/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include "i915_drv.h" #include "intel_uc.h" #include /** * DOC: GuC-based command submission * * GuC client: * A i915_guc_client refers to a submission path through GuC. Currently, there * is only one of these (the execbuf_client) and this one is charged with all * submissions to the GuC. This struct is the owner of a doorbell, a process * descriptor and a workqueue (all of them inside a single gem object that * contains all required pages for these elements). * * GuC stage descriptor: * During initialization, the driver allocates a static pool of 1024 such * descriptors, and shares them with the GuC. * Currently, there exists a 1:1 mapping between a i915_guc_client and a * guc_stage_desc (via the client's stage_id), so effectively only one * gets used. This stage descriptor lets the GuC know about the doorbell, * workqueue and process descriptor. Theoretically, it also lets the GuC * know about our HW contexts (context ID, etc...), but we actually * employ a kind of submission where the GuC uses the LRCA sent via the work * item instead (the single guc_stage_desc associated to execbuf client * contains information about the default kernel context only, but this is * essentially unused). This is called a "proxy" submission. * * The Scratch registers: * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes * a value to the action register (SOFT_SCRATCH_0) along with any data. It then * triggers an interrupt on the GuC via another register write (0xC4C8). * Firmware writes a success/fail code back to the action register after * processes the request. The kernel driver polls waiting for this update and * then proceeds. * See intel_guc_send() * * Doorbells: * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW) * mapped into process space. * * Work Items: * There are several types of work items that the host may place into a * workqueue, each with its own requirements and limitations. Currently only * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which * represents in-order queue. The kernel driver packs ring tail pointer and an * ELSP context descriptor dword into Work Item. * See guc_wq_item_append() * * ADS: * The Additional Data Struct (ADS) has pointers for different buffers used by * the GuC. One single gem object contains the ADS struct itself (guc_ads), the * scheduling policies (guc_policies), a structure describing a collection of * register sets (guc_mmio_reg_state) and some extra pages for the GuC to save * its internal state for sleep. * */ static inline bool is_high_priority(struct i915_guc_client* client) { return client->priority <= GUC_CLIENT_PRIORITY_HIGH; } static int __reserve_doorbell(struct i915_guc_client *client) { unsigned long offset; unsigned long end; u16 id; GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID); /* * The bitmap tracks which doorbell registers are currently in use. * It is split into two halves; the first half is used for normal * priority contexts, the second half for high-priority ones. */ offset = 0; end = GUC_NUM_DOORBELLS/2; if (is_high_priority(client)) { offset = end; end += offset; } id = find_next_zero_bit(client->guc->doorbell_bitmap, offset, end); if (id == end) return -ENOSPC; __set_bit(id, client->guc->doorbell_bitmap); client->doorbell_id = id; DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n", client->stage_id, yesno(is_high_priority(client)), id); return 0; } static void __unreserve_doorbell(struct i915_guc_client *client) { GEM_BUG_ON(client->doorbell_id == GUC_DOORBELL_INVALID); __clear_bit(client->doorbell_id, client->guc->doorbell_bitmap); client->doorbell_id = GUC_DOORBELL_INVALID; } /* * Tell the GuC to allocate or deallocate a specific doorbell */ static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id) { u32 action[] = { INTEL_GUC_ACTION_ALLOCATE_DOORBELL, stage_id }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id) { u32 action[] = { INTEL_GUC_ACTION_DEALLOCATE_DOORBELL, stage_id }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static struct guc_stage_desc *__get_stage_desc(struct i915_guc_client *client) { struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr; return &base[client->stage_id]; } /* * Initialise, update, or clear doorbell data shared with the GuC * * These functions modify shared data and so need access to the mapped * client object which contains the page being used for the doorbell */ static void __update_doorbell_desc(struct i915_guc_client *client, u16 new_id) { struct