/* * Copyright (C) 2013 Red Hat * Author: Rob Clark * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include #include #include #include #include "mdp4_kms.h" struct mdp4_crtc { struct drm_crtc base; char name[8]; int id; int ovlp; enum mdp4_dma dma; bool enabled; /* which mixer/encoder we route output to: */ int mixer; struct { spinlock_t lock; bool stale; uint32_t width, height; uint32_t x, y; /* next cursor to scan-out: */ uint32_t next_iova; struct drm_gem_object *next_bo; /* current cursor being scanned out: */ struct drm_gem_object *scanout_bo; } cursor; /* if there is a pending flip, these will be non-null: */ struct drm_pending_vblank_event *event; /* Bits have been flushed at the last commit, * used to decide if a vsync has happened since last commit. */ u32 flushed_mask; #define PENDING_CURSOR 0x1 #define PENDING_FLIP 0x2 atomic_t pending; /* for unref'ing cursor bo's after scanout completes: */ struct drm_flip_work unref_cursor_work; struct mdp_irq vblank; struct mdp_irq err; }; #define to_mdp4_crtc(x) container_of(x, struct mdp4_crtc, base) static struct mdp4_kms *get_kms(struct drm_crtc *crtc) { struct msm_drm_private *priv = crtc->dev->dev_private; return to_mdp4_kms(to_mdp_kms(priv->kms)); } static void request_pending(struct drm_crtc *crtc, uint32_t pending) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); atomic_or(pending, &mdp4_crtc->pending); mdp_irq_register(&get_kms(crtc)->base, &mdp4_crtc->vblank); } static void crtc_flush(struct drm_crtc *crtc) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); struct mdp4_kms *mdp4_kms = get_kms(crtc); struct drm_plane *plane; uint32_t flush = 0; drm_atomic_crtc_for_each_plane(plane, crtc) { enum mdp4_pipe pipe_id = mdp4_plane_pipe(plane); flush |= pipe2flush(pipe_id); } flush |= ovlp2flush(mdp4_crtc->ovlp); DBG("%s: flush=%08x", mdp4_crtc->name, flush); mdp4_crtc->flushed_mask = flush; mdp4_write(mdp4_kms, REG_MDP4_OVERLAY_FLUSH, flush); } /* if file!=NULL, this is preclose potential cancel-flip path */ static void complete_flip(struct drm_crtc *crtc, struct drm_file *file) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); struct drm_device *dev = crtc->dev; struct drm_pending_vblank_event *event; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); event = mdp4_crtc->event; if (event) { mdp4_crtc->event = NULL; DBG("%s: send event: %p", mdp4_crtc->name, event); drm_crtc_send_vblank_event(crtc, event); } spin_unlock_irqrestore(&dev->event_lock, flags); } static void unref_cursor_worker(struct drm_flip_work *work, void *val) { struct mdp4_crtc *mdp4_crtc = container_of(work, struct mdp4_crtc, unref_cursor_work); struct mdp4_kms *mdp4_kms = get_kms(&mdp4_crtc->base); struct msm_kms *kms = &mdp4_kms->base.base; msm_gem_unpin_iova(val, kms->aspace); drm_gem_object_put_unlocked(val); } static void mdp4_crtc_destroy(struct drm_crtc *crtc) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); drm_crtc_cleanup(crtc); drm_flip_work_cleanup(&mdp4_crtc->unref_cursor_work); kfree(mdp4_crtc); } /* statically (for now) map planes to mixer stage (z-order): */ static const int idxs[] = { [VG1] = 1, [VG2] = 2, [RGB1] = 0, [RGB2] = 0, [RGB3] = 0, [VG3] = 3, [VG4] = 4, }; /* setup mixer config, for which we need to consider all crtc's and * the planes attached to them * * TODO may possibly need some extra locking here */ static void setup_mixer(struct mdp4_kms *mdp4_kms) { struct