/* * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd * Author:Mark Yao * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rockchip_drm_drv.h" #include "rockchip_drm_gem.h" #include "rockchip_drm_fb.h" #include "rockchip_drm_vop.h" #define __REG_SET_RELAXED(x, off, mask, shift, v) \ vop_mask_write_relaxed(x, off, (mask) << shift, (v) << shift) #define __REG_SET_NORMAL(x, off, mask, shift, v) \ vop_mask_write(x, off, (mask) << shift, (v) << shift) #define REG_SET(x, base, reg, v, mode) \ __REG_SET_##mode(x, base + reg.offset, reg.mask, reg.shift, v) #define REG_SET_MASK(x, base, reg, mask, v, mode) \ __REG_SET_##mode(x, base + reg.offset, mask, reg.shift, v) #define VOP_WIN_SET(x, win, name, v) \ REG_SET(x, win->base, win->phy->name, v, RELAXED) #define VOP_SCL_SET(x, win, name, v) \ REG_SET(x, win->base, win->phy->scl->name, v, RELAXED) #define VOP_SCL_SET_EXT(x, win, name, v) \ REG_SET(x, win->base, win->phy->scl->ext->name, v, RELAXED) #define VOP_CTRL_SET(x, name, v) \ REG_SET(x, 0, (x)->data->ctrl->name, v, NORMAL) #define VOP_INTR_GET(vop, name) \ vop_read_reg(vop, 0, &vop->data->ctrl->name) #define VOP_INTR_SET(vop, name, mask, v) \ REG_SET_MASK(vop, 0, vop->data->intr->name, mask, v, NORMAL) #define VOP_INTR_SET_TYPE(vop, name, type, v) \ do { \ int i, reg = 0, mask = 0; \ for (i = 0; i < vop->data->intr->nintrs; i++) { \ if (vop->data->intr->intrs[i] & type) { \ reg |= (v) << i; \ mask |= 1 << i; \ } \ } \ VOP_INTR_SET(vop, name, mask, reg); \ } while (0) #define VOP_INTR_GET_TYPE(vop, name, type) \ vop_get_intr_type(vop, &vop->data->intr->name, type) #define VOP_WIN_GET(x, win, name) \ vop_read_reg(x, win->base, &win->phy->name) #define VOP_WIN_GET_YRGBADDR(vop, win) \ vop_readl(vop, win->base + win->phy->yrgb_mst.offset) #define to_vop(x) container_of(x, struct vop, crtc) #define to_vop_win(x) container_of(x, struct vop_win, base) #define to_vop_plane_state(x) container_of(x, struct vop_plane_state, base) struct vop_plane_state { struct drm_plane_state base; int format; struct drm_rect src; struct drm_rect dest; dma_addr_t yrgb_mst; bool enable; }; struct vop_win { struct drm_plane base; const struct vop_win_data *data; struct vop *vop; /* protected by dev->event_lock */ bool enable; dma_addr_t yrgb_mst; }; struct vop { struct drm_crtc crtc; struct device *dev; struct drm_device *drm_dev; bool is_enabled; /* mutex vsync_ work */ struct mutex vsync_mutex; bool vsync_work_pending; struct completion dsp_hold_completion; struct completion wait_update_complete; /* protected by dev->event_lock */ struct drm_pending_vblank_event *event; const struct vop_data *data; uint32_t *regsbak; void __iomem *regs; /* physical map length of vop register */ uint32_t len; /* one time only one process allowed to config the register */ spinlock_t reg_lock; /* lock vop irq reg */ spinlock_t irq_lock; unsigned int irq; /* vop AHP clk */ struct clk *hclk; /* vop dclk */ struct clk *dclk; /* vop share memory frequency */ struct clk *aclk; /* vop dclk reset */ struct reset_control *dclk_rst; struct vop_win win[]; }; static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v) { writel(v, vop->regs + offset); vop->regsbak[offset >> 2] = v; } static inline uint32_t vop_readl(struct vop *vop, uint32_t offset) { return readl(vop->regs + offset); } static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base, const struct vop_reg *reg) { return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask; } static inline void vop_mask_write(struct vop *vop, uint32_t offset, uint32_t mask, uint32_t v) { if (mask) { uint32_t cached_val = vop->regsbak[offset >> 2]; cached_val = (cached_val & ~mask) | v; writel(cached_val, vop->regs + offset); vop->regsbak[offset >> 