guc_stage_desc *desc; /* Update the GuC's idea of the doorbell ID */ desc = __get_stage_desc(client); desc->db_id = new_id; } static struct guc_doorbell_info *__get_doorbell(struct i915_guc_client *client) { return client->vaddr + client->doorbell_offset; } static bool has_doorbell(struct i915_guc_client *client) { if (client->doorbell_id == GUC_DOORBELL_INVALID) return false; return test_bit(client->doorbell_id, client->guc->doorbell_bitmap); } static int __create_doorbell(struct i915_guc_client *client) { struct guc_doorbell_info *doorbell; int err; doorbell = __get_doorbell(client); doorbell->db_status = GUC_DOORBELL_ENABLED; doorbell->cookie = client->doorbell_cookie; err = __guc_allocate_doorbell(client->guc, client->stage_id); if (err) { doorbell->db_status = GUC_DOORBELL_DISABLED; doorbell->cookie = 0; } return err; } static int __destroy_doorbell(struct i915_guc_client *client) { struct drm_i915_private *dev_priv = guc_to_i915(client->guc); struct guc_doorbell_info *doorbell; u16 db_id = client->doorbell_id; GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID); doorbell = __get_doorbell(client); doorbell->db_status = GUC_DOORBELL_DISABLED; doorbell->cookie = 0; /* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit * to go to zero after updating db_status before we call the GuC to * release the doorbell */ if (wait_for_us(!(I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID), 10)) WARN_ONCE(true, "Doorbell never became invalid after disable\n"); return __guc_deallocate_doorbell(client->guc, client->stage_id); } static int create_doorbell(struct i915_guc_client *client) { int ret; ret = __reserve_doorbell(client); if (ret) return ret; __update_doorbell_desc(client, client->doorbell_id); ret = __create_doorbell(client); if (ret) goto err; return 0; err: __update_doorbell_desc(client, GUC_DOORBELL_INVALID); __unreserve_doorbell(client); return ret; } static int destroy_doorbell(struct i915_guc_client *client) { int err; GEM_BUG_ON(!has_doorbell(client)); /* XXX: wait for any interrupts */ /* XXX: wait for workqueue to drain */ err = __destroy_doorbell(client); if (err) return err; __update_doorbell_desc(client, GUC_DOORBELL_INVALID); __unreserve_doorbell(client); return 0; } static unsigned long __select_cacheline(struct intel_guc* guc) { unsigned long offset; /* Doorbell uses a single cache line within a page */ offset = offset_in_page(guc->db_cacheline); /* Moving to next cache line to reduce contention */ guc->db_cacheline += cache_line_size(); DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n", offset, guc->db_cacheline, cache_line_size()); return offset; } /* * Initialise the process descriptor shared with the GuC firmware. */ static void guc_proc_desc_init(struct intel_guc *guc, struct i915_guc_client *client) { struct guc_process_desc *desc; desc = client->vaddr + client->proc_desc_offset; memset(desc, 0, sizeof(*desc)); /* * XXX: pDoorbell and WQVBaseAddress are pointers in process address * space for ring3 clients (set them as in mmap_ioctl) or kernel * space for kernel clients (map on demand instead? May make debug * easier to have it mapped). */ desc->wq_base_addr = 0; desc->db_base_addr = 0; desc->stage_id = client->stage_id; desc->wq_size_bytes = client->wq_size; desc->wq_status = WQ_STATUS_ACTIVE; desc->priority = client->priority; } /* * Initialise/clear the stage descriptor shared with the GuC firmware. * * This descriptor tells the GuC where (in GGTT space) to find the important * data structures relating to this client (doorbell, process descriptor, * write queue, etc). */ static void guc_stage_desc_init(struct intel_guc *guc, struct i915_guc_client *client) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct intel_engine_cs *engine; struct i915_gem_context *ctx = client->owner; struct guc_stage_desc *desc; unsigned int tmp; u32 gfx_addr; desc = __get_stage_desc(client); memset(desc, 0, sizeof(*desc)); desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE | GUC_STAGE_DESC_ATTR_KERNEL; desc->stage_id = client->stage_id; desc->priority = client->priority; desc->db_id = client->doorbell_id; for_each_engine_masked(engine, dev_priv, client->engines, tmp) { struct intel_context *ce = &ctx->engine[engine->id]; uint32_t guc_engine_id = engine->guc_id; struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id]; /* TODO: We have a design issue to be solved here. Only when we * receive the first batch, we know which engine is used by the * user. But here GuC expects the lrc and ring to be pinned. It * is