth) { ieee80211_wake_queues(hw); priv->fw_mutex_owner = NULL; mutex_unlock(&priv->fw_mutex); } } /* * Command processing. */ /* Timeout firmware commands after 10s */ #define MWL8K_CMD_TIMEOUT_MS 10000 static int mwl8k_post_cmd(struct ieee80211_hw *hw, struct mwl8k_cmd_pkt *cmd) { DECLARE_COMPLETION_ONSTACK(cmd_wait); struct mwl8k_priv *priv = hw->priv; void __iomem *regs = priv->regs; dma_addr_t dma_addr; unsigned int dma_size; int rc; unsigned long timeout = 0; u8 buf[32]; cmd->result = (__force __le16) 0xffff; dma_size = le16_to_cpu(cmd->length); dma_addr = pci_map_single(priv->pdev, cmd, dma_size, PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(priv->pdev, dma_addr)) return -ENOMEM; rc = mwl8k_fw_lock(hw); if (rc) { pci_unmap_single(priv->pdev, dma_addr, dma_size, PCI_DMA_BIDIRECTIONAL); return rc; } priv->hostcmd_wait = &cmd_wait; iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR); iowrite32(MWL8K_H2A_INT_DOORBELL, regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); iowrite32(MWL8K_H2A_INT_DUMMY, regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS); timeout = wait_for_completion_timeout(&cmd_wait, msecs_to_jiffies(MWL8K_CMD_TIMEOUT_MS)); priv->hostcmd_wait = NULL; mwl8k_fw_unlock(hw); pci_unmap_single(priv->pdev, dma_addr, dma_size, PCI_DMA_BIDIRECTIONAL); if (!timeout) { wiphy_err(hw->wiphy, "Command %s timeout after %u ms\n", mwl8k_cmd_name(cmd->code, buf, sizeof(buf)), MWL8K_CMD_TIMEOUT_MS); rc = -ETIMEDOUT; } else { int ms; ms = MWL8K_CMD_TIMEOUT_MS - jiffies_to_msecs(timeout); rc = cmd->result ? -EINVAL : 0; if (rc) wiphy_err(hw->wiphy, "Command %s error 0x%x\n", mwl8k_cmd_name(cmd->code, buf, sizeof(buf)), le16_to_cpu(cmd->result)); else if (ms > 2000) wiphy_notice(hw->wiphy, "Command %s took %d ms\n", mwl8k_cmd_name(cmd->code, buf, sizeof(buf)), ms); } return rc; } static int mwl8k_post_pervif_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct mwl8k_cmd_pkt *cmd) { if (vif != NULL) cmd->macid = MWL8K_VIF(vif)->macid; return mwl8k_post_cmd(hw, cmd); } /* * Setup code shared between STA and AP firmware images. */ static void mwl8k_setup_2ghz_band(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; BUILD_BUG_ON(sizeof(priv->channels_24) != sizeof(mwl8k_channels_24)); memcpy(priv->channels_24, mwl8k_channels_24, sizeof(mwl8k_channels_24)); BUILD_BUG_ON(sizeof(priv->rates_24) != sizeof(mwl8k_rates_24)); memcpy(priv->rates_24, mwl8k_rates_24, sizeof(mwl8k_rates_24)); priv->band_24.band = IEEE80211_BAND_2GHZ; priv->band_24.channels = priv->channels_24; priv->band_24.n_channels = ARRAY_SIZE(mwl8k_channels_24); priv->band_24.bitrates = priv->rates_24; priv->band_24.n_bitrates = ARRAY_SIZE(mwl8k_rates_24); hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &priv->band_24; } static void mwl8k_setup_5ghz_band(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; BUILD_BUG_ON(sizeof(priv->channels_50) != sizeof(mwl8k_channels_50)); memcpy(priv->channels_50, mwl8k_channels_50, sizeof(mwl8k_channels_50)); BUILD_BUG_ON(sizeof(priv->rates_50) != sizeof(mwl8k_rates_50)); memcpy(priv->rates_50, mwl8k_rates_50, sizeof(mwl8k_rates_50)); priv->band_50.band = IEEE80211_BAND_5GHZ; priv->band_50.channels = priv->channels_50; priv->band_50.n_channels = ARRAY_SIZE(mwl8k_channels_50); priv->band_50.bitrates = priv->rates_50; priv->band_50.n_bitrates = ARRAY_SIZE(mwl8k_rates_50); hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &priv->band_50; } /* * CMD_GET_HW_SPEC (STA version). */ struct mwl8k_cmd_get_hw_spec_sta { struct mwl8k_cmd_pkt header; __u8 hw_rev; __u8 host_interface; __le16 num_mcaddrs; __u8 perm_addr[ETH_ALEN]; __le16 region_code; __le32 fw_rev; __le32 ps_cookie; __le32 caps; __u8 mcs_bitmap[16]; __le32 rx_queue_ptr; __le32 num_tx_queues; __le32 tx_queue_ptrs[MWL8K_TX_WMM_QUEUES]; __le32 caps2; __le32 num_tx_desc_per_queue; __le32 total_rxd; } __packed; #define MWL8K_CAP_MAX_AMSDU 0x20000000 #define MWL8K_CAP_GREENFIELD 0x08000000 #define MWL8K_CAP_AMPDU 0x04000000 #define MWL8K_CAP_RX_STBC 0x01000000 #define MWL8K_CAP_TX_STBC 0x00800000 #define MWL8K_CAP_SHORTGI_40MHZ 0x00400000 #define MWL8K_CAP_SHORTGI_20MHZ 0x00200000 #define MWL8K_CAP_RX_ANTENNA_MASK 0x000e0000 #define MWL8K_CAP_TX_ANTENNA_MASK 0x0001c000 #define MWL8K_CAP_DELAY_BA 0x00003000 #define MWL8K_CAP_MIMO 0x00000200 #define MWL8K_CAP_40MHZ 0x00000100 #define MWL8K_CAP_BAND_MASK 0x00000007 #define MWL8K_CAP_5GHZ 0x00000004 #define MWL8K_CAP_2GHZ4 0x00000001 static void mwl8k_set_ht_caps(struct ieee80211_hw *hw, struct ieee80211_supported_band *band, u32 cap) { int rx_streams; int tx_streams; band->ht_cap.ht_supported = 1; if (cap & MWL8K_CAP_MAX_AMSDU) band->ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU; if (cap & MWL8K_CAP_GREENFIELD) band->ht_cap.cap |= IEEE80211_HT_CAP_GRN_FLD; if (cap & MWL8K_CAP_AMPDU) { hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION; band->ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; band->ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_NONE; } if (cap & MWL8K_CAP_RX_STBC) band->ht_cap.cap |= IEEE80211_HT_CAP_RX_STBC; if (cap & MWL8K_CAP_TX_STBC) band->ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC; if (cap & MWL8K_CAP_SHORTGI_40MHZ) band->ht_cap.cap |= IEEE80211_HT_CAP_SGI_40; if (cap & MWL8K_CAP_SHORTGI_20MHZ) band->ht_cap.cap |= IEEE80211_HT_CAP_SGI_20; if (cap & MWL8K_CAP_DELAY_BA) band->ht_cap.cap |= IEEE80211_HT_CAP_DELAY_BA; if (cap & MWL8K_CAP_40MHZ) band->ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; rx_streams = hweight32(cap & MWL8K_CAP_RX_ANTENNA_MASK); tx_streams = hweight32(cap & MWL8K_CAP_TX_ANTENNA_MASK); band->ht_cap.mcs.rx_mask[0] = 0xff; if (rx_streams >= 2) band->ht_cap.mcs.rx_mask[1] = 0xff; if (rx_streams >= 3) band->ht_cap.mcs.rx_mask[2] = 0xff; band->ht_cap.mcs.rx_mask[4] = 0x01; band->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; if (rx_streams != tx_streams) { band->ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF; band->ht_cap.mcs.tx_params |= (tx_streams - 1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT; } } static void mwl8k_set_caps(struct ieee80211_hw *hw, u32 caps) { struct mwl8k_priv *priv = hw->priv; if ((caps & MWL8K_CAP_2GHZ4) || !(caps & MWL8K_CAP_BAND_MASK)) { mwl8k_setup_2ghz_band(hw); if (caps & MWL8K_CAP_MIMO) mwl8k_set_ht_caps(hw, &priv->band_24, caps); } if (caps & MWL8K_CAP_5GHZ) { mwl8k_setup_5ghz_band(hw); if (caps & MWL8K_CAP_MIMO) mwl8k_set_ht_caps(hw, &priv->band_50, caps); } } static int mwl8k_cmd_get_hw_spec_sta(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_get_hw_spec_sta *cmd; int rc; int i; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_HW_SPEC); cmd->header.length = cpu_to_le16(sizeof(*cmd)); memset(cmd->perm_addr, 0xff, sizeof(cmd->perm_addr)); cmd->ps_cookie = cpu_to_le32(priv->cookie_dma); cmd->rx_queue_ptr = cpu_to_le32(priv->rxq[0].rxd_dma); cmd->num_tx_queues = cpu_to_le32(mwl8k_tx_queues(priv)); for (i = 0; i < mwl8k_tx_queues(priv); i++) cmd->tx_queue_ptrs[i] = cpu_to_le32(priv->txq[i].txd_dma); cmd->num_tx_desc_per_queue = cpu_to_le32(MWL8K_TX_DESCS); cmd->total_rxd = cpu_to_le32(MWL8K_RX_DESCS); rc = mwl8k_post_cmd(hw, &cmd->header); if (!rc) { SET_IEEE80211_PERM_ADDR(hw, cmd->perm_addr); priv->num_mcaddrs = le16_to_cpu(cmd->num_mcaddrs); priv->fw_rev = le32_to_cpu(cmd->fw_rev); priv->hw_rev = cmd->hw_rev; mwl8k_set_caps(hw, le32_to_cpu(cmd->caps)); priv->ap_macids_supported = 0x00000000; priv->sta_macids_supported = 0x00000001; } kfree(cmd); return rc; } /* * CMD_GET_HW_SPEC (AP version). */ struct mwl8k_cmd_get_hw_spec_ap { struct mwl8k_cmd_pkt header; __u8 hw_rev; __u8 host_interface; __le16 num_wcb; __le16 num_mcaddrs; __u8 perm_addr[ETH_ALEN]; __le16 region_code; __le16 num_antenna; __le32 fw_rev; __le32 wcbbase0; __le32 rxwrptr; __le32 rxrdptr; __le32 ps_cookie; __le32 wcbbase1; __le32 wcbbase2; __le32 wcbbase3; __le32 fw_api_version; __le32 caps; __le32 num_of_ampdu_queues; __le32 wcbbase_ampdu[MWL8K_MAX_AMPDU_QUEUES]; } __packed; static int mwl8k_cmd_get_hw_spec_ap(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_get_hw_spec_ap *cmd; int rc, i; u32 api_version; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_HW_SPEC); cmd->header.length = cpu_to_le16(sizeof(*cmd)); memset(cmd->perm_addr, 0xff, sizeof(cmd->perm_addr)); cmd->ps_cookie = cpu_to_le32(priv->cookie_dma); rc = mwl8k_post_cmd(hw, &cmd->header); if (!rc) { int off; api_version = le32_to_cpu(cmd->fw_api_version); if (priv->device_info->fw_api_ap != api_version) { printk(KERN_ERR "%s: Unsupported fw API version for %s." " Expected %d got %d.\n", MWL8K_NAME, priv->device_info->part_name, priv->device_info->fw_api_ap, api_version); rc = -EINVAL; goto done; } SET_IEEE80211_PERM_ADDR(hw, cmd->perm_addr); priv->num_mcaddrs = le16_to_cpu(cmd->num_mcaddrs); priv->fw_rev = le32_to_cpu(cmd->fw_rev); priv->hw_rev = cmd->hw_rev; mwl8k_set_caps(hw, le32_to_cpu(cmd->caps)); priv->ap_macids_supported = 0x000000ff; priv->sta_macids_supported = 0x00000000; priv->num_ampdu_queues = le32_to_cpu(cmd->num_of_ampdu_queues); if (priv->num_ampdu_queues > MWL8K_MAX_AMPDU_QUEUES) { wiphy_warn(hw->wiphy, "fw reported %d ampdu queues" " but we only support %d.