2] = cached_val; } } static inline void vop_mask_write_relaxed(struct vop *vop, uint32_t offset, uint32_t mask, uint32_t v) { if (mask) { uint32_t cached_val = vop->regsbak[offset >> 2]; cached_val = (cached_val & ~mask) | v; writel_relaxed(cached_val, vop->regs + offset); vop->regsbak[offset >> 2] = cached_val; } } static inline uint32_t vop_get_intr_type(struct vop *vop, const struct vop_reg *reg, int type) { uint32_t i, ret = 0; uint32_t regs = vop_read_reg(vop, 0, reg); for (i = 0; i < vop->data->intr->nintrs; i++) { if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i)) ret |= vop->data->intr->intrs[i]; } return ret; } static inline void vop_cfg_done(struct vop *vop) { VOP_CTRL_SET(vop, cfg_done, 1); } static bool has_rb_swapped(uint32_t format) { switch (format) { case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: case DRM_FORMAT_BGR888: case DRM_FORMAT_BGR565: return true; default: return false; } } static enum vop_data_format vop_convert_format(uint32_t format) { switch (format) { case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: return VOP_FMT_ARGB8888; case DRM_FORMAT_RGB888: case DRM_FORMAT_BGR888: return VOP_FMT_RGB888; case DRM_FORMAT_RGB565: case DRM_FORMAT_BGR565: return VOP_FMT_RGB565; case DRM_FORMAT_NV12: return VOP_FMT_YUV420SP; case DRM_FORMAT_NV16: return VOP_FMT_YUV422SP; case DRM_FORMAT_NV24: return VOP_FMT_YUV444SP; default: DRM_ERROR("unsupport format[%08x]\n", format); return -EINVAL; } } static bool is_yuv_support(uint32_t format) { switch (format) { case DRM_FORMAT_NV12: case DRM_FORMAT_NV16: case DRM_FORMAT_NV24: return true; default: return false; } } static bool is_alpha_support(uint32_t format) { switch (format) { case DRM_FORMAT_ARGB8888: case DRM_FORMAT_ABGR8888: return true; default: return false; } } static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src, uint32_t dst, bool is_horizontal, int vsu_mode, int *vskiplines) { uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT; if (is_horizontal) { if (mode == SCALE_UP) val = GET_SCL_FT_BIC(src, dst); else if (mode == SCALE_DOWN) val = GET_SCL_FT_BILI_DN(src, dst); } else { if (mode == SCALE_UP) { if (vsu_mode == SCALE_UP_BIL) val = GET_SCL_FT_BILI_UP(src, dst); else val = GET_SCL_FT_BIC(src, dst); } else if (mode == SCALE_DOWN) { if (vskiplines) { *vskiplines = scl_get_vskiplines(src, dst); val = scl_get_bili_dn_vskip(src, dst, *vskiplines); } else { val = GET_SCL_FT_BILI_DN(src, dst); } } } return val; } static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win, uint32_t src_w, uint32_t src_h, uint32_t dst_w, uint32_t dst_h, uint32_t pixel_format) { uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode; uint16_t cbcr_hor_scl_mode = SCALE_NONE; uint16_t cbcr_ver_scl_mode = SCALE_NONE; int hsub = drm_format_horz_chroma_subsampling(pixel_format); int vsub = drm_format_vert_chroma_subsampling(pixel_format); bool is_yuv = is_yuv_support(pixel_format); uint16_t cbcr_src_w = src_w / hsub; uint16_t cbcr_src_h = src_h / vsub; uint16_t vsu_mode; uint16_t lb_mode; uint32_t val; int vskiplines = 0; if (dst_w > 3840) { DRM_ERROR("Maximum destination width (3840) exceeded\n"); return; } if (!win->phy->scl->ext) { VOP_SCL_SET(vop, win, scale_yrgb_x, scl_cal_scale2(src_w, dst_w)); VOP_SCL_SET(vop, win, scale_yrgb_y, scl_cal_scale2(src_h, dst_h)); if (is_yuv) { VOP_SCL_SET(vop, win, scale_cbcr_x, scl_cal_scale2(src_w, dst_w)); VOP_SCL_SET(vop, win, scale_cbcr_y, scl_cal_scale2(src_h, dst_h)); } return; } yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w); yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h); if (is_yuv) { cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w); cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h); if (cbcr_hor_scl_mode == SCALE_DOWN) lb_mode = scl_vop_cal_lb_mode(dst_w, true); else lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true); } else { if (yrgb_hor_scl_mode == SCALE_DOWN) lb_mode = scl_vop_cal_lb_mode(dst_w, false); else lb_mode = scl_vop_cal_lb_mode(src_w, false); } VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode); if (lb_mode == LB_RGB_3840X2) { if (yrgb_ver_scl_mode != SCALE_NONE) { DRM_ERROR("ERROR : not allow yrgb ver scale\n"); return; } if (cbcr_ver_scl_mode != SCALE_NONE) { DRM_ERROR("ERROR : not allow cbcr ver scale\n"); return; } vsu_mode = SCALE_UP_BIL; } else if (lb_mode == LB_RGB_2560X4) { vsu_mode = SCALE_UP_BIL; } else { vsu_mode = SCALE_UP_BIC; } val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w, true, 0, NULL); VOP_SCL_SET(vop, win, scale_yrgb_x, val); val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h, false, vsu_mode, &vskiplines); VOP_SCL_SET(vop, win, scale_yrgb_y, val); VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4); VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2); VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode); VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode); VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL); VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL); VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode); if (is_yuv) { val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w, dst_w, true, 0, NULL); VOP_SCL_SET(vop, win, scale_cbcr_x, val); val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h, dst_h, false, vsu_mode, &vskiplines); VOP_SCL_SET(vop, win, scale_cbcr_y, val); VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4); VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2); VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode); VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode); VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL); VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL); VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode); } } static void vop_dsp_hold_valid_irq_enable(struct vop *vop) { unsigned long flags; if (WARN_ON(!vop->is_enabled)) return; spin_lock_irqsave(&vop->irq_lock, flags); VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1); spin_unlock_irqrestore(&vop->irq_lock, flags); } static void vop_dsp_hold_valid_irq_disable(struct vop *vop) { unsigned long flags; if (WARN_ON(!vop->is_enabled)) return; spin_lock_irqsave(&vop->irq_lock, flags); VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0); spin_unlock_irqrestore(&vop->irq_lock, flags); } static void vop_enable(struct drm_crtc *crtc) { struct vop *vop = to_vop(crtc); int ret; ret = pm_runtime_get_sync(vop->dev); if (ret < 0) { dev_err(vop->dev, "failed to get pm runtime: %d\n", ret); return; } ret = clk_enable(vop->hclk); if (ret < 0) { dev_err(vop->dev, "failed to enable hclk - %d\n", ret); return; } ret = clk_enable(vop->dclk); if (ret < 0) { dev_err(vop->dev, "failed to enable dclk - %d\n", ret); goto err_disable_hclk; } ret = clk_enable(vop->aclk); if (ret < 0) { dev_err(vop->dev, "failed to enable aclk - %d\n", ret); goto err_disable_dclk; } /* * Slave iommu shares power, irq and clock with vop. It was associated * automatically with this master device via common driver code. * Now that we have enabled the clock we attach it to the shared drm * mapping. */ ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev); if (ret) { dev_err(vop->dev, "failed to attach dma mapping, %d\n", ret); goto err_disable_aclk; } memcpy(vop->regs, vop->regsbak, vop->len); /* * At here, vop clock & iommu is enable, R/W vop regs would be safe. */ vop->is_enabled = true; spin_lock(&vop->reg_lock); VOP_CTRL_SET(vop, standby, 