drm_mode_config *config = &mdp4_kms->dev->mode_config; struct drm_crtc *crtc; uint32_t mixer_cfg = 0; static const enum mdp_mixer_stage_id stages[] = { STAGE_BASE, STAGE0, STAGE1, STAGE2, STAGE3, }; list_for_each_entry(crtc, &config->crtc_list, head) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); struct drm_plane *plane; drm_atomic_crtc_for_each_plane(plane, crtc) { enum mdp4_pipe pipe_id = mdp4_plane_pipe(plane); int idx = idxs[pipe_id]; mixer_cfg = mixercfg(mixer_cfg, mdp4_crtc->mixer, pipe_id, stages[idx]); } } mdp4_write(mdp4_kms, REG_MDP4_LAYERMIXER_IN_CFG, mixer_cfg); } static void blend_setup(struct drm_crtc *crtc) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); struct mdp4_kms *mdp4_kms = get_kms(crtc); struct drm_plane *plane; int i, ovlp = mdp4_crtc->ovlp; bool alpha[4]= { false, false, false, false }; mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_LOW0(ovlp), 0); mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_LOW1(ovlp), 0); mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_HIGH0(ovlp), 0); mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_HIGH1(ovlp), 0); drm_atomic_crtc_for_each_plane(plane, crtc) { enum mdp4_pipe pipe_id = mdp4_plane_pipe(plane); int idx = idxs[pipe_id]; if (idx > 0) { const struct mdp_format *format = to_mdp_format(msm_framebuffer_format(plane->state->fb)); alpha[idx-1] = format->alpha_enable; } } for (i = 0; i < 4; i++) { uint32_t op; if (alpha[i]) { op = MDP4_OVLP_STAGE_OP_FG_ALPHA(FG_PIXEL) | MDP4_OVLP_STAGE_OP_BG_ALPHA(FG_PIXEL) | MDP4_OVLP_STAGE_OP_BG_INV_ALPHA; } else { op = MDP4_OVLP_STAGE_OP_FG_ALPHA(FG_CONST) | MDP4_OVLP_STAGE_OP_BG_ALPHA(BG_CONST); } mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_FG_ALPHA(ovlp, i), 0xff); mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_BG_ALPHA(ovlp, i), 0x00); mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_OP(ovlp, i), op); mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_CO3(ovlp, i), 1); mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_LOW0(ovlp, i), 0); mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_LOW1(ovlp, i), 0); mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_HIGH0(ovlp, i), 0); mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_HIGH1(ovlp, i), 0); } setup_mixer(mdp4_kms); } static void mdp4_crtc_mode_set_nofb(struct drm_crtc *crtc) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); struct mdp4_kms *mdp4_kms = get_kms(crtc); enum mdp4_dma dma = mdp4_crtc->dma; int ovlp = mdp4_crtc->ovlp; struct drm_display_mode *mode; if (WARN_ON(!crtc->state)) return; mode = &crtc->state->adjusted_mode; DBG("%s: set mode: %d:\"%s\" %d %d %d %d %d %d %d %d %d %d 0x%x 0x%x", mdp4_crtc->name, mode->base.id, mode->name, mode->vrefresh, mode->clock, mode->hdisplay, mode->hsync_start, mode->hsync_end, mode->htotal, mode->vdisplay, mode->vsync_start, mode->vsync_end, mode->vtotal, mode->type, mode->flags); mdp4_write(mdp4_kms, REG_MDP4_DMA_SRC_SIZE(dma), MDP4_DMA_SRC_SIZE_WIDTH(mode->hdisplay) | MDP4_DMA_SRC_SIZE_HEIGHT(mode->vdisplay)); /* take data from pipe: */ mdp4_write(mdp4_kms, REG_MDP4_DMA_SRC_BASE(dma), 0); mdp4_write(mdp4_kms, REG_MDP4_DMA_SRC_STRIDE(dma), 0); mdp4_write(mdp4_kms, REG_MDP4_DMA_DST_SIZE(dma), MDP4_DMA_DST_SIZE_WIDTH(0) | MDP4_DMA_DST_SIZE_HEIGHT(0)); mdp4_write(mdp4_kms, REG_MDP4_OVLP_BASE(ovlp), 