not an issue for default context, which is the only one * for now who owns a GuC client. But for future owner of GuC * client, need to make sure lrc is pinned prior to enter here. */ if (!ce->state) break; /* XXX: continue? */ /* * XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy * submission or, in other words, not using a direct submission * model) the KMD's LRCA is not used for any work submission. * Instead, the GuC uses the LRCA of the user mode context (see * guc_wq_item_append below). */ lrc->context_desc = lower_32_bits(ce->lrc_desc); /* The state page is after PPHWSP */ lrc->ring_lrca = guc_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE; /* XXX: In direct submission, the GuC wants the HW context id * here. In proxy submission, it wants the stage id */ lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) | (guc_engine_id << GUC_ELC_ENGINE_OFFSET); lrc->ring_begin = guc_ggtt_offset(ce->ring->vma); lrc->ring_end = lrc->ring_begin + ce->ring->size - 1; lrc->ring_next_free_location = lrc->ring_begin; lrc->ring_current_tail_pointer_value = 0; desc->engines_used |= (1 << guc_engine_id); } DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n", client->engines, desc->engines_used); WARN_ON(desc->engines_used == 0); /* * The doorbell, process descriptor, and workqueue are all parts * of the client object, which the GuC will reference via the GGTT */ gfx_addr = guc_ggtt_offset(client->vma); desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) + client->doorbell_offset; desc->db_trigger_cpu = (uintptr_t)__get_doorbell(client); desc->db_trigger_uk = gfx_addr + client->doorbell_offset; desc->process_desc = gfx_addr + client->proc_desc_offset; desc->wq_addr = gfx_addr + client->wq_offset; desc->wq_size = client->wq_size; desc->desc_private = (uintptr_t)client; } static void guc_stage_desc_fini(struct intel_guc *guc, struct i915_guc_client *client) { struct guc_stage_desc *desc; desc = __get_stage_desc(client); memset(desc, 0, sizeof(*desc)); } /** * i915_guc_wq_reserve() - reserve space in the GuC's workqueue * @request: request associated with the commands * * Return: 0 if space is available * -EAGAIN if space is not currently available * * This function must be called (and must return 0) before a request * is submitted to the GuC via i915_guc_submit() below. Once a result * of 0 has been returned, it must be balanced by a corresponding * call to submit(). * * Reservation allows the caller to determine in advance that space * will be available for the next submission before committing resources * to it, and helps avoid late failures with complicated recovery paths. */ int i915_guc_wq_reserve(struct drm_i915_gem_request *request) { const size_t wqi_size = sizeof(struct guc_wq_item); struct i915_guc_client *client = request->i915->guc.execbuf_client; struct guc_process_desc *desc = client->vaddr + client->proc_desc_offset; u32 freespace; int ret; spin_lock_irq(&client->wq_lock); freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size); freespace -= client->wq_rsvd; if (likely(freespace >= wqi_size)) { client->wq_rsvd += wqi_size; ret = 0; } else { client->no_wq_space++; ret = -EAGAIN; } spin_unlock_irq(&client->wq_lock); return ret; } static void guc_client_update_wq_rsvd(struct i915_guc_client *client, int size) { unsigned long flags; spin_lock_irqsave(&client->wq_lock, flags); client->wq_rsvd += size; spin_unlock_irqrestore(&client->wq_lock, flags); } void i915_guc_wq_unreserve(struct drm_i915_gem_request *request) { const int wqi_size = sizeof(struct guc_wq_item); struct i915_guc_client *client = request->i915->guc.execbuf_client; GEM_BUG_ON(READ_ONCE(client->wq_rsvd) < wqi_size); guc_client_update_wq_rsvd(client, -wqi_size); } /* Construct a Work Item and append it to the GuC's Work Queue */ static void guc_wq_item_append(struct i915_guc_client *client, struct drm_i915_gem_request *rq) { /* wqi_len is in DWords, and does not include the one-word header */ const size_t wqi_size = sizeof(struct guc_wq_item); const u32 wqi_len = wqi_size/sizeof(u32) - 1; struct intel_engine_cs *engine = rq->engine; struct guc_process_desc *desc; struct guc_wq_item *wqi; u32 freespace, tail, wq_off; desc = client->vaddr + client->proc_desc_offset; /* Free space is guaranteed, see i915_guc_wq_reserve() above */ freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size); GEM_BUG_ON(freespace < wqi_size); /* The GuC firmware wants the tail index in QWords, not bytes */ tail = rq->tail; GEM_BUG_ON(tail & 7); tail >>= 3; GEM_BUG_ON(tail > WQ_RING_TAIL_MAX); /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we * should not have the case where structure wqi is across page, neither * wrapped to the beginning. This simplifies the implementation below. * * XXX: if not the case, we need save data to a temp wqi and copy it to * workqueue buffer dw by dw. */ BUILD_BUG_ON(wqi_size != 16); GEM_BUG_ON(client->wq_rsvd < wqi_size); /* postincrement WQ tail for next time */ wq_off = client->wq_tail; GEM_BUG_ON(wq_off & (wqi_size - 1)); client->wq_tail += wqi_size; client->wq_tail &= client->wq_size - 1; client->wq_rsvd -= wqi_size; /* WQ starts from the page after doorbell / process_desc */ wqi = client->vaddr + wq_off + GUC_DB_SIZE; /* Now fill in the 4-word work queue item */ wqi->header = WQ_TYPE_INORDER | (wqi_len << WQ_LEN_SHIFT) | (engine->guc_id << WQ_TARGET_SHIFT) | WQ_NO_WCFLUSH_WAIT; /* The GuC wants only the low-order word of the context descriptor */ wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine); wqi->submit_element_info = tail << WQ_RING_TAIL_SHIFT; wqi->fence_id = rq->global_seqno; } static void guc_reset_wq(struct i915_guc_client *client) { struct guc_process_desc *desc = client->vaddr + client->proc_desc_offset; desc->head = 0; desc->tail = 0; client->wq_tail = 0; } static int guc_ring_doorbell(struct i915_guc_client *client) { struct guc_process_desc *desc; union guc_doorbell_qw db_cmp, db_exc, db_ret; union guc_doorbell_qw *db; int attempt = 2, ret = -EAGAIN; desc = client->vaddr + client->proc_desc_offset; /* Update the tail so it is visible to GuC */ desc->tail = client->wq_tail; /* current cookie */ db_cmp.db_status = GUC_DOORBELL_ENABLED; db_cmp.cookie = client->doorbell_cookie; /* cookie to be updated */ db_exc.db_status = GUC_DOORBELL_ENABLED; db_exc.cookie = client->doorbell_cookie + 1; if (db_exc.cookie == 0) db_exc.cookie = 1; /* pointer of current doorbell cacheline */ db = (union guc_doorbell_qw *)__get_doorbell(client); while (attempt--) { /* lets ring the doorbell */ db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db, db_cmp.value_qw, db_exc.value_qw); /* if the exchange was successfully executed */ if (db_ret.value_qw == db_cmp.value_qw) { /* db was successfully rung */ client->doorbell_cookie = db_exc.cookie; ret = 0; break; } /* XXX: doorbell was lost and need to acquire it again */ if (db_ret.db_status == GUC_DOORBELL_DISABLED) break; DRM_WARN("Cookie mismatch. Expected %d, found %d\n", db_cmp.cookie, db_ret.cookie); /* update the cookie to newly read cookie from GuC */ db_cmp.cookie = db_ret.cookie; db_exc.cookie = db_ret.cookie + 1; if (db_exc.cookie == 0) db_exc.cookie = 1; } return ret; } /** * __i915_guc_submit() - Submit commands through GuC * @rq: request associated with the commands * * The caller must have already called i915_guc_wq_reserve() above with * a result of 0 (success), guaranteeing that there is space in the work * queue for the new request, so enqueuing the item cannot fail. * * Bad Things Will Happen if the caller violates this protocol e.g. calls * submit() when _reserve() says there's no space, or calls _submit() * a different number of times from (successful) calls to _reserve(). * * The only error here arises if the doorbell hardware isn't functioning * as expected, which really shouln't happen. */ static void __i915_guc_submit(struct drm_i915_gem_request *rq) { struct drm_i915_private *dev_priv = rq->i915; struct intel_engine_cs *engine = rq->engine; unsigned int engine_id = engine->id; struct intel_guc *guc = &rq->i915->guc; struct i915_guc_client *client = guc->execbuf_client; unsigned long flags; int b_ret; /* WA to flush out the pending GMADR writes to ring buffer. */ if (i915_vma_is_map_and_fenceable(rq->ring->vma)) POSTING_READ_FW(GUC_STATUS); spin_lock_irqsave(&client->wq_lock, flags); guc_wq_item_append(client, rq); b_ret = guc_ring_doorbell(client); client->submissions[engine_id] += 1; client->retcode = b_ret; if (b_ret) client->b_fail += 1; guc->submissions[engine_id] += 1; guc->last_seqno[engine_id] = rq->global_seqno; spin_unlock_irqrestore(&client->wq_lock, flags); } static void i915_guc_submit(struct drm_i915_gem_request *rq) { __i915_gem_request_submit(rq); __i915_guc_submit(rq); } static void nested_enable_signaling(struct drm_i915_gem_request *rq) { /* If we use dma_fence_enable_sw_signaling() directly, lockdep * detects an ordering issue between the fence lockclass and the * global_timeline. This circular dependency can only occur via 2 * different fences (but same fence lockclass), so we use