\n", priv->num_ampdu_queues, MWL8K_MAX_AMPDU_QUEUES); priv->num_ampdu_queues = MWL8K_MAX_AMPDU_QUEUES; } off = le32_to_cpu(cmd->rxwrptr) & 0xffff; iowrite32(priv->rxq[0].rxd_dma, priv->sram + off); off = le32_to_cpu(cmd->rxrdptr) & 0xffff; iowrite32(priv->rxq[0].rxd_dma, priv->sram + off); priv->txq_offset[0] = le32_to_cpu(cmd->wcbbase0) & 0xffff; priv->txq_offset[1] = le32_to_cpu(cmd->wcbbase1) & 0xffff; priv->txq_offset[2] = le32_to_cpu(cmd->wcbbase2) & 0xffff; priv->txq_offset[3] = le32_to_cpu(cmd->wcbbase3) & 0xffff; for (i = 0; i < priv->num_ampdu_queues; i++) priv->txq_offset[i + MWL8K_TX_WMM_QUEUES] = le32_to_cpu(cmd->wcbbase_ampdu[i]) & 0xffff; } done: kfree(cmd); return rc; } /* * CMD_SET_HW_SPEC. */ struct mwl8k_cmd_set_hw_spec { struct mwl8k_cmd_pkt header; __u8 hw_rev; __u8 host_interface; __le16 num_mcaddrs; __u8 perm_addr[ETH_ALEN]; __le16 region_code; __le32 fw_rev; __le32 ps_cookie; __le32 caps; __le32 rx_queue_ptr; __le32 num_tx_queues; __le32 tx_queue_ptrs[MWL8K_MAX_TX_QUEUES]; __le32 flags; __le32 num_tx_desc_per_queue; __le32 total_rxd; } __packed; /* If enabled, MWL8K_SET_HW_SPEC_FLAG_ENABLE_LIFE_TIME_EXPIRY will cause * packets to expire 500 ms after the timestamp in the tx descriptor. That is, * the packets that are queued for more than 500ms, will be dropped in the * hardware. This helps minimizing the issues caused due to head-of-line * blocking where a slow client can hog the bandwidth and affect traffic to a * faster client. */ #define MWL8K_SET_HW_SPEC_FLAG_ENABLE_LIFE_TIME_EXPIRY 0x00000400 #define MWL8K_SET_HW_SPEC_FLAG_HOST_DECR_MGMT 0x00000080 #define MWL8K_SET_HW_SPEC_FLAG_HOSTFORM_PROBERESP 0x00000020 #define MWL8K_SET_HW_SPEC_FLAG_HOSTFORM_BEACON 0x00000010 static int mwl8k_cmd_set_hw_spec(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_set_hw_spec *cmd; int rc; int i; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_HW_SPEC); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->ps_cookie = cpu_to_le32(priv->cookie_dma); cmd->rx_queue_ptr = cpu_to_le32(priv->rxq[0].rxd_dma); cmd->num_tx_queues = cpu_to_le32(mwl8k_tx_queues(priv)); /* * Mac80211 stack has Q0 as highest priority and Q3 as lowest in * that order. Firmware has Q3 as highest priority and Q0 as lowest * in that order. Map Q3 of mac80211 to Q0 of firmware so that the * priority is interpreted the right way in firmware. */ for (i = 0; i < mwl8k_tx_queues(priv); i++) { int j = mwl8k_tx_queues(priv) - 1 - i; cmd->tx_queue_ptrs[i] = cpu_to_le32(priv->txq[j].txd_dma); } cmd->flags = cpu_to_le32(MWL8K_SET_HW_SPEC_FLAG_HOST_DECR_MGMT | MWL8K_SET_HW_SPEC_FLAG_HOSTFORM_PROBERESP | MWL8K_SET_HW_SPEC_FLAG_HOSTFORM_BEACON); cmd->num_tx_desc_per_queue = cpu_to_le32(MWL8K_TX_DESCS); cmd->total_rxd = cpu_to_le32(MWL8K_RX_DESCS); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_MAC_MULTICAST_ADR. */ struct mwl8k_cmd_mac_multicast_adr { struct mwl8k_cmd_pkt header; __le16 action; __le16 numaddr; __u8 addr[0][ETH_ALEN]; }; #define MWL8K_ENABLE_RX_DIRECTED 0x0001 #define MWL8K_ENABLE_RX_MULTICAST 0x0002 #define MWL8K_ENABLE_RX_ALL_MULTICAST 0x0004 #define MWL8K_ENABLE_RX_BROADCAST 0x0008 static struct mwl8k_cmd_pkt * __mwl8k_cmd_mac_multicast_adr(struct ieee80211_hw *hw, int allmulti, struct netdev_hw_addr_list *mc_list) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_mac_multicast_adr *cmd; int size; int mc_count = 0; if (mc_list) mc_count = netdev_hw_addr_list_count(mc_list); if (allmulti || mc_count > priv->num_mcaddrs) { allmulti = 1; mc_count = 0; } size = sizeof(*cmd) + mc_count * ETH_ALEN; cmd = kzalloc(size, GFP_ATOMIC); if (cmd == NULL) return NULL; cmd->header.code = cpu_to_le16(MWL8K_CMD_MAC_MULTICAST_ADR); cmd->header.length = cpu_to_le16(size); cmd->action = cpu_to_le16(MWL8K_ENABLE_RX_DIRECTED | MWL8K_ENABLE_RX_BROADCAST); if (allmulti) { cmd->action |= cpu_to_le16(MWL8K_ENABLE_RX_ALL_MULTICAST); } else if (mc_count) { struct netdev_hw_addr *ha; int i = 0; cmd->action |= cpu_to_le16(MWL8K_ENABLE_RX_MULTICAST); cmd->numaddr = cpu_to_le16(mc_count); netdev_hw_addr_list_for_each(ha, mc_list) { memcpy(cmd->addr[i], ha->addr, ETH_ALEN); } } return &cmd->header; } /* * CMD_GET_STAT. */ struct mwl8k_cmd_get_stat { struct mwl8k_cmd_pkt header; __le32 stats[64]; } __packed; #define MWL8K_STAT_ACK_FAILURE 9 #define MWL8K_STAT_RTS_FAILURE 12 #define MWL8K_STAT_FCS_ERROR 24 #define MWL8K_STAT_RTS_SUCCESS 11 static int mwl8k_cmd_get_stat(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { struct mwl8k_cmd_get_stat *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_STAT); cmd->header.length = cpu_to_le16(sizeof(*cmd)); rc = mwl8k_post_cmd(hw, &cmd->header); if (!rc) { stats->dot11ACKFailureCount = le32_to_cpu(cmd->stats[MWL8K_STAT_ACK_FAILURE]); stats->dot11RTSFailureCount = le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_FAILURE]); stats->dot11FCSErrorCount = le32_to_cpu(cmd->stats[MWL8K_STAT_FCS_ERROR]); stats->dot11RTSSuccessCount = le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_SUCCESS]); } kfree(cmd); return rc; } /* * CMD_RADIO_CONTROL. */ struct mwl8k_cmd_radio_control { struct mwl8k_cmd_pkt header; __le16 action; __le16 control; __le16 radio_on; } __packed; static int mwl8k_cmd_radio_control(struct ieee80211_hw *hw, bool enable, bool force) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_radio_control *cmd; int rc; if (enable == priv->radio_on && !force) return 0; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_RADIO_CONTROL); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(MWL8K_CMD_SET); cmd->control = cpu_to_le16(priv->radio_short_preamble ? 3 : 1); cmd->radio_on = cpu_to_le16(enable ? 0x0001 : 0x0000); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); if (!rc) priv->radio_on = enable; return rc; } static int mwl8k_cmd_radio_disable(struct ieee80211_hw *hw) { return mwl8k_cmd_radio_control(hw, 0, 0); } static int mwl8k_cmd_radio_enable(struct ieee80211_hw *hw) { return mwl8k_cmd_radio_control(hw, 1, 0); } static int mwl8k_set_radio_preamble(struct ieee80211_hw *hw, bool short_preamble) { struct mwl8k_priv *priv = hw->priv; priv->radio_short_preamble = short_preamble; return mwl8k_cmd_radio_control(hw, 1, 1); } /* * CMD_RF_TX_POWER. */ #define MWL8K_RF_TX_POWER_LEVEL_TOTAL 8 struct mwl8k_cmd_rf_tx_power { struct mwl8k_cmd_pkt header; __le16 action; __le16 support_level; __le16 current_level; __le16 reserved; __le16 power_level_list[MWL8K_RF_TX_POWER_LEVEL_TOTAL]; } __packed; static int mwl8k_cmd_rf_tx_power(struct ieee80211_hw *hw, int dBm) { struct mwl8k_cmd_rf_tx_power *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_RF_TX_POWER); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(MWL8K_CMD_SET); cmd->support_level = cpu_to_le16(dBm); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_TX_POWER. */ #define MWL8K_TX_POWER_LEVEL_TOTAL 12 struct mwl8k_cmd_tx_power { struct mwl8k_cmd_pkt header; __le16 action; __le16 band; __le16 channel; __le16 bw; __le16 sub_ch; __le16 power_level_list[MWL8K_TX_POWER_LEVEL_TOTAL]; } __packed; static int mwl8k_cmd_tx_power(struct ieee80211_hw *hw, struct ieee80211_conf *conf, unsigned short pwr) { struct ieee80211_channel *channel = conf->channel; struct mwl8k_cmd_tx_power *cmd; int rc; int i; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_TX_POWER); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(MWL8K_CMD_SET_LIST); if (channel->band == IEEE80211_BAND_2GHZ) cmd->band = cpu_to_le16(0x1); else if (channel->band == IEEE80211_BAND_5GHZ) cmd->band = cpu_to_le16(0x4); cmd->channel = channel->hw_value; if (conf->channel_type == NL80211_CHAN_NO_HT || conf->channel_type == NL80211_CHAN_HT20) { cmd->bw = cpu_to_le16(0x2); } else { cmd->bw = cpu_to_le16(0x4); if (conf->channel_type == NL80211_CHAN_HT40MINUS) cmd->sub_ch = cpu_to_le16(0x3); else if (conf->channel_type == NL80211_CHAN_HT40PLUS) cmd->sub_ch = cpu_to_le16(0x1); } for (i = 0; i < MWL8K_TX_POWER_LEVEL_TOTAL; i++) cmd->power_level_list[i] = cpu_to_le16(pwr); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_RF_ANTENNA. */ struct mwl8k_cmd_rf_antenna { struct mwl8k_cmd_pkt header; __le16 antenna; __le16 mode; } __packed; #define MWL8K_RF_ANTENNA_RX 1 #define MWL8K_RF_ANTENNA_TX 2 static int mwl8k_cmd_rf_antenna(struct ieee80211_hw *hw, int antenna, int mask) { struct mwl8k_cmd_rf_antenna *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_RF_ANTENNA); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->antenna = cpu_to_le16(antenna); cmd->mode = cpu_to_le16(mask); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_BEACON. */ struct mwl8k_cmd_set_beacon { struct mwl8k_cmd_pkt header; __le16 beacon_len; __u8 beacon[0]; }; static int mwl8k_cmd_set_beacon(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u8 *beacon, int len) { struct mwl8k_cmd_set_beacon *cmd; int rc; cmd = kzalloc(sizeof(*cmd) + len, GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_BEACON); cmd->header.length = cpu_to_le16(sizeof(*cmd) + len); cmd->beacon_len = cpu_to_le16(len); memcpy(cmd->beacon, beacon, len); rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_PRE_SCAN. */ struct mwl8k_cmd_set_pre_scan { struct mwl8k_cmd_pkt header; } __packed; static int mwl8k_cmd_set_pre_scan(struct ieee80211_hw *hw) { struct mwl8k_cmd_set_pre_scan *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_PRE_SCAN); cmd->header.length = cpu_to_le16(sizeof(*cmd)); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_POST_SCAN. */ struct mwl8k_cmd_set_post_scan { struct mwl8k_cmd_pkt header; __le32 isibss; __u8 bssid[ETH_ALEN]; } __packed; static int mwl8k_cmd_set_post_scan(struct ieee80211_hw *hw, const __u8 *mac) { struct mwl8k_cmd_set_post_scan *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_POST_SCAN); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->isibss = 0; memcpy(cmd->bssid, mac, ETH_ALEN); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_RF_CHANNEL. */ struct mwl8k_cmd_set_rf_channel { struct mwl8k_cmd_pkt header; __le16 action; __u8 current_channel; __le32 channel_flags; } __packed; static int mwl8k_cmd_set_rf_channel(struct ieee80211_hw *hw, struct ieee80211_conf *conf) { struct ieee80211_channel *channel = conf->channel; struct mwl8k_cmd_set_rf_channel *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RF_CHANNEL); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(MWL8K_CMD_SET); cmd->current_channel = channel->hw_value; if (channel->band == IEEE80211_BAND_2GHZ) cmd->channel_flags |= cpu_to_le32(0x00000001); else if (channel->band == IEEE80211_BAND_5GHZ) cmd->channel_flags |= cpu_to_le32(0x00000004); if (conf->channel_type == NL80211_CHAN_NO_HT || conf->channel_type == NL80211_CHAN_HT20) cmd->channel_flags |= cpu_to_le32(0x00000080); else if (conf->channel_type == NL80211_CHAN_HT40MINUS) cmd->channel_flags |= cpu_to_le32(0x000001900); else if (conf->channel_type == NL80211_CHAN_HT40PLUS) cmd->channel_flags |= cpu_to_le32(0x000000900); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_AID. */ #define MWL8K_FRAME_PROT_DISABLED 0x00 #define MWL8K_FRAME_PROT_11G 0x07 #define MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY 0x02 #define MWL8K_FRAME_PROT_11N_HT_ALL 0x06 struct mwl8k_cmd_update_set_aid { struct mwl8k_cmd_pkt header; __le16 aid; /* AP's MAC address (BSSID) */ __u8 bssid[ETH_ALEN]; __le16 protection_mode; __u8 supp_rates[14]; } __packed; static void legacy_rate_mask_to_array(u8 *rates, u32 mask) { int i; int j; /* * Clear nonstandard rates 4 and 13. */ mask &= 0x1fef; for (i = 0, j = 0; i < 14; i++) { if (mask & (1 << i)) rates[j++] = mwl8k_rates_24[i].hw_value; } } static int mwl8k_cmd_set_aid(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 legacy_rate_mask) { struct mwl8k_cmd_update_set_aid *cmd; u16 prot_mode; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_AID); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->aid = cpu_to_le16(vif->bss_conf.aid); memcpy(cmd->bssid, vif->bss_conf.bssid, ETH_ALEN); if (vif->bss_conf.use_cts_prot) { prot_mode = MWL8K_FRAME_PROT_11G; } else { switch (vif->bss_conf.ht_operation_mode & IEEE80211_HT_OP_MODE_PROTECTION) { case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ: prot_mode = MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY; break; case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED: prot_mode = MWL8K_FRAME_PROT_11N_HT_ALL; break; default: prot_mode = MWL8K_FRAME_PROT_DISABLED; break; } } cmd->protection_mode = cpu_to_le16(prot_mode); legacy_rate_mask_to_array(cmd->supp_rates, legacy_rate_mask); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_RATE. */ struct mwl8k_cmd_set_rate { struct mwl8k_cmd_pkt header; __u8 legacy_rates[14]; /* Bitmap for supported MCS codes. */ __u8 mcs_set[16]; __u8 reserved[16]; } __packed; static int mwl8k_cmd_set_rate(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 legacy_rate_mask, u8 *mcs_rates) { struct mwl8k_cmd_set_rate *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATE); cmd->header.length = cpu_to_le16(sizeof(*cmd)); legacy_rate_mask_to_array(cmd->legacy_rates, legacy_rate_mask); memcpy(cmd->mcs_set, mcs_rates, 16); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_FINALIZE_JOIN. */ #define MWL8K_FJ_BEACON_MAXLEN 128 struct mwl8k_cmd_finalize_join { struct mwl8k_cmd_pkt header; __le32 sleep_interval; /* Number of beacon periods to sleep */ __u8 beacon_data[MWL8K_FJ_BEACON_MAXLEN]; } __packed; static int mwl8k_cmd_finalize_join(struct ieee80211_hw *hw, void *frame, int framelen, int dtim) { struct mwl8k_cmd_finalize_join *cmd; struct ieee80211_mgmt *payload = frame; int payload_len; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_FINALIZE_JOIN); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->sleep_interval = cpu_to_le32(dtim ? dtim : 1); payload_len = framelen - ieee80211_hdrlen(payload->frame_control); if (payload_len < 0) payload_len = 0; else if (payload_len > MWL8K_FJ_BEACON_MAXLEN) payload_len = MWL8K_FJ_BEACON_MAXLEN; memcpy(cmd->beacon_data, &payload->u.beacon, payload_len); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_RTS_THRESHOLD. */ struct mwl8k_cmd_set_rts_threshold { struct mwl8k_cmd_pkt header; __le16 action; __le16 threshold; } __packed; static int mwl8k_cmd_set_rts_threshold(struct ieee80211_hw *hw, int rts_thresh) { struct mwl8k_cmd_set_rts_threshold *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_RTS_THRESHOLD); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(MWL8K_CMD_SET); cmd->threshold = cpu_to_le16(rts_thresh); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_SLOT. */ struct mwl8k_cmd_set_slot { struct mwl8k_cmd_pkt header; __le16 action; __u8 short_slot; } __packed; static int mwl8k_cmd_set_slot(struct ieee80211_hw *hw, bool short_slot_time) { struct mwl8k_cmd_set_slot *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_SLOT); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(MWL8K_CMD_SET); cmd->short_slot = short_slot_time; rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_EDCA_PARAMS. */ struct mwl8k_cmd_set_edca_params { struct mwl8k_cmd_pkt header; /* See MWL8K_SET_EDCA_XXX below */ __le16 action; /* TX opportunity in units of 32 us */ __le16 txop; union { struct { /* Log exponent of max contention period: 0...15 */ __le32 log_cw_max; /* Log exponent of min contention period: 0...15 */ __le32 log_cw_min; /* Adaptive interframe spacing in units of 32us */ __u8 aifs; /* TX queue to configure */ __u8 txq; } ap; struct { /* Log exponent of max contention period: 0...15 */ __u8 log_cw_max; /* Log exponent of min contention period: 0...15 */ __u8 log_cw_min; /* Adaptive interframe spacing in units of 32us */ __u8 aifs; /* TX queue to configure */ __u8 txq; } sta; }; } __packed; #define MWL8K_SET_EDCA_CW 0x01 #define MWL8K_SET_EDCA_TXOP 0x02 #define MWL8K_SET_EDCA_AIFS 0x04 #define MWL8K_SET_EDCA_ALL (MWL8K_SET_EDCA_CW | \ MWL8K_SET_EDCA_TXOP | \ MWL8K_SET_EDCA_AIFS) static int mwl8k_cmd_set_edca_params(struct ieee80211_hw *hw, __u8 qnum, __u16 cw_min, __u16 cw_max, __u8 aifs, __u16 txop) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_set_edca_params *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_EDCA_PARAMS); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(MWL8K_SET_EDCA_ALL); cmd->txop = cpu_to_le16(txop); if (priv->ap_fw) { cmd->ap.log_cw_max = cpu_to_le32(ilog2(cw_max + 1)); cmd->ap.log_cw_min = cpu_to_le32(ilog2(cw_min + 1)); cmd->ap.aifs = aifs; cmd->ap.txq = qnum; } else { cmd->sta.log_cw_max = (u8)ilog2(cw_max + 1); cmd->sta.log_cw_min = (u8)ilog2(cw_min + 1); cmd->sta.aifs = aifs; cmd->sta.txq = qnum; } rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_WMM_MODE. */ struct mwl8k_cmd_set_wmm_mode { struct mwl8k_cmd_pkt header; __le16 action; } __packed; static int mwl8k_cmd_set_wmm_mode(struct ieee80211_hw *hw, bool enable) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_set_wmm_mode *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_WMM_MODE); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(!!enable); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); if (!rc) priv->wmm_enabled = enable; return rc; } /* * CMD_MIMO_CONFIG. */ struct mwl8k_cmd_mimo_config { struct mwl8k_cmd_pkt header; __le32 action; __u8 rx_antenna_map; __u8 tx_antenna_map; } __packed; static int mwl8k_cmd_mimo_config(struct ieee80211_hw *hw, __u8 rx, __u8 tx) { struct mwl8k_cmd_mimo_config *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_MIMO_CONFIG); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le32((u32)MWL8K_CMD_SET); cmd->rx_antenna_map = rx; cmd->tx_antenna_map = tx; rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_USE_FIXED_RATE (STA version). */ struct mwl8k_cmd_use_fixed_rate_sta { struct mwl8k_cmd_pkt header; __le32 action; __le32 allow_rate_drop; __le32 num_rates; struct { __le32 is_ht_rate; __le32 enable_retry; __le32 rate; __le32 retry_count; } rate_entry[8]; __le32 rate_type; __le32 reserved1; __le32 reserved2; } __packed; #define MWL8K_USE_AUTO_RATE 0x0002 #define MWL8K_UCAST_RATE 0 static int mwl8k_cmd_use_fixed_rate_sta(struct ieee80211_hw *hw) { struct mwl8k_cmd_use_fixed_rate_sta *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_USE_FIXED_RATE); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le32(MWL8K_USE_AUTO_RATE); cmd->rate_type = cpu_to_le32(MWL8K_UCAST_RATE); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_USE_FIXED_RATE (AP version). */ struct mwl8k_cmd_use_fixed_rate_ap { struct mwl8k_cmd_pkt header; __le32 action; __le32 allow_rate_drop; __le32 num_rates; struct mwl8k_rate_entry_ap { __le32 is_ht_rate; __le32 enable_retry; __le32 rate; __le32 retry_count; } rate_entry[4]; u8 multicast_rate; u8 multicast_rate_type; u8 management_rate; } __packed; static int mwl8k_cmd_use_fixed_rate_ap(struct ieee80211_hw *hw, int mcast, int mgmt) { struct mwl8k_cmd_use_fixed_rate_ap *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_USE_FIXED_RATE); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le32(MWL8K_USE_AUTO_RATE); cmd->multicast_rate = mcast; cmd->management_rate = mgmt; rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_ENABLE_SNIFFER. */ struct mwl8k_cmd_enable_sniffer { struct mwl8k_cmd_pkt header; __le32 action; } __packed; static int mwl8k_cmd_enable_sniffer(struct ieee80211_hw *hw, bool enable) { struct mwl8k_cmd_enable_sniffer *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_ENABLE_SNIFFER); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le32(!!enable); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_MAC_ADDR. */ struct mwl8k_cmd_set_mac_addr { struct mwl8k_cmd_pkt header; union { struct { __le16 mac_type; __u8 mac_addr[ETH_ALEN]; } mbss; __u8 mac_addr[ETH_ALEN]; }; } __packed; #define MWL8K_MAC_TYPE_PRIMARY_CLIENT 0 #define MWL8K_MAC_TYPE_SECONDARY_CLIENT 1 #define MWL8K_MAC_TYPE_PRIMARY_AP 2 #define MWL8K_MAC_TYPE_SECONDARY_AP 3 static int mwl8k_cmd_set_mac_addr(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u8 *mac) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_vif *mwl8k_vif = MWL8K_VIF(vif); struct mwl8k_cmd_set_mac_addr *cmd; int mac_type; int rc; mac_type = MWL8K_MAC_TYPE_PRIMARY_AP; if (vif != NULL && vif->type == NL80211_IFTYPE_STATION) { if (mwl8k_vif->macid + 1 == ffs(priv->sta_macids_supported)) mac_type = MWL8K_MAC_TYPE_PRIMARY_CLIENT; else mac_type = MWL8K_MAC_TYPE_SECONDARY_CLIENT; } else if (vif != NULL && vif->type == NL80211_IFTYPE_AP) { if (mwl8k_vif->macid + 1 == ffs(priv->ap_macids_supported)) mac_type = MWL8K_MAC_TYPE_PRIMARY_AP; else mac_type = MWL8K_MAC_TYPE_SECONDARY_AP; } cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_MAC_ADDR); cmd->header.length = cpu_to_le16(sizeof(*cmd)); if (priv->ap_fw) { cmd->mbss.mac_type = cpu_to_le16(mac_type); memcpy(cmd->mbss.mac_addr, mac, ETH_ALEN); } else { memcpy(cmd->mac_addr, mac, ETH_ALEN); } rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header); kfree(cmd); return rc; } /* * CMD_SET_RATEADAPT_MODE. */ struct