0); mdp4_write(mdp4_kms, REG_MDP4_OVLP_SIZE(ovlp), MDP4_OVLP_SIZE_WIDTH(mode->hdisplay) | MDP4_OVLP_SIZE_HEIGHT(mode->vdisplay)); mdp4_write(mdp4_kms, REG_MDP4_OVLP_STRIDE(ovlp), 0); mdp4_write(mdp4_kms, REG_MDP4_OVLP_CFG(ovlp), 1); if (dma == DMA_E) { mdp4_write(mdp4_kms, REG_MDP4_DMA_E_QUANT(0), 0x00ff0000); mdp4_write(mdp4_kms, REG_MDP4_DMA_E_QUANT(1), 0x00ff0000); mdp4_write(mdp4_kms, REG_MDP4_DMA_E_QUANT(2), 0x00ff0000); } } static void mdp4_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_crtc_state *old_state) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); struct mdp4_kms *mdp4_kms = get_kms(crtc); DBG("%s", mdp4_crtc->name); if (WARN_ON(!mdp4_crtc->enabled)) return; /* Disable/save vblank irq handling before power is disabled */ drm_crtc_vblank_off(crtc); mdp_irq_unregister(&mdp4_kms->base, &mdp4_crtc->err); mdp4_disable(mdp4_kms); mdp4_crtc->enabled = false; } static void mdp4_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); struct mdp4_kms *mdp4_kms = get_kms(crtc); DBG("%s", mdp4_crtc->name); if (WARN_ON(mdp4_crtc->enabled)) return; mdp4_enable(mdp4_kms); /* Restore vblank irq handling after power is enabled */ drm_crtc_vblank_on(crtc); mdp_irq_register(&mdp4_kms->base, &mdp4_crtc->err); crtc_flush(crtc); mdp4_crtc->enabled = true; } static int mdp4_crtc_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); DBG("%s: check", mdp4_crtc->name); // TODO anything else to check? return 0; } static void mdp4_crtc_atomic_begin(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); DBG("%s: begin", mdp4_crtc->name); } static void mdp4_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); struct drm_device *dev = crtc->dev; unsigned long flags; DBG("%s: event: %p", mdp4_crtc->name, crtc->state->event); WARN_ON(mdp4_crtc->event); spin_lock_irqsave(&dev->event_lock, flags); mdp4_crtc->event = crtc->state->event; crtc->state->event = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); blend_setup(crtc); crtc_flush(crtc); request_pending(crtc, PENDING_FLIP); } #define CURSOR_WIDTH 64 #define CURSOR_HEIGHT 64 /* called from IRQ to update cursor related registers (if needed). The * cursor registers, other than x/y position, appear not to be double * buffered, and changing them other than from vblank seems to trigger * underflow. */ static void update_cursor(struct drm_crtc *crtc) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); struct mdp4_kms *mdp4_kms = get_kms(crtc); struct msm_kms *kms = &mdp4_kms->base.base; enum mdp4_dma dma = mdp4_crtc->dma; unsigned long flags; spin_lock_irqsave(&mdp4_crtc->cursor.lock, flags); if (mdp4_crtc->cursor.stale) { struct drm_gem_object *next_bo = mdp4_crtc->cursor.next_bo; struct drm_gem_object *prev_bo = mdp4_crtc->cursor.scanout_bo; uint64_t iova = mdp4_crtc->cursor.next_iova; if (next_bo) { /* take a obj ref + iova ref when we start scanning out: */ drm_gem_object_get(next_bo); msm_gem_get_and_pin_iova(next_bo, kms->aspace, &iova); /* enable cursor: */ mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_SIZE(dma), MDP4_DMA_CURSOR_SIZE_WIDTH(mdp4_crtc->cursor.width) | MDP4_DMA_CURSOR_SIZE_HEIGHT(mdp4_crtc->cursor.height)); mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_BASE(dma), iova); mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_BLEND_CONFIG(dma), MDP4_DMA_CURSOR_BLEND_CONFIG_FORMAT(CURSOR_ARGB) | MDP4_DMA_CURSOR_BLEND_CONFIG_CURSOR_EN); } else { /* disable cursor: */ mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_BASE(dma), mdp4_kms->blank_cursor_iova); } /* and drop the iova ref + obj rev when done scanning out: */ if (prev_bo) drm_flip_work_queue(&mdp4_crtc->unref_cursor_work, prev_bo); mdp4_crtc->cursor.scanout_bo = next_bo; mdp4_crtc->cursor.stale = false; } mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_POS(dma), MDP4_DMA_CURSOR_POS_X(mdp4_crtc->cursor.x) | MDP4_DMA_CURSOR_POS_Y(mdp4_crtc->cursor.y)); spin_unlock_irqrestore(&mdp4_crtc->cursor.lock, flags); } static int mdp4_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv, uint32_t handle, uint32_t width, uint32_t height) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); struct mdp4_kms *mdp4_kms = get_kms(crtc); struct msm_kms *kms = &mdp4_kms->base.base; struct drm_device *dev = crtc->dev; struct drm_gem_object *cursor_bo, *old_bo; unsigned long flags; uint64_t iova; int ret; if ((width > CURSOR_WIDTH) || (height > CURSOR_HEIGHT)) { DRM_DEV_ERROR(dev->dev, "bad cursor size: %dx%d\n", width, height); return -EINVAL; } if (handle) { cursor_bo = drm_gem_object_lookup(file_priv, handle); if (!cursor_bo) return -ENOENT; } else { cursor_bo = NULL; } if (cursor_bo) { ret = msm_gem_get_and_pin_iova(cursor_bo, kms->aspace, &iova); if (ret) goto fail; } else { iova = 0; } spin_lock_irqsave(&mdp4_crtc->cursor.lock, flags); old_bo = mdp4_crtc->cursor.next_bo; mdp4_crtc->cursor.next_bo = cursor_bo; mdp4_crtc->cursor.next_iova = iova; mdp4_crtc->cursor.width = width; mdp4_crtc->cursor.height = height; mdp4_crtc->cursor.stale = true; spin_unlock_irqrestore(&mdp4_crtc->cursor.lock, flags); if (old_bo) { /* drop our previous reference: */ drm_flip_work_queue(&mdp4_crtc->unref_cursor_work, old_bo); } request_pending(crtc, PENDING_CURSOR); return 0; fail: drm_gem_object_put_unlocked(cursor_bo); return ret; } static int mdp4_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); unsigned long flags; spin_lock_irqsave(&mdp4_crtc->cursor.lock, flags); mdp4_crtc->cursor.x = x; mdp4_crtc->cursor.y = y; spin_unlock_irqrestore(&mdp4_crtc->cursor.lock, flags); crtc_flush(crtc); request_pending(crtc, PENDING_CURSOR); return 0; } static const struct drm_crtc_funcs mdp4_crtc_funcs = { .set_config = drm_atomic_helper_set_config, .destroy = mdp4_crtc_destroy, .page_flip = drm_atomic_helper_page_flip, .cursor_set = mdp4_crtc_cursor_set, .cursor_move = mdp4_crtc_cursor_move, .reset = drm_atomic_helper_crtc_reset, .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, }; static const struct drm_crtc_helper_funcs mdp4_crtc_helper_funcs = { .mode_set_nofb = mdp4_crtc_mode_set_nofb, .atomic_check = mdp4_crtc_atomic_check, .atomic_begin = mdp4_crtc_atomic_begin, .atomic_flush = mdp4_crtc_atomic_flush, .atomic_enable = mdp4_crtc_atomic_enable, .atomic_disable = mdp4_crtc_atomic_disable, }; static void mdp4_crtc_vblank_irq(struct mdp_irq *irq, uint32_t irqstatus) { struct mdp4_crtc *mdp4_crtc = container_of(irq, struct mdp4_crtc, vblank); struct drm_crtc *crtc = &mdp4_crtc->base; struct msm_drm_private *priv = crtc->dev->dev_private; unsigned pending; mdp_irq_unregister(&get_kms(crtc)->base, &mdp4_crtc->vblank); pending = atomic_xchg(&mdp4_crtc->pending, 0); if (pending & PENDING_FLIP) { complete_flip(crtc, NULL); } if (pending & PENDING_CURSOR) { update_cursor(crtc); drm_flip_work_commit(&mdp4_crtc->unref_cursor_work, priv->wq); } } static void mdp4_crtc_err_irq(struct mdp_irq *irq, uint32_t irqstatus) { struct mdp4_crtc *mdp4_crtc = container_of(irq, struct mdp4_crtc, err); struct drm_crtc *crtc = &mdp4_crtc->base; DBG("%s: error: %08x", mdp4_crtc->name, irqstatus); crtc_flush(crtc); } static void mdp4_crtc_wait_for_flush_done(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); struct mdp4_kms *mdp4_kms = get_kms(crtc); int ret; ret = drm_crtc_vblank_get(crtc); if (ret) return; ret = wait_event_timeout(dev->vblank[drm_crtc_index(crtc)].queue, !