/* bnx2x_init.h: Broadcom Everest network driver. * Structures and macroes needed during the initialization. * * Copyright (c) 2007-2009 Broadcom Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. * * Maintained by: Eilon Greenstein <eilong@broadcom.com> * Written by: Eliezer Tamir * Modified by: Vladislav Zolotarov <vladz@broadcom.com> */ #ifndef BNX2X_INIT_H #define BNX2X_INIT_H #define COMMON 0x1 #define PORT0 0x2 #define PORT1 0x4 #define INIT_EMULATION 0x1 #define INIT_FPGA 0x2 #define INIT_ASIC 0x4 #define INIT_HARDWARE 0x7 #define TSTORM_INTMEM_ADDR TSEM_REG_FAST_MEMORY #define CSTORM_INTMEM_ADDR CSEM_REG_FAST_MEMORY #define XSTORM_INTMEM_ADDR XSEM_REG_FAST_MEMORY #define USTORM_INTMEM_ADDR USEM_REG_FAST_MEMORY /* RAM0 size in bytes */ #define STORM_INTMEM_SIZE_E1 0x5800 #define STORM_INTMEM_SIZE_E1H 0x10000 #define STORM_INTMEM_SIZE(bp) ((CHIP_IS_E1H(bp) ? STORM_INTMEM_SIZE_E1H : \ STORM_INTMEM_SIZE_E1) / 4) /* Init operation types and structures */ /* Common for both E1 and E1H */ #define OP_RD 0x1 /* read single register */ #define OP_WR 0x2 /* write single register */ #define OP_IW 0x3 /* write single register using mailbox */ #define OP_SW 0x4 /* copy a string to the device */ #define OP_SI 0x5 /* copy a string using mailbox */ #define OP_ZR 0x6 /* clear memory */ #define OP_ZP 0x7 /* unzip then copy with DMAE */ #define OP_WR_64 0x8 /* write 64 bit pattern */ #define OP_WB 0x9 /* copy a string using DMAE */ /* FPGA and EMUL specific operations */ #define OP_WR_EMUL 0xa /* write single register on Emulation */ #define OP_WR_FPGA 0xb /* write single register on FPGA */ #define OP_WR_ASIC 0xc /* write single register on ASIC */ /* Init stages */ #define COMMON_STAGE 0 #define PORT0_STAGE 1 #define PORT1_STAGE 2 /* Never reorder FUNCx stages !!! */ #define FUNC0_STAGE 3 #define FUNC1_STAGE 4 #define FUNC2_STAGE 5 #define FUNC3_STAGE 6 #define FUNC4_STAGE 7 #define FUNC5_STAGE 8 #define FUNC6_STAGE 9 #define FUNC7_STAGE 10 #define STAGE_IDX_MAX 11 #define STAGE_START 0 #define STAGE_END 1 /* Indices of blocks */ #define PRS_BLOCK 0 #define SRCH_BLOCK 1 #define TSDM_BLOCK 2 #define TCM_BLOCK 3 #define BRB1_BLOCK 4 #define TSEM_BLOCK 5 #define PXPCS_BLOCK 6 #define EMAC0_BLOCK 7 #define EMAC1_BLOCK 8 #define DBU_BLOCK 9 #define MISC_BLOCK 10 #define DBG_BLOCK 11 #define NIG_BLOCK 12 #define MCP_BLOCK 13 #define UPB_BLOCK 14 #define CSDM_BLOCK 15 #define USDM_BLOCK 16 #define CCM_BLOCK 17 #define UCM_BLOCK 18 #define USEM_BLOCK 19 #define CSEM_BLOCK 20 #define XPB_BLOCK 21 #define DQ_BLOCK 22 #define TIMERS_BLOCK 23 #define XSDM_BLOCK 24 #define QM_BLOCK 25 #define PBF_BLOCK 26 #define XCM_BLOCK 27 #define XSEM_BLOCK 28 #define CDU_BLOCK 29 #define DMAE_BLOCK 30 #define PXP_BLOCK 31 #define CFC_BLOCK 32 #define HC_BLOCK 33 #define PXP2_BLOCK 34 #define MISC_AEU_BLOCK 35 /* Returns the index of start or end of a specific block stage in ops array*/ #define BLOCK_OPS_IDX(block, stage, end) \ (2*(((block)*STAGE_IDX_MAX) + (stage)) + (end)) struct raw_op { u32 op:8; u32 offset:24; u32 raw_data; }; struct op_read { u32 op:8; u32 offset:24; u32 pad; }; struct op_write { u32 op:8; u32 offset:24; u32 val; }; struct op_string_write { u32 op:8; u32 offset:24; #ifdef __LITTLE_ENDIAN u16 data_off; u16 data_len; #else /* __BIG_ENDIAN */ u16 data_len; u16 data_off; #endif }; struct op_zero { u32 op:8; u32 offset:24; u32 len; }; union init_op { struct op_read read; struct op_write write; struct op_string_write str_wr; struct op_zero zero; struct raw_op raw; }; /**************************************************************************** * PXP ****************************************************************************/ /* * This code configures the PCI read/write arbiter * which implements a weighted round robin * between the virtual queues in the chip. * * The values were derived for each PCI max payload and max request size. * since max payload and max request size are only known at run time, * this is done as a separate init stage. */ #define NUM_WR_Q 13 #define NUM_RD_Q 29 #define MAX_RD_ORD 3 #define MAX_WR_ORD 2 /* configuration for one arbiter queue */ struct arb_line { int l; int add; int ubound; }; /* derived configuration for each read queue for each max request size */ static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = { /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} }, { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} }, { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} }, { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} } }; /* derived configuration for each write queue for each max request size */ static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = { /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} }, { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} }, { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} }, { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} }, { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} }, { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} }, { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} } }; /* register