mwl8k_cmd_set_rate_adapt_mode { struct mwl8k_cmd_pkt header; __le16 action; __le16 mode; } __packed; static int mwl8k_cmd_set_rateadapt_mode(struct ieee80211_hw *hw, __u16 mode) { struct mwl8k_cmd_set_rate_adapt_mode *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATEADAPT_MODE); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le16(MWL8K_CMD_SET); cmd->mode = cpu_to_le16(mode); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * CMD_GET_WATCHDOG_BITMAP. */ struct mwl8k_cmd_get_watchdog_bitmap { struct mwl8k_cmd_pkt header; u8 bitmap; } __packed; static int mwl8k_cmd_get_watchdog_bitmap(struct ieee80211_hw *hw, u8 *bitmap) { struct mwl8k_cmd_get_watchdog_bitmap *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_WATCHDOG_BITMAP); cmd->header.length = cpu_to_le16(sizeof(*cmd)); rc = mwl8k_post_cmd(hw, &cmd->header); if (!rc) *bitmap = cmd->bitmap; kfree(cmd); return rc; } #define INVALID_BA 0xAA static void mwl8k_watchdog_ba_events(struct work_struct *work) { int rc; u8 bitmap = 0, stream_index; struct mwl8k_ampdu_stream *streams; struct mwl8k_priv *priv = container_of(work, struct mwl8k_priv, watchdog_ba_handle); rc = mwl8k_cmd_get_watchdog_bitmap(priv->hw, &bitmap); if (rc) return; if (bitmap == INVALID_BA) return; /* the bitmap is the hw queue number. Map it to the ampdu queue. */ stream_index = bitmap - MWL8K_TX_WMM_QUEUES; BUG_ON(stream_index >= priv->num_ampdu_queues); streams = &priv->ampdu[stream_index]; if (streams->state == AMPDU_STREAM_ACTIVE) ieee80211_stop_tx_ba_session(streams->sta, streams->tid); return; } /* * CMD_BSS_START. */ struct mwl8k_cmd_bss_start { struct mwl8k_cmd_pkt header; __le32 enable; } __packed; static int mwl8k_cmd_bss_start(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int enable) { struct mwl8k_cmd_bss_start *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_BSS_START); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->enable = cpu_to_le32(enable); rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header); kfree(cmd); return rc; } /* * CMD_BASTREAM. */ /* * UPSTREAM is tx direction */ #define BASTREAM_FLAG_DIRECTION_UPSTREAM 0x00 #define BASTREAM_FLAG_IMMEDIATE_TYPE 0x01 enum ba_stream_action_type { MWL8K_BA_CREATE, MWL8K_BA_UPDATE, MWL8K_BA_DESTROY, MWL8K_BA_FLUSH, MWL8K_BA_CHECK, }; struct mwl8k_create_ba_stream { __le32 flags; __le32 idle_thrs; __le32 bar_thrs; __le32 window_size; u8 peer_mac_addr[6]; u8 dialog_token; u8 tid; u8 queue_id; u8 param_info; __le32 ba_context; u8 reset_seq_no_flag; __le16 curr_seq_no; u8 sta_src_mac_addr[6]; } __packed; struct mwl8k_destroy_ba_stream { __le32 flags; __le32 ba_context; } __packed; struct mwl8k_cmd_bastream { struct mwl8k_cmd_pkt header; __le32 action; union { struct mwl8k_create_ba_stream create_params; struct mwl8k_destroy_ba_stream destroy_params; }; } __packed; static int mwl8k_check_ba(struct ieee80211_hw *hw, struct mwl8k_ampdu_stream *stream) { struct mwl8k_cmd_bastream *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_BASTREAM); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le32(MWL8K_BA_CHECK); cmd->create_params.queue_id = stream->idx; memcpy(&cmd->create_params.peer_mac_addr[0], stream->sta->addr, ETH_ALEN); cmd->create_params.tid = stream->tid; cmd->create_params.flags = cpu_to_le32(BASTREAM_FLAG_IMMEDIATE_TYPE) | cpu_to_le32(BASTREAM_FLAG_DIRECTION_UPSTREAM); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } static int mwl8k_create_ba(struct ieee80211_hw *hw, struct mwl8k_ampdu_stream *stream, u8 buf_size) { struct mwl8k_cmd_bastream *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_BASTREAM); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le32(MWL8K_BA_CREATE); cmd->create_params.bar_thrs = cpu_to_le32((u32)buf_size); cmd->create_params.window_size = cpu_to_le32((u32)buf_size); cmd->create_params.queue_id = stream->idx; memcpy(cmd->create_params.peer_mac_addr, stream->sta->addr, ETH_ALEN); cmd->create_params.tid = stream->tid; cmd->create_params.curr_seq_no = cpu_to_le16(0); cmd->create_params.reset_seq_no_flag = 1; cmd->create_params.param_info = (stream->sta->ht_cap.ampdu_factor & IEEE80211_HT_AMPDU_PARM_FACTOR) | ((stream->sta->ht_cap.ampdu_density << 2) & IEEE80211_HT_AMPDU_PARM_DENSITY); cmd->create_params.flags = cpu_to_le32(BASTREAM_FLAG_IMMEDIATE_TYPE | BASTREAM_FLAG_DIRECTION_UPSTREAM); rc = mwl8k_post_cmd(hw, &cmd->header); wiphy_debug(hw->wiphy, "Created a BA stream for %pM : tid %d\n", stream->sta->addr, stream->tid); kfree(cmd); return rc; } static void mwl8k_destroy_ba(struct ieee80211_hw *hw, struct mwl8k_ampdu_stream *stream) { struct mwl8k_cmd_bastream *cmd; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return; cmd->header.code = cpu_to_le16(MWL8K_CMD_BASTREAM); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le32(MWL8K_BA_DESTROY); cmd->destroy_params.ba_context = cpu_to_le32(stream->idx); mwl8k_post_cmd(hw, &cmd->header); wiphy_debug(hw->wiphy, "Deleted BA stream index %d\n", stream->idx); kfree(cmd); } /* * CMD_SET_NEW_STN. */ struct mwl8k_cmd_set_new_stn { struct mwl8k_cmd_pkt header; __le16 aid; __u8 mac_addr[6]; __le16 stn_id; __le16 action; __le16 rsvd; __le32 legacy_rates; __u8 ht_rates[4]; __le16 cap_info; __le16 ht_capabilities_info; __u8 mac_ht_param_info; __u8 rev; __u8 control_channel; __u8 add_channel; __le16 op_mode; __le16 stbc; __u8 add_qos_info; __u8 is_qos_sta; __le32 fw_sta_ptr; } __packed; #define MWL8K_STA_ACTION_ADD 0 #define MWL8K_STA_ACTION_REMOVE 2 static int mwl8k_cmd_set_new_stn_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mwl8k_cmd_set_new_stn *cmd; u32 rates; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_NEW_STN); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->aid = cpu_to_le16(sta->aid); memcpy(cmd->mac_addr, sta->addr, ETH_ALEN); cmd->stn_id = cpu_to_le16(sta->aid); cmd->action = cpu_to_le16(MWL8K_STA_ACTION_ADD); if (hw->conf.channel->band == IEEE80211_BAND_2GHZ) rates = sta->supp_rates[IEEE80211_BAND_2GHZ]; else rates = sta->supp_rates[IEEE80211_BAND_5GHZ] << 5; cmd->legacy_rates = cpu_to_le32(rates); if (sta->ht_cap.ht_supported) { cmd->ht_rates[0] = sta->ht_cap.mcs.rx_mask[0]; cmd->ht_rates[1] = sta->ht_cap.mcs.rx_mask[1]; cmd->ht_rates[2] = sta->ht_cap.mcs.rx_mask[2]; cmd->ht_rates[3] = sta->ht_cap.mcs.rx_mask[3]; cmd->ht_capabilities_info = cpu_to_le16(sta->ht_cap.cap); cmd->mac_ht_param_info = (sta->ht_cap.ampdu_factor & 3) | ((sta->ht_cap.ampdu_density & 7) << 2); cmd->is_qos_sta = 1; } rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header); kfree(cmd); return rc; } static int mwl8k_cmd_set_new_stn_add_self(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mwl8k_cmd_set_new_stn *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_NEW_STN); cmd->header.length = cpu_to_le16(sizeof(*cmd)); memcpy(cmd->mac_addr, vif->addr, ETH_ALEN); rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header); kfree(cmd); return rc; } static int mwl8k_cmd_set_new_stn_del(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u8 *addr) { struct mwl8k_cmd_set_new_stn *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_NEW_STN); cmd->header.length = cpu_to_le16(sizeof(*cmd)); memcpy(cmd->mac_addr, addr, ETH_ALEN); cmd->action = cpu_to_le16(MWL8K_STA_ACTION_REMOVE); rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header); kfree(cmd); return rc; } /* * CMD_UPDATE_ENCRYPTION. */ #define MAX_ENCR_KEY_LENGTH 16 #define MIC_KEY_LENGTH 8 struct mwl8k_cmd_update_encryption { struct mwl8k_cmd_pkt header; __le32 action; __le32 reserved; __u8 mac_addr[6]; __u8 encr_type; } __packed; struct mwl8k_cmd_set_key { struct mwl8k_cmd_pkt header; __le32 action; __le32 reserved; __le16 length; __le16 key_type_id; __le32 key_info; __le32 key_id; __le16 key_len; __u8 key_material[MAX_ENCR_KEY_LENGTH]; __u8 tkip_tx_mic_key[MIC_KEY_LENGTH]; __u8 tkip_rx_mic_key[MIC_KEY_LENGTH]; __le16 tkip_rsc_low; __le32 tkip_rsc_high; __le16 tkip_tsc_low; __le32 tkip_tsc_high; __u8 mac_addr[6]; } __packed; enum { MWL8K_ENCR_ENABLE, MWL8K_ENCR_SET_KEY, MWL8K_ENCR_REMOVE_KEY, MWL8K_ENCR_SET_GROUP_KEY, }; #define MWL8K_UPDATE_ENCRYPTION_TYPE_WEP 0 #define MWL8K_UPDATE_ENCRYPTION_TYPE_DISABLE 1 #define MWL8K_UPDATE_ENCRYPTION_TYPE_TKIP 4 #define MWL8K_UPDATE_ENCRYPTION_TYPE_MIXED 7 #define MWL8K_UPDATE_ENCRYPTION_TYPE_AES 8 enum { MWL8K_ALG_WEP, MWL8K_ALG_TKIP, MWL8K_ALG_CCMP, }; #define MWL8K_KEY_FLAG_TXGROUPKEY 0x00000004 #define MWL8K_KEY_FLAG_PAIRWISE 0x00000008 #define MWL8K_KEY_FLAG_TSC_VALID 0x00000040 #define MWL8K_KEY_FLAG_WEP_TXKEY 0x01000000 #define MWL8K_KEY_FLAG_MICKEY_VALID 0x02000000 static int mwl8k_cmd_update_encryption_enable(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u8 *addr, u8 encr_type) { struct mwl8k_cmd_update_encryption *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_ENCRYPTION); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le32(MWL8K_ENCR_ENABLE); memcpy(cmd->mac_addr, addr, ETH_ALEN); cmd->encr_type = encr_type; rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header); kfree(cmd); return rc; } static int mwl8k_encryption_set_cmd_info(struct mwl8k_cmd_set_key *cmd, u8 *addr, struct ieee80211_key_conf *key) { cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_ENCRYPTION); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->length = cpu_to_le16(sizeof(*cmd) - offsetof(struct mwl8k_cmd_set_key, length)); cmd->key_id = cpu_to_le32(key->keyidx); cmd->key_len = cpu_to_le16(key->keylen); memcpy(cmd->mac_addr, addr, ETH_ALEN); switch (key->cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: cmd->key_type_id = cpu_to_le16(MWL8K_ALG_WEP); if (key->keyidx == 0) cmd->key_info = cpu_to_le32(MWL8K_KEY_FLAG_WEP_TXKEY); break; case WLAN_CIPHER_SUITE_TKIP: cmd->key_type_id = cpu_to_le16(MWL8K_ALG_TKIP); cmd->key_info = (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) ? cpu_to_le32(MWL8K_KEY_FLAG_PAIRWISE) : cpu_to_le32(MWL8K_KEY_FLAG_TXGROUPKEY); cmd->key_info |= cpu_to_le32(MWL8K_KEY_FLAG_MICKEY_VALID | MWL8K_KEY_FLAG_TSC_VALID); break; case WLAN_CIPHER_SUITE_CCMP: cmd->key_type_id = cpu_to_le16(MWL8K_ALG_CCMP); cmd->key_info = (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) ? cpu_to_le32(MWL8K_KEY_FLAG_PAIRWISE) : cpu_to_le32(MWL8K_KEY_FLAG_TXGROUPKEY); break; default: return -ENOTSUPP; } return 0; } static int mwl8k_cmd_encryption_set_key(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u8 *addr, struct ieee80211_key_conf *key) { struct mwl8k_cmd_set_key *cmd; int rc; int keymlen; u32 action; u8 idx; struct mwl8k_vif *mwl8k_vif = MWL8K_VIF(vif); cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; rc = mwl8k_encryption_set_cmd_info(cmd, addr, key); if (rc < 0) goto done; idx = key->keyidx; if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) action = MWL8K_ENCR_SET_KEY; else action = MWL8K_ENCR_SET_GROUP_KEY; switch (key->cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: if (!mwl8k_vif->wep_key_conf[idx].enabled) { memcpy(mwl8k_vif->wep_key_conf[idx].key, key, sizeof(*key) + key->keylen); mwl8k_vif->wep_key_conf[idx].enabled = 1; } keymlen = 0; action = MWL8K_ENCR_SET_KEY; break; case WLAN_CIPHER_SUITE_TKIP: keymlen = MAX_ENCR_KEY_LENGTH + 2 * MIC_KEY_LENGTH; break; case WLAN_CIPHER_SUITE_CCMP: keymlen = key->keylen; break; default: rc = -ENOTSUPP; goto done; } memcpy(cmd->key_material, key->key, keymlen); cmd->action = cpu_to_le32(action); rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header); done: kfree(cmd); return rc; } static int mwl8k_cmd_encryption_remove_key(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u8 *addr, struct ieee80211_key_conf *key) { struct mwl8k_cmd_set_key *cmd; int rc; struct mwl8k_vif *mwl8k_vif = MWL8K_VIF(vif); cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; rc = mwl8k_encryption_set_cmd_info(cmd, addr, key); if (rc < 0) goto done; if (key->cipher == WLAN_CIPHER_SUITE_WEP40 || WLAN_CIPHER_SUITE_WEP104) mwl8k_vif->wep_key_conf[key->keyidx].enabled = 0; cmd->action = cpu_to_le32(MWL8K_ENCR_REMOVE_KEY); rc = mwl8k_post_pervif_cmd(hw, vif, &cmd->header); done: kfree(cmd); return rc; } static int mwl8k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd_param, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { int rc = 0; u8 encr_type; u8 *addr; struct mwl8k_vif *mwl8k_vif = MWL8K_VIF(vif); if (vif->type == NL80211_IFTYPE_STATION) return -EOPNOTSUPP; if (sta == NULL) addr = hw->wiphy->perm_addr; else addr = sta->addr; if (cmd_param == SET_KEY) { key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; rc = mwl8k_cmd_encryption_set_key(hw, vif, addr, key); if (rc) goto out; if ((key->cipher == WLAN_CIPHER_SUITE_WEP40) || (key->cipher == WLAN_CIPHER_SUITE_WEP104)) encr_type = MWL8K_UPDATE_ENCRYPTION_TYPE_WEP; else encr_type = MWL8K_UPDATE_ENCRYPTION_TYPE_MIXED; rc = mwl8k_cmd_update_encryption_enable(hw, vif, addr, encr_type); if (rc) goto out; mwl8k_vif->is_hw_crypto_enabled = true; } else { rc = mwl8k_cmd_encryption_remove_key(hw, vif, addr, key); if (rc) goto out; mwl8k_vif->is_hw_crypto_enabled = false; } out: return rc; } /* * CMD_UPDATE_STADB. */ struct ewc_ht_info { __le16 control1; __le16 control2; __le16 control3; } __packed; struct peer_capability_info { /* Peer type - AP vs. STA. */ __u8 peer_type; /* Basic 802.11 capabilities from assoc resp. */ __le16 basic_caps; /* Set if peer supports 802.11n high throughput (HT). */ __u8 ht_support; /* Valid if HT is supported. */ __le16 ht_caps; __u8 extended_ht_caps; struct ewc_ht_info ewc_info; /* Legacy rate table. Intersection of our rates and peer rates. */ __u8 legacy_rates[12]; /* HT rate table. Intersection of our rates and peer rates. */ __u8 ht_rates[16]; __u8 pad[16]; /* If set, interoperability mode, no proprietary extensions. */ __u8 interop; __u8 pad2; __u8 station_id; __le16 amsdu_enabled; } __packed; struct mwl8k_cmd_update_stadb { struct mwl8k_cmd_pkt header; /* See STADB_ACTION_TYPE */ __le32 action; /* Peer MAC address */ __u8 peer_addr[ETH_ALEN]; __le32 reserved; /* Peer info - valid during add/update. */ struct peer_capability_info peer_info; } __packed; #define MWL8K_STA_DB_MODIFY_ENTRY 1 #define MWL8K_STA_DB_DEL_ENTRY 2 /* Peer Entry flags - used to define the type of the peer node */ #define MWL8K_PEER_TYPE_ACCESSPOINT 2 static int mwl8k_cmd_update_stadb_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mwl8k_cmd_update_stadb *cmd; struct peer_capability_info *p; u32 rates; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_STADB); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le32(MWL8K_STA_DB_MODIFY_ENTRY); memcpy(cmd->peer_addr, sta->addr, ETH_ALEN); p = &cmd->peer_info; p->peer_type = MWL8K_PEER_TYPE_ACCESSPOINT; p->basic_caps = cpu_to_le16(vif->bss_conf.assoc_capability); p->ht_support = sta->ht_cap.ht_supported; p->ht_caps = cpu_to_le16(sta->ht_cap.cap); p->extended_ht_caps = (sta->ht_cap.ampdu_factor & 3) | ((sta->ht_cap.ampdu_density & 7) << 2); if (hw->conf.channel->band == IEEE80211_BAND_2GHZ) rates = sta->supp_rates[IEEE80211_BAND_2GHZ]; else rates = sta->supp_rates[IEEE80211_BAND_5GHZ] << 5; legacy_rate_mask_to_array(p->legacy_rates, rates); memcpy(p->ht_rates, sta->ht_cap.mcs.rx_mask, 16); p->interop = 1; p->amsdu_enabled = 0; rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc ? rc : p->station_id; } static int mwl8k_cmd_update_stadb_del(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u8 *addr) { struct mwl8k_cmd_update_stadb *cmd; int rc; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (cmd == NULL) return -ENOMEM; cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_STADB); cmd->header.length = cpu_to_le16(sizeof(*cmd)); cmd->action = cpu_to_le32(MWL8K_STA_DB_DEL_ENTRY); memcpy(cmd->peer_addr, addr, ETH_ALEN); rc = mwl8k_post_cmd(hw, &cmd->header); kfree(cmd); return rc; } /* * Interrupt handling. */ static irqreturn_t mwl8k_interrupt(int irq, void *dev_id) { struct ieee80211_hw *hw = dev_id; struct mwl8k_priv *priv = hw->priv; u32 status; status = ioread32(priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS); if (!status) return IRQ_NONE; if (status & MWL8K_A2H_INT_TX_DONE) { status &= ~MWL8K_A2H_INT_TX_DONE; tasklet_schedule(&priv->poll_tx_task); } if (status & MWL8K_A2H_INT_RX_READY) { status &= ~MWL8K_A2H_INT_RX_READY; tasklet_schedule(&priv->poll_rx_task); } if (status & MWL8K_A2H_INT_BA_WATCHDOG) { status &= ~MWL8K_A2H_INT_BA_WATCHDOG; ieee80211_queue_work(hw, &priv->watchdog_ba_handle); } if (status) iowrite32(~status, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS); if (status & MWL8K_A2H_INT_OPC_DONE) { if (priv->hostcmd_wait != NULL) complete(priv->hostcmd_wait); } if (status & MWL8K_A2H_INT_QUEUE_EMPTY) { if (!mutex_is_locked(&priv->fw_mutex) && priv->radio_on && priv->pending_tx_pkts) mwl8k_tx_start(priv); } return IRQ_HANDLED; } static void mwl8k_tx_poll(unsigned long data) { struct ieee80211_hw *hw = (struct ieee80211_hw *)data; struct mwl8k_priv *priv = hw->priv; int limit; int i; limit = 32; spin_lock_bh(&priv->tx_lock); for (i = 0; i < mwl8k_tx_queues(priv); i++) limit -= mwl8k_txq_reclaim(hw, i, limit, 0); if (!priv->pending_tx_pkts && priv->tx_wait != NULL) { complete(priv->tx_wait); priv->tx_wait = NULL; } spin_unlock_bh(&priv->tx_lock); if (limit) { writel(~MWL8K_A2H_INT_TX_DONE, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS); } else { tasklet_schedule(&priv->poll_tx_task); } } static void mwl8k_rx_poll(unsigned long data) { struct ieee80211_hw *hw = (struct ieee80211_hw *)data; struct mwl8k_priv *priv = hw->priv; int limit; limit = 32; limit -= rxq_process(hw, 0, limit); limit -= rxq_refill(hw, 0, limit); if (limit) { writel(~MWL8K_A2H_INT_RX_READY, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS); } else { tasklet_schedule(&priv->poll_rx_task); } } /* * Core driver operations. */ static void mwl8k_tx(struct ieee80211_hw *hw, struct sk_buff *skb) { struct mwl8k_priv *priv = hw->priv; int index = skb_get_queue_mapping(skb); if (!priv->radio_on) { wiphy_debug(hw->wiphy, "dropped TX frame since radio disabled\n"); dev_kfree_skb(skb); return; } mwl8k_txq_xmit(hw, index, skb); } static int mwl8k_start(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; int rc; rc = request_irq(priv->pdev->irq, mwl8k_interrupt, IRQF_SHARED, MWL8K_NAME, hw); if (rc) { priv->irq = -1; wiphy_err(hw->wiphy, "failed to register IRQ handler\n"); return -EIO; } priv->irq = priv->pdev->irq; /* Enable TX reclaim and RX tasklets. */ tasklet_enable(&priv->poll_tx_task); tasklet_enable(&priv->poll_rx_task); /* Enable interrupts */ iowrite32(MWL8K_A2H_EVENTS, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK); iowrite32(MWL8K_A2H_EVENTS, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK); rc = mwl8k_fw_lock(hw); if (!rc) { rc = mwl8k_cmd_radio_enable(hw); if (!priv->ap_fw) { if (!rc) rc = mwl8k_cmd_enable_sniffer(hw, 0); if (!rc) rc = mwl8k_cmd_set_pre_scan(hw); if (!rc) rc = mwl8k_cmd_set_post_scan(hw, "\x00\x00\x00\x00\x00\x00"); } if (!rc) rc = mwl8k_cmd_set_rateadapt_mode(hw, 0); if (!rc) rc = mwl8k_cmd_set_wmm_mode(hw, 0); mwl8k_fw_unlock(hw); } if (rc) { iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK); free_irq(priv->pdev->irq, hw); priv->irq = -1; tasklet_disable(&priv->poll_tx_task); tasklet_disable(&priv->poll_rx_task); } return rc; } static void mwl8k_stop(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; int i; mwl8k_cmd_radio_disable(hw); ieee80211_stop_queues(hw); /* Disable interrupts */ iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK); if (priv->irq != -1) { free_irq(priv->pdev->irq, hw); priv->irq = -1; } /* Stop finalize join worker */ cancel_work_sync(&priv->finalize_join_worker); cancel_work_sync(&priv->watchdog_ba_handle); if (priv->beacon_skb != NULL) dev_kfree_skb(priv->beacon_skb); /* Stop TX reclaim and RX tasklets. */ tasklet_disable(&priv->poll_tx_task); tasklet_disable(&priv->poll_rx_task); /* Return all skbs to mac80211 */ for (i = 0; i < mwl8k_tx_queues(priv); i++) mwl8k_txq_reclaim(hw, i, INT_MAX, 1); } static int mwl8k_reload_firmware(struct ieee80211_hw *hw, char *fw_image); static int mwl8k_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_vif *mwl8k_vif; u32 macids_supported; int macid, rc; struct mwl8k_device_info *di; /* * Reject interface creation if sniffer mode is active, as * STA operation is mutually exclusive with hardware sniffer * mode. (Sniffer mode is only used on STA firmware.) */ if (priv->sniffer_enabled) { wiphy_info(hw->wiphy, "unable to create STA interface because sniffer mode is enabled\n"); return -EINVAL; } di = priv->device_info; switch (vif->type) { case NL80211_IFTYPE_AP: if (!priv->ap_fw && di->fw_image_ap) { /* we must load the ap fw to meet this request */ if (!list_empty(&priv->vif_list)) return -EBUSY; rc = mwl8k_reload_firmware(hw, di->fw_image_ap); if (rc) return rc; } macids_supported = priv->ap_macids_supported; break; case NL80211_IFTYPE_STATION: if (priv->ap_fw && di->fw_image_sta) { /* we must load the sta fw to meet this request */ if (!list_empty(&priv->vif_list)) return -EBUSY; rc = mwl8k_reload_firmware(hw, di->fw_image_sta); if (rc) return rc; } macids_supported = priv->sta_macids_supported; break; default: return -EINVAL; } macid = ffs(macids_supported & ~priv->macids_used); if (!macid--) return -EBUSY; /* Setup driver private area. */ mwl8k_vif = MWL8K_VIF(vif); memset(mwl8k_vif, 0, sizeof(*mwl8k_vif)); mwl8k_vif->vif = vif; mwl8k_vif->macid = macid; mwl8k_vif->seqno = 0; memcpy(mwl8k_vif->bssid, vif->addr, ETH_ALEN); mwl8k_vif->is_hw_crypto_enabled = false; /* Set the mac address. */ mwl8k_cmd_set_mac_addr(hw, vif, vif->addr); if (priv->ap_fw) mwl8k_cmd_set_new_stn_add_self(hw, vif); priv->macids_used |= 1 << mwl8k_vif->macid; list_add_tail(&mwl8k_vif->list, &priv->vif_list); return 0; } static void mwl8k_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_vif *mwl8k_vif = MWL8K_VIF(vif); if (priv->ap_fw) mwl8k_cmd_set_new_stn_del(hw, vif, vif->addr); mwl8k_cmd_set_mac_addr(hw, vif, "\x00\x00\x00\x00\x00\x00"); priv->macids_used &= ~(1 << mwl8k_vif->macid); list_del(&mwl8k_vif->list); } static int mwl8k_config(struct ieee80211_hw *hw, u32 changed) { struct ieee80211_conf *conf = &hw->conf; struct mwl8k_priv *priv = hw->priv; int rc; if (conf->flags & IEEE80211_CONF_IDLE) { mwl8k_cmd_radio_disable(hw); return 0; } rc = mwl8k_fw_lock(hw); if (rc) return rc; rc = mwl8k_cmd_radio_enable(hw); if (rc) goto out; rc = mwl8k_cmd_set_rf_channel(hw, conf); if (rc) goto out; if (conf->power_level > 18) conf->power_level = 18; if (priv->ap_fw) { if (conf->flags & IEEE80211_CONF_CHANGE_POWER) { rc = mwl8k_cmd_tx_power(hw, conf, conf->power_level); if (rc) goto out; } rc = mwl8k_cmd_rf_antenna(hw, MWL8K_RF_ANTENNA_RX, 0x3); if (rc) wiphy_warn(hw->wiphy, "failed to set # of RX antennas"); rc = mwl8k_cmd_rf_antenna(hw, MWL8K_RF_ANTENNA_TX, 0x7); if (rc) wiphy_warn(hw->wiphy, "failed to set # of TX antennas"); } else { rc = mwl8k_cmd_rf_tx_power(hw, conf->power_level); if (rc) goto out; rc = mwl8k_cmd_mimo_config(hw, 0x7, 0x7); } out: mwl8k_fw_unlock(hw); return rc; } static void mwl8k_bss_info_changed_sta(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u32 changed) { struct mwl8k_priv *priv = hw->priv; u32 ap_legacy_rates = 0; u8 ap_mcs_rates[16]; int rc; if (mwl8k_fw_lock(hw)) return; /* * No need to capture a beacon if we're no longer associated. */ if ((changed & BSS_CHANGED_ASSOC) && !vif->bss_conf.assoc) priv->capture_beacon = false; /* * Get the AP's legacy and MCS rates. */ if (vif->bss_conf.assoc) { struct ieee80211_sta *ap; rcu_read_lock(); ap = ieee80211_find_sta(vif, vif->bss_conf.bssid); if (ap == NULL) { rcu_read_unlock(); goto out; } if (hw->conf.channel->band == IEEE80211_BAND_2GHZ) { ap_legacy_rates = ap->supp_rates[IEEE80211_BAND_2GHZ]; } else { ap_legacy_rates = ap->supp_rates[IEEE80211_BAND_5GHZ] << 5; } memcpy(ap_mcs_rates, ap->ht_cap.mcs.rx_mask, 16); rcu_read_unlock(); } if ((changed & BSS_CHANGED_ASSOC) && vif->bss_conf.assoc) { rc = mwl8k_cmd_set_rate(hw, vif, ap_legacy_rates, ap_mcs_rates); if (rc) goto out; rc = mwl8k_cmd_use_fixed_rate_sta(hw); if (rc) goto out; } if (changed & BSS_CHANGED_ERP_PREAMBLE) { rc = mwl8k_set_radio_preamble(hw, vif->bss_conf.use_short_preamble); if (rc) goto out; } if (changed & BSS_CHANGED_ERP_SLOT) { rc = mwl8k_cmd_set_slot(hw, vif->bss_conf.use_short_slot); if (rc) goto out; } if (vif->bss_conf.assoc && (changed & (BSS_CHANGED_ASSOC | BSS_CHANGED_ERP_CTS_PROT | BSS_CHANGED_HT))) { rc = mwl8k_cmd_set_aid(hw, vif, ap_legacy_rates); if (rc) goto out; } if (vif->bss_conf.assoc && (changed & (BSS_CHANGED_ASSOC | BSS_CHANGED_BEACON_INT))) { /* * Finalize the join. Tell rx handler to process * next beacon from our BSSID. */ memcpy(priv->capture_bssid, vif->bss_conf.bssid, ETH_ALEN); priv->capture_beacon = true; } out: mwl8k_fw_unlock(hw); } static void mwl8k_bss_info_changed_ap(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u32 changed) { int rc; if (mwl8k_fw_lock(hw)) return; if (changed & BSS_CHANGED_ERP_PREAMBLE) { rc = mwl8k_set_radio_preamble(hw, vif->bss_conf.use_short_preamble); if (rc) goto out; } if (changed & BSS_CHANGED_BASIC_RATES) { int idx; int rate; /* * Use lowest supported basic rate for multicasts * and management frames (such as probe responses -- * beacons will always go out at 1 Mb/s). */ idx = ffs(vif->bss_conf.basic_rates); if (idx) idx--; if (hw->conf.channel->band == IEEE80211_BAND_2GHZ) rate = mwl8k_rates_24[idx].hw_value; else rate = mwl8k_rates_50[idx].hw_value; mwl8k_cmd_use_fixed_rate_ap(hw, rate, rate); } if (changed & (BSS_CHANGED_BEACON_INT | BSS_CHANGED_BEACON)) { struct sk_buff *skb; skb = ieee80211_beacon_get(hw, vif); if (skb != NULL) { mwl8k_cmd_set_beacon(hw, vif, skb->data, skb->len); kfree_skb(skb); } } if (changed & BSS_CHANGED_BEACON_ENABLED) mwl8k_cmd_bss_start(hw, vif, info->enable_beacon); out: mwl8k_fw_unlock(hw); } static void mwl8k_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u32 changed) { struct mwl8k_priv *priv = hw->priv; if (!priv->ap_fw) mwl8k_bss_info_changed_sta(hw, vif, info, changed); else mwl8k_bss_info_changed_ap(hw, vif, info, changed); } static u64 mwl8k_prepare_multicast(struct ieee80211_hw *hw, struct netdev_hw_addr_list *mc_list) { struct mwl8k_cmd_pkt *cmd; /* * Synthesize and return a command packet that programs the * hardware multicast address filter. At this point we don't * know whether FIF_ALLMULTI is being requested, but if it is, * we'll end up throwing this packet away and creating a new * one in mwl8k_configure_filter(). */ cmd = __mwl8k_cmd_mac_multicast_adr(hw, 0, mc_list); return (unsigned long)cmd; } static int mwl8k_configure_filter_sniffer(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags) { struct mwl8k_priv *priv = hw->priv; /* * Hardware sniffer mode is mutually exclusive with STA * operation, so refuse to enable sniffer mode if a STA * interface is active. */ if (!list_empty(&priv->vif_list)) { if (net_ratelimit()) wiphy_info(hw->wiphy, "not enabling sniffer mode because STA interface is active\n"); return 0; } if (!priv->sniffer_enabled) { if (mwl8k_cmd_enable_sniffer(hw, 1)) return 0; priv->sniffer_enabled = true; } *total_flags &= FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC | FIF_CONTROL | FIF_OTHER_BSS; return 1; } static struct mwl8k_vif *mwl8k_first_vif(struct mwl8k_priv *priv) { if (!list_empty(&priv->vif_list)) return list_entry(priv->vif_list.next, struct mwl8k_vif, list); return NULL; } static void mwl8k_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct mwl8k_priv *priv = hw->priv; struct mwl8k_cmd_pkt *cmd = (void *)(unsigned long)multicast; /* * AP firmware doesn't allow fine-grained control over * the receive filter. */ if (priv->ap_fw) { *total_flags &= FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC; kfree(cmd); return; } /* * Enable hardware sniffer mode if FIF_CONTROL or * FIF_OTHER_BSS is requested. */ if (*total_flags & (FIF_CONTROL | FIF_OTHER_BSS) && mwl8k_configure_filter_sniffer(hw, changed_flags, total_flags)) { kfree(cmd); return; } /* Clear unsupported feature flags */ *total_flags &= FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC; if (mwl8k_fw_lock(hw)) { kfree(cmd); return; } if (priv->sniffer_enabled) { mwl8k_cmd_enable_sniffer(hw, 0); priv->sniffer_enabled = false; } if (changed_flags & FIF_BCN_PRBRESP_PROMISC) { if (*total_flags & FIF_BCN_PRBRESP_PROMISC) { /* * Disable the BSS filter. */ mwl8k_cmd_set_pre_scan(hw); } else { struct mwl8k_vif *mwl8k_vif; const u8 *bssid; /* * Enable the BSS filter. * * If there is an active STA interface, use that * interface's BSSID, otherwise use a dummy one * (where the OUI part needs to be nonzero for * the BSSID to be accepted by POST_SCAN). */ mwl8k_vif = mwl8k_first_vif(priv); if (mwl8k_vif != NULL) bssid = mwl8k_vif->vif->bss_conf.bssid; else bssid = "\x01\x00\x00\x00\x00\x00"; mwl8k_cmd_set_post_scan(hw, bssid); } } /* * If FIF_ALLMULTI is being requested, throw away the command * packet that ->prepare_multicast() built and replace it with * a command packet that enables reception of all multicast * packets. */ if (*total_flags & FIF_ALLMULTI) { kfree(cmd); cmd = __mwl8k_cmd_mac_multicast_adr(hw, 1, NULL); } if (cmd != NULL) { mwl8k_post_cmd(hw, cmd); kfree(cmd); } mwl8k_fw_unlock(hw); } static int mwl8k_set_rts_threshold(struct ieee80211_hw *hw, u32 value) { return mwl8k_cmd_set_rts_threshold(hw, value); } static int mwl8k_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mwl8k_priv *priv = hw->priv; if (priv->ap_fw) return mwl8k_cmd_set_new_stn_del(hw, vif, sta->addr); else return mwl8k_cmd_update_stadb_del(hw, vif, sta->addr); } static int mwl8k_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mwl8k_priv *priv = hw->priv; int ret; int i; struct mwl8k_vif *mwl8k_vif = MWL8K_VIF(vif); struct ieee80211_key_conf *key; if (!priv->ap_fw) { ret = mwl8k_cmd_update_stadb_add(hw, vif, sta); if (ret >= 0) { MWL8K_STA(sta)->peer_id = ret; if (sta->ht_cap.ht_supported) MWL8K_STA(sta)->is_ampdu_allowed = true; ret = 0; } } else { ret = mwl8k_cmd_set_new_stn_add(hw, vif, sta); } for (i = 0; i < NUM_WEP_KEYS; i++) { key = IEEE80211_KEY_CONF(mwl8k_vif->wep_key_conf[i].key); if (mwl8k_vif->wep_key_conf[i].enabled) mwl8k_set_key(hw, SET_KEY, vif, sta, key); } return ret; } static int mwl8k_conf_tx(struct ieee80211_hw *hw, u16 queue, const struct ieee80211_tx_queue_params *params) { struct mwl8k_priv *priv = hw->priv; int rc; rc = mwl8k_fw_lock(hw); if (!rc) { BUG_ON(queue > MWL8K_TX_WMM_QUEUES - 1); memcpy(&priv->wmm_params[queue], params, sizeof(*params)); if (!priv->wmm_enabled) rc = mwl8k_cmd_set_wmm_mode(hw, 1); if (!rc) { int q = MWL8K_TX_WMM_QUEUES - 1 - queue; rc = mwl8k_cmd_set_edca_params(hw, q, params->cw_min, params->cw_max, params->aifs, params->txop); } mwl8k_fw_unlock(hw); } return rc; } static int mwl8k_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { return mwl8k_cmd_get_stat(hw, stats); } static int mwl8k_get_survey(struct ieee80211_hw *hw, int idx, struct survey_info *survey) { struct mwl8k_priv *priv = hw->priv; struct ieee80211_conf *conf = &hw->conf; if (idx != 0) return -ENOENT; survey->channel = conf->channel; survey->filled = SURVEY_INFO_NOISE_DBM; survey->noise = priv->noise; return 0; } #define MAX_AMPDU_ATTEMPTS 5 static int mwl8k_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum ieee80211_ampdu_mlme_action action, struct ieee80211_sta *sta, u16 tid, u16 *ssn, u8 buf_size) { int i, rc = 0; struct mwl8k_priv *priv = hw->priv; struct mwl8k_ampdu_stream *stream; u8 *addr = sta->addr; if (!