(mdp4_read(mdp4_kms, REG_MDP4_OVERLAY_FLUSH) & mdp4_crtc->flushed_mask), msecs_to_jiffies(50)); if (ret <= 0) dev_warn(dev->dev, "vblank time out, crtc=%d\n", mdp4_crtc->id); mdp4_crtc->flushed_mask = 0; drm_crtc_vblank_put(crtc); } uint32_t mdp4_crtc_vblank(struct drm_crtc *crtc) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); return mdp4_crtc->vblank.irqmask; } /* set dma config, ie. the format the encoder wants. */ void mdp4_crtc_set_config(struct drm_crtc *crtc, uint32_t config) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); struct mdp4_kms *mdp4_kms = get_kms(crtc); mdp4_write(mdp4_kms, REG_MDP4_DMA_CONFIG(mdp4_crtc->dma), config); } /* set interface for routing crtc->encoder: */ void mdp4_crtc_set_intf(struct drm_crtc *crtc, enum mdp4_intf intf, int mixer) { struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); struct mdp4_kms *mdp4_kms = get_kms(crtc); uint32_t intf_sel; intf_sel = mdp4_read(mdp4_kms, REG_MDP4_DISP_INTF_SEL); switch (mdp4_crtc->dma) { case DMA_P: intf_sel &= ~MDP4_DISP_INTF_SEL_PRIM__MASK; intf_sel |= MDP4_DISP_INTF_SEL_PRIM(intf); break; case DMA_S: intf_sel &= ~MDP4_DISP_INTF_SEL_SEC__MASK; intf_sel |= MDP4_DISP_INTF_SEL_SEC(intf); break; case DMA_E: intf_sel &= ~MDP4_DISP_INTF_SEL_EXT__MASK; intf_sel |= MDP4_DISP_INTF_SEL_EXT(intf); break; } if (intf == INTF_DSI_VIDEO) { intf_sel &= ~MDP4_DISP_INTF_SEL_DSI_CMD; intf_sel |= MDP4_DISP_INTF_SEL_DSI_VIDEO; } else if (intf == INTF_DSI_CMD) { intf_sel &= ~MDP4_DISP_INTF_SEL_DSI_VIDEO; intf_sel |= MDP4_DISP_INTF_SEL_DSI_CMD; } mdp4_crtc->mixer = mixer; blend_setup(crtc); DBG("%s: intf_sel=%08x", mdp4_crtc->name, intf_sel); mdp4_write(mdp4_kms, REG_MDP4_DISP_INTF_SEL, intf_sel); } void mdp4_crtc_wait_for_commit_done(struct drm_crtc *crtc) { /* wait_for_flush_done is the only case for now. * Later we will have command mode CRTC to wait for * other event. */ mdp4_crtc_wait_for_flush_done(crtc); } static const char *dma_names[] = { "DMA_P", "DMA_S", "DMA_E", }; /* initialize crtc */ struct drm_crtc *mdp4_crtc_init(struct drm_device *dev, struct drm_plane *plane, int id, int ovlp_id, enum mdp4_dma dma_id) { struct drm_crtc *crtc = NULL; struct mdp4_crtc *mdp4_crtc; mdp4_crtc = kzalloc(sizeof(*mdp4_crtc), GFP_KERNEL); if (!mdp4_crtc) return ERR_PTR(-ENOMEM); crtc = &mdp4_crtc->base; mdp4_crtc->id = id; mdp4_crtc->ovlp = ovlp_id; mdp4_crtc->dma = dma_id; mdp4_crtc->vblank.irqmask = dma2irq(mdp4_crtc->dma); mdp4_crtc->vblank.irq = mdp4_crtc_vblank_irq; mdp4_crtc->err.irqmask = dma2err(mdp4_crtc->dma); mdp4_crtc->err.irq = mdp4_crtc_err_irq; snprintf(mdp4_crtc->name, sizeof(mdp4_crtc->name), "%s:%d", dma_names[dma_id], ovlp_id); spin_lock_init(&mdp4_crtc->cursor.lock); drm_flip_work_init(&mdp4_crtc->unref_cursor_work, "unref cursor", unref_cursor_worker); drm_crtc_init_with_planes(dev, crtc, plane, NULL, &mdp4_crtc_funcs, NULL); drm_crtc_helper_add(crtc, &mdp4_crtc_helper_funcs); return crtc; }