addresses for read queues */ static const struct arb_line read_arb_addr[NUM_RD_Q-1] = { /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0, PXP2_REG_RQ_BW_RD_UBOUND0}, {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, PXP2_REG_PSWRQ_BW_UB1}, {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, PXP2_REG_PSWRQ_BW_UB2}, {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, PXP2_REG_PSWRQ_BW_UB3}, {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4, PXP2_REG_RQ_BW_RD_UBOUND4}, {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5, PXP2_REG_RQ_BW_RD_UBOUND5}, {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, PXP2_REG_PSWRQ_BW_UB6}, {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, PXP2_REG_PSWRQ_BW_UB7}, {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, PXP2_REG_PSWRQ_BW_UB8}, /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, PXP2_REG_PSWRQ_BW_UB9}, {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, PXP2_REG_PSWRQ_BW_UB10}, {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, PXP2_REG_PSWRQ_BW_UB11}, {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12, PXP2_REG_RQ_BW_RD_UBOUND12}, {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13, PXP2_REG_RQ_BW_RD_UBOUND13}, {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14, PXP2_REG_RQ_BW_RD_UBOUND14}, {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15, PXP2_REG_RQ_BW_RD_UBOUND15}, {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16, PXP2_REG_RQ_BW_RD_UBOUND16}, {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17, PXP2_REG_RQ_BW_RD_UBOUND17}, {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18, PXP2_REG_RQ_BW_RD_UBOUND18}, /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19, PXP2_REG_RQ_BW_RD_UBOUND19}, {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20, PXP2_REG_RQ_BW_RD_UBOUND20}, {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22, PXP2_REG_RQ_BW_RD_UBOUND22}, {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23, PXP2_REG_RQ_BW_RD_UBOUND23}, {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24, PXP2_REG_RQ_BW_RD_UBOUND24}, {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25, PXP2_REG_RQ_BW_RD_UBOUND25}, {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26, PXP2_REG_RQ_BW_RD_UBOUND26}, {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27, PXP2_REG_RQ_BW_RD_UBOUND27}, {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, PXP2_REG_PSWRQ_BW_UB28} }; /* register addresses for write queues */ static const struct arb_line write_arb_addr[NUM_WR_Q-1] = { /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, PXP2_REG_PSWRQ_BW_UB1}, {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, PXP2_REG_PSWRQ_BW_UB2}, {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, PXP2_REG_PSWRQ_BW_UB3}, {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, PXP2_REG_PSWRQ_BW_UB6}, {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, PXP2_REG_PSWRQ_BW_UB7}, {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, PXP2_REG_PSWRQ_BW_UB8}, {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, PXP2_REG_PSWRQ_BW_UB9}, {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, PXP2_REG_PSWRQ_BW_UB10}, {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, PXP2_REG_PSWRQ_BW_UB11}, /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, PXP2_REG_PSWRQ_BW_UB28}, {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29, PXP2_REG_RQ_BW_WR_UBOUND29}, {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30, PXP2_REG_RQ_BW_WR_UBOUND30} }; /**************************************************************************** * CDU ****************************************************************************/ #define CDU_REGION_NUMBER_XCM_AG 2 #define CDU_REGION_NUMBER_UCM_AG 4 /** * String-to-compress [31:8] = CID (all 24 bits) * String-to-compress [7:4] = Region * String-to-compress [3:0] = Type */ #define CDU_VALID_DATA(_cid, _region, _type) \ (((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf))) #define CDU_CRC8(_cid, _region, _type) \ calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff) #define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \ (0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f)) #define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \ (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7)) #define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80) /* registers addresses are not in order so these arrays help simplify the code */ static const int cm_blocks[9] = { MISC_BLOCK, TCM_BLOCK, UCM_BLOCK, CCM_BLOCK, XCM_BLOCK, TSEM_BLOCK, USEM_BLOCK, CSEM_BLOCK, XSEM_BLOCK }; #endif /* BNX2X_INIT_H */