(hw->flags & IEEE80211_HW_AMPDU_AGGREGATION)) return -ENOTSUPP; spin_lock(&priv->stream_lock); stream = mwl8k_lookup_stream(hw, addr, tid); switch (action) { case IEEE80211_AMPDU_RX_START: case IEEE80211_AMPDU_RX_STOP: break; case IEEE80211_AMPDU_TX_START: /* By the time we get here the hw queues may contain outgoing * packets for this RA/TID that are not part of this BA * session. The hw will assign sequence numbers to these * packets as they go out. So if we query the hw for its next * sequence number and use that for the SSN here, it may end up * being wrong, which will lead to sequence number mismatch at * the recipient. To avoid this, we reset the sequence number * to O for the first MPDU in this BA stream. */ *ssn = 0; if (stream == NULL) { /* This means that somebody outside this driver called * ieee80211_start_tx_ba_session. This is unexpected * because we do our own rate control. Just warn and * move on. */ wiphy_warn(hw->wiphy, "Unexpected call to %s. " "Proceeding anyway.\n", __func__); stream = mwl8k_add_stream(hw, sta, tid); } if (stream == NULL) { wiphy_debug(hw->wiphy, "no free AMPDU streams\n"); rc = -EBUSY; break; } stream->state = AMPDU_STREAM_IN_PROGRESS; /* Release the lock before we do the time consuming stuff */ spin_unlock(&priv->stream_lock); for (i = 0; i < MAX_AMPDU_ATTEMPTS; i++) { rc = mwl8k_check_ba(hw, stream); if (!rc) break; /* * HW queues take time to be flushed, give them * sufficient time */ msleep(1000); } spin_lock(&priv->stream_lock); if (rc) { wiphy_err(hw->wiphy, "Stream for tid %d busy after %d" " attempts\n", tid, MAX_AMPDU_ATTEMPTS); mwl8k_remove_stream(hw, stream); rc = -EBUSY; break; } ieee80211_start_tx_ba_cb_irqsafe(vif, addr, tid); break; case IEEE80211_AMPDU_TX_STOP: if (stream == NULL) break; if (stream->state == AMPDU_STREAM_ACTIVE) { spin_unlock(&priv->stream_lock); mwl8k_destroy_ba(hw, stream); spin_lock(&priv->stream_lock); } mwl8k_remove_stream(hw, stream); ieee80211_stop_tx_ba_cb_irqsafe(vif, addr, tid); break; case IEEE80211_AMPDU_TX_OPERATIONAL: BUG_ON(stream == NULL); BUG_ON(stream->state != AMPDU_STREAM_IN_PROGRESS); spin_unlock(&priv->stream_lock); rc = mwl8k_create_ba(hw, stream, buf_size); spin_lock(&priv->stream_lock); if (!rc) stream->state = AMPDU_STREAM_ACTIVE; else { spin_unlock(&priv->stream_lock); mwl8k_destroy_ba(hw, stream); spin_lock(&priv->stream_lock); wiphy_debug(hw->wiphy, "Failed adding stream for sta %pM tid %d\n", addr, tid); mwl8k_remove_stream(hw, stream); } break; default: rc = -ENOTSUPP; } spin_unlock(&priv->stream_lock); return rc; } static const struct ieee80211_ops mwl8k_ops = { .tx = mwl8k_tx, .start = mwl8k_start, .stop = mwl8k_stop, .add_interface = mwl8k_add_interface, .remove_interface = mwl8k_remove_interface, .config = mwl8k_config, .bss_info_changed = mwl8k_bss_info_changed, .prepare_multicast = mwl8k_prepare_multicast, .configure_filter = mwl8k_configure_filter, .set_key = mwl8k_set_key, .set_rts_threshold = mwl8k_set_rts_threshold, .sta_add = mwl8k_sta_add, .sta_remove = mwl8k_sta_remove, .conf_tx = mwl8k_conf_tx, .get_stats = mwl8k_get_stats, .get_survey = mwl8k_get_survey, .ampdu_action = mwl8k_ampdu_action, }; static void mwl8k_finalize_join_worker(struct work_struct *work) { struct mwl8k_priv *priv = container_of(work, struct mwl8k_priv, finalize_join_worker); struct sk_buff *skb = priv->beacon_skb; struct ieee80211_mgmt *mgmt = (void *)skb->data; int len = skb->len - offsetof(struct ieee80211_mgmt, u.beacon.variable); const u8 *tim = cfg80211_find_ie(WLAN_EID_TIM, mgmt->u.beacon.variable, len); int dtim_period = 1; if (tim && tim[1] >= 2) dtim_period = tim[3]; mwl8k_cmd_finalize_join(priv->hw, skb->data, skb->len, dtim_period); dev_kfree_skb(skb); priv->beacon_skb = NULL; } enum { MWL8363 = 0, MWL8687, MWL8366, }; #define MWL8K_8366_AP_FW_API 2 #define _MWL8K_8366_AP_FW(api) "mwl8k/fmimage_8366_ap-" #api ".fw" #define MWL8K_8366_AP_FW(api) _MWL8K_8366_AP_FW(api) static struct mwl8k_device_info mwl8k_info_tbl[] __devinitdata = { [MWL8363] = { .part_name = "88w8363", .helper_image = "mwl8k/helper_8363.fw", .fw_image_sta = "mwl8k/fmimage_8363.fw", }, [MWL8687] = { .part_name = "88w8687", .helper_image = "mwl8k/helper_8687.fw", .fw_image_sta = "mwl8k/fmimage_8687.fw", }, [MWL8366] = { .part_name = "88w8366", .helper_image = "mwl8k/helper_8366.fw", .fw_image_sta = "mwl8k/fmimage_8366.fw", .fw_image_ap = MWL8K_8366_AP_FW(MWL8K_8366_AP_FW_API), .fw_api_ap = MWL8K_8366_AP_FW_API, .ap_rxd_ops = &rxd_8366_ap_ops, }, }; MODULE_FIRMWARE("mwl8k/helper_8363.fw"); MODULE_FIRMWARE("mwl8k/fmimage_8363.fw"); MODULE_FIRMWARE("mwl8k/helper_8687.fw"); MODULE_FIRMWARE("mwl8k/fmimage_8687.fw"); MODULE_FIRMWARE("mwl8k/helper_8366.fw"); MODULE_FIRMWARE("mwl8k/fmimage_8366.fw"); MODULE_FIRMWARE(MWL8K_8366_AP_FW(MWL8K_8366_AP_FW_API)); static DEFINE_PCI_DEVICE_TABLE(mwl8k_pci_id_table) = { { PCI_VDEVICE(MARVELL, 0x2a0a), .driver_data = MWL8363, }, { PCI_VDEVICE(MARVELL, 0x2a0c), .driver_data = MWL8363, }, { PCI_VDEVICE(MARVELL, 0x2a24), .driver_data = MWL8363, }, { PCI_VDEVICE(MARVELL, 0x2a2b), .driver_data = MWL8687, }, { PCI_VDEVICE(MARVELL, 0x2a30), .driver_data = MWL8687, }, { PCI_VDEVICE(MARVELL, 0x2a40), .driver_data = MWL8366, }, { PCI_VDEVICE(MARVELL, 0x2a43), .driver_data = MWL8366, }, { }, }; MODULE_DEVICE_TABLE(pci, mwl8k_pci_id_table); static int mwl8k_request_alt_fw(struct mwl8k_priv *priv) { int rc; printk(KERN_ERR "%s: Error requesting preferred fw %s.\n" "Trying alternative firmware %s\n", pci_name(priv->pdev), priv->fw_pref, priv->fw_alt); rc = mwl8k_request_fw(priv, priv->fw_alt, &priv->fw_ucode, true); if (rc) { printk(KERN_ERR "%s: Error requesting alt fw %s\n", pci_name(priv->pdev), priv->fw_alt); return rc; } return 0; } static int mwl8k_firmware_load_success(struct mwl8k_priv *priv); static void mwl8k_fw_state_machine(const struct firmware *fw, void *context) { struct mwl8k_priv *priv = context; struct mwl8k_device_info *di = priv->device_info; int rc; switch (priv->fw_state) { case FW_STATE_INIT: if (!fw) { printk(KERN_ERR "%s: Error requesting helper fw %s\n", pci_name(priv->pdev), di->helper_image); goto fail; } priv->fw_helper = fw; rc = mwl8k_request_fw(priv, priv->fw_pref, &priv->fw_ucode, true); if (rc && priv->fw_alt) { rc = mwl8k_request_alt_fw(priv); if (rc) goto fail; priv->fw_state = FW_STATE_LOADING_ALT; } else if (rc) goto fail; else priv->fw_state = FW_STATE_LOADING_PREF; break; case FW_STATE_LOADING_PREF: if (!fw) { if (priv->fw_alt) { rc = mwl8k_request_alt_fw(priv); if (rc) goto fail; priv->fw_state = FW_STATE_LOADING_ALT; } else goto fail; } else { priv->fw_ucode = fw; rc = mwl8k_firmware_load_success(priv); if (rc) goto fail; else complete(&priv->firmware_loading_complete); } break; case FW_STATE_LOADING_ALT: if (!fw) { printk(KERN_ERR "%s: Error requesting alt fw %s\n", pci_name(priv->pdev), di->helper_image); goto fail; } priv->fw_ucode = fw; rc = mwl8k_firmware_load_success(priv); if (rc) goto fail; else complete(&priv->firmware_loading_complete); break; default: printk(KERN_ERR "%s: Unexpected firmware loading state: %d\n", MWL8K_NAME, priv->fw_state); BUG_ON(1); } return; fail: priv->fw_state = FW_STATE_ERROR; complete(&priv->firmware_loading_complete); device_release_driver(&priv->pdev->dev); mwl8k_release_firmware(priv); } static int mwl8k_init_firmware(struct ieee80211_hw *hw, char *fw_image, bool nowait) { struct mwl8k_priv *priv = hw->priv; int rc; /* Reset firmware and hardware */ mwl8k_hw_reset(priv); /* Ask userland hotplug daemon for the device firmware */ rc = mwl8k_request_firmware(priv, fw_image, nowait); if (rc) { wiphy_err(hw->wiphy, "Firmware files not found\n"); return rc; } if (nowait) return rc; /* Load firmware into hardware */ rc = mwl8k_load_firmware(hw); if (rc) wiphy_err(hw->wiphy, "Cannot start firmware\n"); /* Reclaim memory once firmware is successfully loaded */ mwl8k_release_firmware(priv); return rc; } static int mwl8k_init_txqs(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; int rc = 0; int i; for (i = 0; i < mwl8k_tx_queues(priv); i++) { rc = mwl8k_txq_init(hw, i); if (rc) break; if (priv->ap_fw) iowrite32(priv->txq[i].txd_dma, priv->sram + priv->txq_offset[i]); } return rc; } /* initialize hw after successfully loading a firmware image */ static int mwl8k_probe_hw(struct ieee80211_hw *hw) { struct mwl8k_priv *priv = hw->priv; int rc = 0; int i; if (priv->ap_fw) { priv->rxd_ops = priv->device_info->ap_rxd_ops; if (priv->rxd_ops == NULL) { wiphy_err(hw->wiphy, "Driver does not have AP firmware image support for this hardware\n"); goto err_stop_firmware; } } else { priv->rxd_ops = &rxd_sta_ops; } priv->sniffer_enabled = false; priv->wmm_enabled = false; priv->pending_tx_pkts = 0; rc = mwl8k_rxq_init(hw, 0); if (rc) goto err_stop_firmware; rxq_refill(hw, 0, INT_MAX); /* For the sta firmware, we need to know the dma addresses of tx queues * before sending MWL8K_CMD_GET_HW_SPEC. So we must initialize them * prior to issuing this command. But for the AP case, we learn the * total number of queues from the result CMD_GET_HW_SPEC, so for this * case we must initialize the tx queues after. */ priv->num_ampdu_queues = 0; if (!priv->ap_fw) { rc = mwl8k_init_txqs(hw); if (rc) goto err_free_queues; } iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS); iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK); iowrite32(MWL8K_A2H_INT_TX_DONE|MWL8K_A2H_INT_RX_READY| MWL8K_A2H_INT_BA_WATCHDOG, priv->regs + MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL); iowrite32(MWL8K_A2H_INT_OPC_DONE, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK); rc = request_irq(priv->pdev->irq, mwl8k_interrupt, IRQF_SHARED, MWL8K_NAME, hw); if (rc) { wiphy_err(hw->wiphy, "failed to register IRQ handler\n"); goto err_free_queues; } memset(priv->ampdu, 0, sizeof(priv->ampdu)); /* * Temporarily enable interrupts. Initial firmware host * commands use interrupts and avoid polling. Disable * interrupts when done. */ iowrite32(MWL8K_A2H_EVENTS, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK); /* Get config data, mac addrs etc */ if (priv->ap_fw) { rc = mwl8k_cmd_get_hw_spec_ap(hw); if (!rc) rc = mwl8k_init_txqs(hw); if (!rc) rc = mwl8k_cmd_set_hw_spec(hw); } else { rc = mwl8k_cmd_get_hw_spec_sta(hw); } if (rc) { wiphy_err(hw->wiphy, "Cannot initialise firmware\n"); goto err_free_irq; } /* Turn radio off */ rc = mwl8k_cmd_radio_disable(hw); if (rc) { wiphy_err(hw->wiphy, "Cannot disable\n"); goto err_free_irq; } /* Clear MAC address */ rc = mwl8k_cmd_set_mac_addr(hw, NULL, "\x00\x00\x00\x00\x00\x00"); if (rc) { wiphy_err(hw->wiphy, "Cannot clear MAC address\n"); goto err_free_irq; } /* Disable interrupts */ iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK); free_irq(priv->pdev->irq, hw); wiphy_info(hw->wiphy, "%s v%d, %pm, %s firmware %u.%u.%u.%u\n", priv->device_info->part_name, priv->hw_rev, hw->wiphy->perm_addr, priv->ap_fw ? "AP" : "STA", (priv->fw_rev >> 24) & 0xff, (priv->fw_rev >> 16) & 0xff, (priv->fw_rev >> 8) & 0xff, priv->fw_rev & 0xff); return 0; err_free_irq: iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK); free_irq(priv->pdev->irq, hw); err_free_queues: for (i = 0; i < mwl8k_tx_queues(priv); i++) mwl8k_txq_deinit(hw, i); mwl8k_rxq_deinit(hw, 0); err_stop_firmware: mwl8k_hw_reset(priv); return rc; } /* * invoke mwl8k_reload_firmware to change the firmware image after the device * has already been registered */ static int mwl8k_reload_firmware(struct ieee80211_hw *hw, char *fw_image) { int i, rc = 0; struct mwl8k_priv *priv = hw->priv; mwl8k_stop(hw); mwl8k_rxq_deinit(hw, 0); for (i = 0; i < mwl8k_tx_queues(priv); i++) mwl8k_txq_deinit(hw, i); rc = mwl8k_init_firmware(hw, fw_image, false); if (rc) goto fail; rc = mwl8k_probe_hw(hw); if (rc) goto fail; rc = mwl8k_start(hw); if (rc) goto fail; rc = mwl8k_config(hw, ~0); if (rc) goto fail; for (i = 0; i < MWL8K_TX_WMM_QUEUES; i++) { rc = mwl8k_conf_tx(hw, i, &priv->wmm_params[i]); if (rc) goto fail; } return rc; fail: printk(KERN_WARNING "mwl8k: Failed to reload firmware image.\n"); return rc; } static int mwl8k_firmware_load_success(struct mwl8k_priv *priv) { struct ieee80211_hw *hw = priv->hw; int i, rc; rc = mwl8k_load_firmware(hw); mwl8k_release_firmware(priv); if (rc) { wiphy_err(hw->wiphy, "Cannot start firmware\n"); return rc; } /* * Extra headroom is the size of the required DMA header * minus the size of the smallest 802.11 frame (CTS frame). */ hw->extra_tx_headroom = sizeof(struct mwl8k_dma_data) - sizeof(struct ieee80211_cts); hw->channel_change_time = 10; hw->queues = MWL8K_TX_WMM_QUEUES; /* Set rssi values to dBm */ hw->flags |= IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_HAS_RATE_CONTROL; hw->vif_data_size = sizeof(struct mwl8k_vif); hw->sta_data_size = sizeof(struct mwl8k_sta); priv->macids_used = 0; INIT_LIST_HEAD(&priv->vif_list); /* Set default radio state and preamble */ priv->radio_on = 0; priv->radio_short_preamble = 0; /* Finalize join worker */ INIT_WORK(&priv->finalize_join_worker, mwl8k_finalize_join_worker); /* Handle watchdog ba events */ INIT_WORK(&priv->watchdog_ba_handle, mwl8k_watchdog_ba_events); /* TX reclaim and RX tasklets. */ tasklet_init(&priv->poll_tx_task, mwl8k_tx_poll, (unsigned long)hw); tasklet_disable(&priv->poll_tx_task); tasklet_init(&priv->poll_rx_task, mwl8k_rx_poll, (unsigned long)hw); tasklet_disable(&priv->poll_rx_task); /* Power management cookie */ priv->cookie = pci_alloc_consistent(priv->pdev, 4, &priv->cookie_dma); if (priv->cookie == NULL) return -ENOMEM; mutex_init(&priv->fw_mutex); priv->fw_mutex_owner = NULL; priv->fw_mutex_depth = 0; priv->hostcmd_wait = NULL; spin_lock_init(&priv->tx_lock); spin_lock_init(&priv->stream_lock); priv->tx_wait = NULL; rc = mwl8k_probe_hw(hw); if (rc) goto err_free_cookie; hw->wiphy->interface_modes = 0; if (priv->ap_macids_supported || priv->device_info->fw_image_ap) hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_AP); if (priv->sta_macids_supported || priv->device_info->fw_image_sta) hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_STATION); rc = ieee80211_register_hw(hw); if (rc) { wiphy_err(hw->wiphy, "Cannot register device\n"); goto err_unprobe_hw; } return 0; err_unprobe_hw: for (i = 0; i < mwl8k_tx_queues(priv); i++) mwl8k_txq_deinit(hw, i); mwl8k_rxq_deinit(hw, 0); err_free_cookie: if (priv->cookie != NULL) pci_free_consistent(priv->pdev, 4, priv->cookie, priv->cookie_dma); return rc; } static int __devinit mwl8k_probe(struct pci_dev *pdev, const struct pci_device_id *id) { static int printed_version; struct ieee80211_hw *hw; struct mwl8k_priv *priv; struct mwl8k_device_info *di; int rc; if (!printed_version) { printk(KERN_INFO "%s version %s\n", MWL8K_DESC, MWL8K_VERSION); printed_version = 1; } rc = pci_enable_device(pdev); if (rc) { printk(KERN_ERR "%s: Cannot enable new PCI device\n", MWL8K_NAME); return rc; } rc = pci_request_regions(pdev, MWL8K_NAME); if (rc) { printk(KERN_ERR "%s: Cannot obtain PCI resources\n", MWL8K_NAME); goto err_disable_device; } pci_set_master(pdev); hw = ieee80211_alloc_hw(sizeof(*priv), &mwl8k_ops); if (hw == NULL) { printk(KERN_ERR "%s: ieee80211 alloc failed\n", MWL8K_NAME); rc = -ENOMEM; goto err_free_reg; } SET_IEEE80211_DEV(hw, &pdev->dev); pci_set_drvdata(pdev, hw); priv = hw->priv; priv->hw = hw; priv->pdev = pdev; priv->device_info = &mwl8k_info_tbl[id->driver_data]; priv->sram = pci_iomap(pdev, 0, 0x10000); if (priv->sram == NULL) { wiphy_err(hw->wiphy, "Cannot map device SRAM\n"); goto err_iounmap; } /* * If BAR0 is a 32 bit BAR, the register BAR will be BAR1. * If BAR0 is a 64 bit BAR, the register BAR will be BAR2. */ priv->regs = pci_iomap(pdev, 1, 0x10000); if (priv->regs == NULL) { priv->regs = pci_iomap(pdev, 2, 0x10000); if (priv->regs == NULL) { wiphy_err(hw->wiphy, "Cannot map device registers\n"); goto err_iounmap; } } /* * Choose the initial fw image depending on user input. If a second * image is available, make it the alternative image that will be * loaded if the first one fails. */ init_completion(&priv->firmware_loading_complete); di = priv->device_info; if (ap_mode_default && di->fw_image_ap) { priv->fw_pref = di->fw_image_ap; priv->fw_alt = di->fw_image_sta; } else if (!ap_mode_default && di->fw_image_sta) { priv->fw_pref = di->fw_image_sta; priv->fw_alt = di->fw_image_ap; } else if (ap_mode_default && !di->fw_image_ap && di->fw_image_sta) { printk(KERN_WARNING "AP fw is unavailable. Using STA fw."); priv->fw_pref = di->fw_image_sta; } else if (!ap_mode_default && !di->fw_image_sta && di->fw_image_ap) { printk(KERN_WARNING "STA fw is unavailable. Using AP fw."); priv->fw_pref = di->fw_image_ap; } rc = mwl8k_init_firmware(hw, priv->fw_pref, true); if (rc) goto err_stop_firmware; return rc; err_stop_firmware: mwl8k_hw_reset(priv); err_iounmap: if (priv->regs != NULL) pci_iounmap(pdev, priv->regs); if (priv->sram != NULL) pci_iounmap(pdev, priv->sram); pci_set_drvdata(pdev, NULL); ieee80211_free_hw(hw); err_free_reg: pci_release_regions(pdev); err_disable_device: pci_disable_device(pdev); return rc; } static void __devexit mwl8k_shutdown(struct pci_dev *pdev) { printk(KERN_ERR "===>%s(%u)\n", __func__, __LINE__); } static void __devexit mwl8k_remove(struct pci_dev *pdev) { struct ieee80211_hw *hw = pci_get_drvdata(pdev); struct mwl8k_priv *priv; int i; if (hw == NULL) return; priv = hw->priv; wait_for_completion(&priv->firmware_loading_complete); if (priv->fw_state == FW_STATE_ERROR) { mwl8k_hw_reset(priv); goto unmap; } ieee80211_stop_queues(hw); ieee80211_unregister_hw(hw); /* Remove TX reclaim and RX tasklets. */ tasklet_kill(&priv->poll_tx_task); tasklet_kill(&priv->poll_rx_task); /* Stop hardware */ mwl8k_hw_reset(priv); /* Return all skbs to mac80211 */ for (i = 0; i < mwl8k_tx_queues(priv); i++) mwl8k_txq_reclaim(hw, i, INT_MAX, 1); for (i = 0; i < mwl8k_tx_queues(priv); i++) mwl8k_txq_deinit(hw, i); mwl8k_rxq_deinit(hw, 0); pci_free_consistent(priv->pdev, 4, priv->cookie, priv->cookie_dma); unmap: pci_iounmap(pdev, priv->regs); pci_iounmap(pdev, priv->sram); pci_set_drvdata(pdev, NULL); ieee80211_free_hw(hw); pci_release_regions(pdev); pci_disable_device(pdev); } static struct pci_driver mwl8k_driver = { .name = MWL8K_NAME, .id_table = mwl8k_pci_id_table, .probe = mwl8k_probe, .remove = __devexit_p(mwl8k_remove), .shutdown = __devexit_p(mwl8k_shutdown), }; static int __init mwl8k_init(void) { return pci_register_driver(&mwl8k_driver); } static void __exit mwl8k_exit(void) { pci_unregister_driver(&mwl8k_driver); } module_init(mwl8k_init); module_exit(mwl8k_exit); MODULE_DESCRIPTION(MWL8K_DESC); MODULE_VERSION(MWL8K_VERSION); MODULE_AUTHOR("Lennert Buytenhek "); MODULE_LICENSE("GPL");