the nesting * annotation here to prevent the warn, equivalent to the nesting * inside i915_gem_request_submit() for when we also enable the * signaler. */ if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) return; GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)); trace_dma_fence_enable_signal(&rq->fence); spin_lock_nested(&rq->lock, SINGLE_DEPTH_NESTING); intel_engine_enable_signaling(rq); spin_unlock(&rq->lock); } static bool i915_guc_dequeue(struct intel_engine_cs *engine) { struct execlist_port *port = engine->execlist_port; struct drm_i915_gem_request *last = port[0].request; struct rb_node *rb; bool submit = false; /* After execlist_first is updated, the tasklet will be rescheduled. * * If we are currently running (inside the tasklet) and a third * party queues a request and so updates engine->execlist_first under * the spinlock (which we have elided), it will atomically set the * TASKLET_SCHED flag causing the us to be re-executed and pick up * the change in state (the update to TASKLET_SCHED incurs a memory * barrier making this cross-cpu checking safe). */ if (!READ_ONCE(engine->execlist_first)) return false; spin_lock_irq(&engine->timeline->lock); rb = engine->execlist_first; while (rb) { struct drm_i915_gem_request *rq = rb_entry(rb, typeof(*rq), priotree.node); if (last && rq->ctx != last->ctx) { if (port != engine->execlist_port) break; i915_gem_request_assign(&port->request, last); nested_enable_signaling(last); port++; } rb = rb_next(rb); rb_erase(&rq->priotree.node, &engine->execlist_queue); RB_CLEAR_NODE(&rq->priotree.node); rq->priotree.priority = INT_MAX; i915_guc_submit(rq); trace_i915_gem_request_in(rq, port - engine->execlist_port); last = rq; submit = true; } if (submit) { i915_gem_request_assign(&port->request, last); nested_enable_signaling(last); engine->execlist_first = rb; } spin_unlock_irq(&engine->timeline->lock); return submit; } static void i915_guc_irq_handler(unsigned long data) { struct intel_engine_cs *engine = (struct intel_engine_cs *)data; struct execlist_port *port = engine->execlist_port; struct drm_i915_gem_request *rq; bool submit; do { rq = port[0].request; while (rq && i915_gem_request_completed(rq)) { trace_i915_gem_request_out(rq); i915_gem_request_put(rq); port[0].request = port[1].request; port[1].request = NULL; rq = port[0].request; } submit = false; if (!port[1].request) submit = i915_guc_dequeue(engine); } while (submit); } /* * Everything below here is concerned with setup & teardown, and is * therefore not part of the somewhat time-critical batch-submission * path of i915_guc_submit() above. */ /** * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage * @guc: the guc * @size: size of area to allocate (both virtual space and memory) * * This is a wrapper to create an object for use with the GuC. In order to * use it inside the GuC, an object needs to be pinned lifetime, so we allocate * both some backing storage and a range inside the Global GTT. We must pin * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that * range is reserved inside GuC. * * Return: A i915_vma if successful, otherwise an ERR_PTR. */ struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct drm_i915_gem_object *obj; struct i915_vma *vma; int ret; obj = i915_gem_object_create(dev_priv, size); if (IS_ERR(obj)) return ERR_CAST(obj); vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL); if (IS_ERR(vma)) goto err; ret = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP); if (ret) { vma = ERR_PTR(ret); goto err; } return vma; err: i915_gem_object_put(obj); return vma; } /* Check that a doorbell register is in the expected state */ static bool doorbell_ok(struct intel_guc *guc, u16 db_id) { struct drm_i915_private *dev_priv = guc_to_i915(guc); u32 drbregl; bool valid; GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID); drbregl = I915_READ(GEN8_DRBREGL(db_id)); valid = drbregl & GEN8_DRB_VALID; if (test_bit(db_id, guc->doorbell_bitmap) == valid) return true; DRM_DEBUG_DRIVER("Doorbell %d has unexpected state (0x%x): valid=%s\n", db_id, drbregl, yesno(valid)); return false; } /* * If the GuC thinks that the doorbell is unassigned (e.g. because we reset and * reloaded the GuC FW) we can use this function to tell the GuC to reassign the * doorbell to the rightful owner. */ static int __reset_doorbell(struct i915_guc_client* client, u16 db_id) { int err; __update_doorbell_desc(client, db_id); err = __create_doorbell(client); if (!err) err = __destroy_doorbell(client); return err; } /* * Set up & tear down each unused doorbell in turn, to ensure that all doorbell * HW is (re)initialised. For that end, we might have to borrow the first * client. Also, tell GuC about all the doorbells in use by all clients. * We do this because the KMD, the GuC and the doorbell HW can easily go out of * sync (e.g. we can reset the GuC, but not the doorbel HW). */ static int guc_init_doorbell_hw(struct intel_guc *guc) { struct i915_guc_client *client = guc->execbuf_client; bool recreate_first_client = false; u16 db_id; int ret; /* For unused doorbells, make sure they are disabled */ for_each_clear_bit(db_id, guc->doorbell_bitmap, GUC_NUM_DOORBELLS) { if (doorbell_ok(guc, db_id)) continue; if (has_doorbell(client)) { /* Borrow execbuf_client (we will recreate it later) */ destroy_doorbell(client); recreate_first_client = true; } ret = __reset_doorbell(client, db_id); WARN(ret, "Doorbell %u reset failed, err %d\n", db_id, ret); } if (recreate_first_client) { ret = __reserve_doorbell(client); if (unlikely(ret)) { DRM_ERROR("Couldn't re-reserve first client db: %d\n", ret); return ret; } __update_doorbell_desc(client, client->doorbell_id); } /* Now for every client (and not only execbuf_client) make sure their * doorbells are known by the GuC */ //for (client = client_list; client != NULL; client = client->next) { ret = __create_doorbell(client); if (ret) { DRM_ERROR("Couldn't recreate client %u doorbell: %d\n", client->stage_id, ret); return ret; } } /* Read back & verify all (used & unused) doorbell registers */ for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id) WARN_ON(!doorbell_ok(guc, db_id)); return 0; } /** * guc_client_alloc() - Allocate an i915_guc_client * @dev_priv: driver private data structure * @engines: The set of engines to enable for this client * @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW * The kernel client to replace ExecList submission is created with * NORMAL priority. Priority of a client for scheduler can be HIGH, * while a preemption context can use CRITICAL. * @ctx: the context that owns the client (we use the default render * context) * * Return: An i915_guc_client object if success, else NULL. */ static struct i915_guc_client * guc_client_alloc(struct drm_i915_private *dev_priv, uint32_t engines, uint32_t priority, struct i915_gem_context *ctx) { struct i915_guc_client *client; struct intel_guc *guc = &dev_priv->guc; struct i915_vma *vma; void *vaddr; int ret; client = kzalloc(sizeof(*client), GFP_KERNEL); if (!client) return ERR_PTR(-ENOMEM); client->guc = guc; client->owner = ctx; client->engines = engines; client->priority = priority; client->doorbell_id = GUC_DOORBELL_INVALID; client->wq_offset = GUC_DB_SIZE; client->wq_size = GUC_WQ_SIZE; spin_lock_init(&client->wq_lock); ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS, GFP_KERNEL); if (ret < 0) goto err_client; client->stage_id = ret; /* The first page is doorbell/proc_desc. Two followed pages are wq. */ vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err_id; } /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */ client->vma = vma; vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); goto err_vma; } client->vaddr = vaddr; client->doorbell_offset = __select_cacheline(guc); /* * Since the doorbell only requires a single cacheline, we can save * space by putting the application process descriptor in the same * page. Use the half of the page that doesn't include the doorbell. */ if (client->doorbell_offset >= (GUC_DB_SIZE / 2)) client->proc_desc_offset = 0; else client->proc_desc_offset = (GUC_DB_SIZE / 2); guc_proc_desc_init(guc, client); guc_stage_desc_init(guc, client); ret = create_doorbell(client); if (ret) goto err_vaddr; DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n", priority, client, client->engines, client->stage_id); DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n", client->doorbell_id, client->doorbell_offset); return client; err_vaddr: i915_gem_object_unpin_map(client->vma->obj); err_vma: i915_vma_unpin_and_release(&client->vma); err_id: ida_simple_remove(&guc->stage_ids, client->stage_id); err_client: kfree(client); return ERR_PTR(ret); } static void guc_client_free(struct i915_guc_client *client) { /* * XXX: wait for any outstanding submissions before freeing memory. * Be sure to drop any locks */ /* FIXME: in many cases, by the time we get here the GuC has been * reset, so we cannot destroy the doorbell properly. Ignore the * error message for now */ destroy_doorbell(client); guc_stage_desc_fini(client->guc, client); i915_gem_object_unpin_map(client->vma->obj); i915_vma_unpin_and_release(&client->vma); ida_simple_remove(&client->guc->stage_ids, client->stage_id); kfree(client); } static void guc_policies_init(struct guc_policies *policies) { struct guc_policy *policy; u32 p, i; policies->dpc_promote_time = 500000; policies->max_num_work_items = POLICY_MAX_NUM_WI; for (p = 0; p < GUC_CLIENT_PRIORITY_NUM; p++) { for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) { policy = &policies->policy[p][i]; policy->execution_quantum = 1000000; policy->preemption_time = 500000; policy->fault_time = 250000; policy->policy_flags = 0; } } policies->is_valid = 1; } static int guc_ads_create(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct i915_vma *vma; struct page *page; /* The ads obj includes the struct itself and buffers passed to GuC */ struct { struct guc_ads ads; struct guc_policies policies; struct guc_mmio_reg_state reg_state; u8 reg_state_buffer[GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE]; } __packed *blob; struct intel_engine_cs *engine; enum intel_engine_id id; u32 base; GEM_BUG_ON(guc->ads_vma); vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(*blob))); if (IS_ERR(vma)) return PTR_ERR(vma); guc->ads_vma = vma; page = i915_vma_first_page(vma); blob = kmap(page); /* GuC scheduling policies */ guc_policies_init(&blob->policies); /* MMIO reg state */ for_each_engine(engine, dev_priv, id) { blob->reg_state.white_list[engine->guc_id].mmio_start = engine->mmio_base + GUC_MMIO_WHITE_LIST_START; /* Nothing to be saved or restored for now. */ blob->reg_state.white_list[engine->guc_id].count = 0; } /* * The GuC requires a "Golden Context" when it reinitialises * engines after a reset. Here we use the Render ring default * context, which must already exist and be pinned in the GGTT, * so its address won't change after we've told the GuC where * to find it. */ blob->ads.golden_context_lrca = dev_priv->engine[RCS]->status_page.ggtt_offset; for_each_engine(engine, dev_priv, id) blob->ads.eng_state_size[engine->guc_id] = intel_lr_context_size(engine); base = guc_ggtt_offset(vma); blob->ads.scheduler_policies = base + ptr_offset(blob, policies); blob->ads.reg_state_buffer = base + ptr_offset(blob, reg_state_buffer); blob->ads.reg_state_addr = base + ptr_offset(blob, reg_state); kunmap(page); return 0; } static void guc_ads_destroy(struct intel_guc *guc) { i915_vma_unpin_and_release(&guc->ads_vma); } /* * Set up the memory resources to be shared with the GuC (via the GGTT) * at firmware loading time. */ int i915_guc_submission_init(struct drm_i915_private *dev_priv) { struct intel_guc *guc = &dev_priv->guc; struct i915_vma *vma; void *vaddr; int ret; if (guc->stage_desc_pool) return 0; vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(struct guc_stage_desc) * GUC_MAX_STAGE_DESCRIPTORS)); if (IS_ERR(vma)) return PTR_ERR(vma); guc->stage_desc_pool = vma; vaddr = i915_gem_object_pin_map(guc->stage_desc_pool->obj, I915_MAP_WB); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); goto err_vma; } guc->stage_desc_pool_vaddr = vaddr; ret = intel_guc_log_create(guc); if (ret < 0) goto err_vaddr; ret = guc_ads_create(guc); if (ret < 0) goto err_log; ida_init(&guc->stage_ids); return 0; err_log: intel_guc_log_destroy(guc); err_vaddr: i915_gem_object_unpin_map(guc->stage_desc_pool->obj); err_vma: i915_vma_unpin_and_release(&guc->stage_desc_pool); return ret; } void i915_guc_submission_fini(struct drm_i915_private *dev_priv) { struct intel_guc *guc = &dev_priv->guc; ida_destroy(&guc->stage_ids); guc_ads_destroy(guc); intel_guc_log_destroy(guc); i915_gem_object_unpin_map(guc->stage_desc_pool->obj); i915_vma_unpin_and_release(&guc->stage_desc_pool); } static void guc_interrupts_capture(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; int irqs; /* tell all command streamers to forward interrupts (but not vblank) to GuC */ irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING); for_each_engine(engine, dev_priv, id) I915_WRITE(RING_MODE_GEN7(engine), irqs); /* route USER_INTERRUPT to Host, all others are sent to GuC. */ irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT; /* These three registers have the same bit definitions */ I915_WRITE(GUC_BCS_RCS_IER, ~irqs); I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs); I915_WRITE(GUC_WD_VECS_IER, ~irqs); /* * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all * (unmasked) PM interrupts to the GuC. All other bits of this * register *disable* generation of a specific interrupt. * * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when * writing to the PM interrupt mask register, i.e. interrupts * that must not be disabled. * * If the GuC is handling these interrupts, then we must not let * the PM code disable ANY interrupt that the GuC is expecting. * So for each ENABLED (0) bit in this register, we must SET the * bit in pm_intrmsk_mbz so that it's left enabled for the GuC. * GuC needs ARAT expired interrupt unmasked hence it is set in * pm_intrmsk_mbz. * * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will * result in the register bit being left SET! */ dev_priv->rps.pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK; dev_priv->rps.pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; } int i915_guc_submission_enable(struct drm_i915_private *dev_priv) { struct intel_guc *guc = &dev_priv->guc; struct i915_guc_client *client = guc->execbuf_client; struct intel_engine_cs *engine; enum intel_engine_id id; int err; if (!client) { client = guc_client_alloc(dev_priv, INTEL_INFO(dev_priv)->ring_mask, GUC_CLIENT_PRIORITY_KMD_NORMAL, dev_priv->kernel_context); if (IS_ERR(client)) { DRM_ERROR("Failed to create GuC client for execbuf!\n"); return PTR_ERR(client); } guc->execbuf_client = client; } err = intel_guc_sample_forcewake(guc); if (err) goto err_execbuf_client; guc_reset_wq(client); err = guc_init_doorbell_hw(guc); if (err) goto err_execbuf_client; /* Take over from manual control of ELSP (execlists) */ guc_interrupts_capture(dev_priv); for_each_engine(engine, dev_priv, id) { const int wqi_size = sizeof(struct guc_wq_item); struct drm_i915_gem_request *rq; /* The tasklet was initialised by execlists, and may be in * a state of flux (across a reset) and so we just want to * take over the callback without changing any other state * in the tasklet. */ engine->irq_tasklet.func = i915_guc_irq_handler; clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted); /* Replay the current set of previously submitted requests */ spin_lock_irq(&engine->timeline->lock); list_for_each_entry(rq, &engine->timeline->requests, link) { guc_client_update_wq_rsvd(client, wqi_size); __i915_guc_submit(rq); } spin_unlock_irq(&engine->timeline->lock); } return 0; err_execbuf_client: guc_client_free(guc->execbuf_client); guc->execbuf_client = NULL; return err; } static void guc_interrupts_release(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; int irqs; /* * tell all command streamers NOT to forward interrupts or vblank * to GuC. */ irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER); irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING); for_each_engine(engine, dev_priv, id) I915_WRITE(RING_MODE_GEN7(engine), irqs); /* route all GT interrupts to the host */ I915_WRITE(GUC_BCS_RCS_IER, 0); I915_WRITE(GUC_VCS2_VCS1_IER, 0); I915_WRITE(GUC_WD_VECS_IER, 0); dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; dev_priv->rps.pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK; } void i915_guc_submission_disable(struct drm_i915_private *dev_priv) { struct intel_guc *guc = &dev_priv->guc; guc_interrupts_release(dev_priv); /* Revert back to manual ELSP submission */ intel_engines_reset_default_submission(dev_priv); guc_client_free(guc->execbuf_client); guc->execbuf_client = NULL; } /** * intel_guc_suspend() - notify GuC entering suspend state * @dev_priv: i915 device private */ int intel_guc_suspend(struct drm_i915_private *dev_priv) { struct intel_guc *guc = &dev_priv->guc; struct i915_gem_context *ctx; u32 data[3]; if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS) return 0; gen9_disable_guc_interrupts(dev_priv); ctx = dev_priv->kernel_context; data[0] = INTEL_GUC_ACTION_ENTER_S_STATE; /* any value greater than GUC_POWER_D0 */ data[1] = GUC_POWER_D1; /* first page is shared data with GuC */ data[2] = guc_ggtt_offset(ctx->engine[RCS].state); return intel_guc_send(guc, data, ARRAY_SIZE(data)); } /** * intel_guc_resume() - notify GuC resuming from suspend state * @dev_priv: i915 device private */ int intel_guc_resume(struct drm_i915_private *dev_priv) { struct intel_guc *guc = &dev_priv->guc; struct i915_gem_context *ctx; u32 data[3]; if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS) return 0; if (i915.guc_log_level >= 0) gen9_enable_guc_interrupts(dev_priv); ctx = dev_priv->kernel_context; data[0] = INTEL_GUC_ACTION_EXIT_S_STATE; data[1] = GUC_POWER_D0; /* first page is shared data with GuC */ data[2] = guc_ggtt_offset(ctx->engine[RCS].state); return intel_guc_send(guc, data, ARRAY_SIZE(data)); }