0); spin_unlock(&vop->reg_lock); enable_irq(vop->irq); drm_crtc_vblank_on(crtc); return; err_disable_aclk: clk_disable(vop->aclk); err_disable_dclk: clk_disable(vop->dclk); err_disable_hclk: clk_disable(vop->hclk); } static void vop_crtc_disable(struct drm_crtc *crtc) { struct vop *vop = to_vop(crtc); int i; WARN_ON(vop->event); /* * We need to make sure that all windows are disabled before we * disable that crtc. Otherwise we might try to scan from a destroyed * buffer later. */ for (i = 0; i < vop->data->win_size; i++) { struct vop_win *vop_win = &vop->win[i]; const struct vop_win_data *win = vop_win->data; spin_lock(&vop->reg_lock); VOP_WIN_SET(vop, win, enable, 0); spin_unlock(&vop->reg_lock); } drm_crtc_vblank_off(crtc); /* * Vop standby will take effect at end of current frame, * if dsp hold valid irq happen, it means standby complete. * * we must wait standby complete when we want to disable aclk, * if not, memory bus maybe dead. */ reinit_completion(&vop->dsp_hold_completion); vop_dsp_hold_valid_irq_enable(vop); spin_lock(&vop->reg_lock); VOP_CTRL_SET(vop, standby, 1); spin_unlock(&vop->reg_lock); wait_for_completion(&vop->dsp_hold_completion); vop_dsp_hold_valid_irq_disable(vop); disable_irq(vop->irq); vop->is_enabled = false; /* * vop standby complete, so iommu detach is safe. */ rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev); clk_disable(vop->dclk); clk_disable(vop->aclk); clk_disable(vop->hclk); pm_runtime_put(vop->dev); if (crtc->state->event && !crtc->state->active) { spin_lock_irq(&crtc->dev->event_lock); drm_crtc_send_vblank_event(crtc, crtc->state->event); spin_unlock_irq(&crtc->dev->event_lock); crtc->state->event = NULL; } } static void vop_plane_destroy(struct drm_plane *plane) { drm_plane_cleanup(plane); } static int vop_plane_prepare_fb(struct drm_plane *plane, const struct drm_plane_state *new_state) { if (plane->state->fb) drm_framebuffer_reference(plane->state->fb); return 0; } static void vop_plane_cleanup_fb(struct drm_plane *plane, const struct drm_plane_state *old_state) { if (old_state->fb) drm_framebuffer_unreference(old_state->fb); } static int vop_plane_atomic_check(struct drm_plane *plane, struct drm_plane_state *state) { struct drm_crtc *crtc = state->crtc; struct drm_crtc_state *crtc_state; struct drm_framebuffer *fb = state->fb; struct vop_win *vop_win = to_vop_win(plane); struct vop_plane_state *vop_plane_state = to_vop_plane_state(state); const struct vop_win_data *win = vop_win->data; bool visible; int ret; struct drm_rect *dest = &vop_plane_state->dest; struct drm_rect *src = &vop_plane_state->src; struct drm_rect clip; int min_scale = win->phy->scl ? FRAC_16_16(1, 8) : DRM_PLANE_HELPER_NO_SCALING; int max_scale = win->phy->scl ? FRAC_16_16(8, 1) : DRM_PLANE_HELPER_NO_SCALING; if (!crtc || !fb) goto out_disable; crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc); if (WARN_ON(!crtc_state)) return -EINVAL; src->x1 = state->src_x; src->y1 = state->src_y; src->x2 = state->src_x + state->src_w; src->y2 = state->src_y + state->src_h; dest->x1 = state->crtc_x; dest->y1 = state->crtc_y; dest->x2 = state->crtc_x + state->crtc_w; dest->y2 = state->crtc_y + state->crtc_h; clip.x1 = 0; clip.y1 = 0; clip.x2 = crtc_state->adjusted_mode.hdisplay; clip.y2 = crtc_state->adjusted_mode.vdisplay; ret = drm_plane_helper_check_update(plane, crtc, state->fb, src, dest, &clip, min_scale, max_scale, true, true, &visible); if (ret) return ret; if (!visible) goto out_disable; vop_plane_state->format = vop_convert_format(fb->pixel_format); if (vop_plane_state->format < 0) return vop_plane_state->format; /* * Src.x1 can be odd when do clip, but yuv plane start point * need align with 2 pixel. */ if (is_yuv_support(fb->pixel_format) && ((src->x1 >> 16) % 2)) return -EINVAL; vop_plane_state->enable = true; return 0; out_disable: vop_plane_state->enable = false; return 0; } static void vop_plane_atomic_disable(struct drm_plane *plane, struct drm_plane_state *old_state) { struct vop_plane_state *vop_plane_state = to_vop_plane_state(old_state); struct vop_win *vop_win = to_vop_win(plane); const struct vop_win_data *win = vop_win->data; struct vop *vop = to_vop(old_state->crtc); if (!old_state->crtc) return; spin_lock_irq(&plane->dev->event_lock); vop_win->enable = false; vop_win->yrgb_mst = 0; spin_unlock_irq(&plane->dev->event_lock); spin_lock(&vop->reg_lock); VOP_WIN_SET(vop, win, enable, 0); spin_unlock(&vop->reg_lock); vop_plane_state->enable = false; } static void vop_plane_atomic_update(struct drm_plane *plane, struct drm_plane_state *old_state) { struct drm_plane_state *state = plane->state; struct drm_crtc *crtc = state->crtc; struct vop_win *vop_win = to_vop_win(plane); struct vop_plane_state *vop_plane_state = to_vop_plane_state(state); const struct vop_win_data *win = vop_win->data; struct vop *vop = to_vop(state->crtc); struct drm_framebuffer *fb = state->fb; unsigned int actual_w, actual_h; unsigned int dsp_stx, dsp_sty; uint32_t act_info, dsp_info, dsp_st; struct drm_rect *src = &vop_plane_state->src; struct drm_rect *dest = &vop_plane_state->dest; struct drm_gem_object *obj, *uv_obj; struct rockchip_gem_object *rk_obj, *rk_uv_obj; unsigned long offset; dma_addr_t dma_addr; uint32_t val; bool rb_swap; /* * can't update plane when vop is disabled. */ if (WARN_ON(!crtc)) return; if (WARN_ON(!vop->is_enabled)) return; if (!vop_plane_state->enable) { vop_plane_atomic_disable(plane, old_state); return; } obj = rockchip_fb_get_gem_obj(fb, 0); rk_obj = to_rockchip_obj(obj); actual_w = drm_rect_width(src) >> 16; actual_h = drm_rect_height(src) >> 16; act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff); dsp_info = (drm_rect_height(dest) - 1) << 16; dsp_info |= (drm_rect_width(dest) - 1) & 0xffff; dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start; dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start; dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff); offset = (src->x1 >> 16) * drm_format_plane_cpp(fb->pixel_format, 0); offset += (src->y1 >> 16) * fb->pitches[0]; vop_plane_state->yrgb_mst = rk_obj->dma_addr + offset + fb->offsets[0]; spin_lock_irq(&plane->dev->event_lock); vop_win->enable = true; vop_win->yrgb_mst = vop_plane_state->yrgb_mst; spin_unlock_irq(&plane->dev->event_lock); spin_lock(&vop->reg_lock); VOP_WIN_SET(vop, win, format, vop_plane_state->format); VOP_WIN_SET(vop, win, yrgb_vir, fb->pitches[0] >> 2); VOP_WIN_SET(vop, win, yrgb_mst, vop_plane_state->yrgb_mst); if (is_yuv_support(fb->pixel_format)) { int hsub = drm_format_horz_chroma_subsampling(fb->pixel_format); int vsub = drm_format_vert_chroma_subsampling(fb->pixel_format); int bpp = drm_format_plane_cpp(fb->pixel_format, 1); uv_obj = rockchip_fb_get_gem_obj(fb, 1); rk_uv_obj = to_rockchip_obj(uv_obj); offset = (src->x1 >> 16) * bpp / hsub; offset += (src->y1 >> 16) * fb->pitches[1] / vsub; dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1]; VOP_WIN_SET(vop, win, uv_vir, fb->pitches[1] >> 2); VOP_WIN_SET(vop, win, uv_mst, dma_addr); } if (win->phy->scl) scl_vop_cal_scl_fac(vop, win, actual_w, actual_h, drm_rect_width(dest), drm_rect_height(dest), fb->pixel_format); VOP_WIN_SET(vop, win, act_info, act_info); VOP_WIN_SET(vop, win, dsp_info, dsp_info); VOP_WIN_SET(vop, win, dsp_st, dsp_st); rb_swap = has_rb_swapped(fb->pixel_format); VOP_WIN_SET(vop, win, rb_swap, rb_swap); if (is_alpha_support(fb->pixel_format)) { VOP_WIN_SET(vop, win, dst_alpha_ctl, DST_FACTOR_M0(ALPHA_SRC_INVERSE)); val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) | SRC_ALPHA_M0(ALPHA_STRAIGHT) | SRC_BLEND_M0(ALPHA_PER_PIX) | SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) | SRC_FACTOR_M0(ALPHA_ONE); VOP_WIN_SET(vop, win, src_alpha_ctl, val); } else { VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0)); } VOP_WIN_SET(vop, win, enable, 1); spin_unlock(&vop->reg_lock); } static const struct drm_plane_helper_funcs plane_helper_funcs = { .prepare_fb = vop_plane_prepare_fb, .cleanup_fb = vop_plane_cleanup_fb, .atomic_check = vop_plane_atomic_check, .atomic_update = vop_plane_atomic_update, .atomic_disable = vop_plane_atomic_disable, }; void vop_atomic_plane_reset(struct drm_plane *plane) { struct vop_plane_state *vop_plane_state = to_vop_plane_state(plane->state); if (plane->state && plane->state->fb) drm_framebuffer_unreference(plane->state->fb); kfree(vop_plane_state); vop_plane_state = kzalloc(sizeof(*vop_plane_state), GFP_KERNEL); if (!vop_plane_state) return; plane->state = &vop_plane_state->base; plane->state->plane = plane; } struct drm_plane_state * vop_atomic_plane_duplicate_state(struct drm_plane *plane) { struct vop_plane_state *old_vop_plane_state; struct vop_plane_state *vop_plane_state; if (WARN_ON(!plane->state)) return NULL; old_vop_plane_state = to_vop_plane_state(plane->state); vop_plane_state = kmemdup(old_vop_plane_state, sizeof(*vop_plane_state), GFP_KERNEL); if (!vop_plane_state) return NULL; __drm_atomic_helper_plane_duplicate_state(plane, &vop_plane_state->base); return &vop_plane_state->base; } static void vop_atomic_plane_destroy_state(struct drm_plane *plane, struct drm_plane_state *state) { struct vop_plane_state *vop_state = to_vop_plane_state(state); __drm_atomic_helper_plane_destroy_state(state); kfree(vop_state); } static const struct drm_plane_funcs vop_plane_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = vop_plane_destroy, .reset = vop_atomic_plane_reset, .atomic_duplicate_state = vop_atomic_plane_duplicate_state, .atomic_destroy_state = vop_atomic_plane_destroy_state, }; static int vop_crtc_enable_vblank(struct drm_crtc *crtc) { struct vop *vop = to_vop(crtc); unsigned long flags; if (WARN_ON(!vop->is_enabled)) return -EPERM; spin_lock_irqsave(&vop->irq_lock, flags); VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1); spin_unlock_irqrestore(&vop->irq_lock, flags); return 0; } static void vop_crtc_disable_vblank(struct drm_crtc *crtc) { struct vop *vop = to_vop(crtc); unsigned long flags; if (WARN_ON(!vop->is_enabled)) return; spin_lock_irqsave(&vop->irq_lock, flags); VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0); spin_unlock_irqrestore(&vop->irq_lock, flags); } static void vop_crtc_wait_for_update(struct drm_crtc *crtc) { struct vop *vop = to_vop(crtc); reinit_completion(&vop->wait_update_complete); WARN_ON(!wait_for_completion_timeout(&vop->wait_update_complete, 100)); } static const struct rockchip_crtc_funcs private_crtc_funcs = { .enable_vblank = vop_crtc_enable_vblank, .disable_vblank = vop_crtc_disable_vblank, .wait_for_update = vop_crtc_wait_for_update, }; static bool vop_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct vop *vop = to_vop(crtc); adjusted_mode->clock = clk_round_rate(vop->dclk, mode->clock * 1000) / 1000; return true; } static void vop_crtc_enable(struct drm_crtc *crtc) { struct vop *vop = to_vop(crtc); struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state); struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode; u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start; u16 hdisplay = adjusted_mode->hdisplay; u16 htotal = adjusted_mode->htotal; u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start; u16 hact_end = hact_st + hdisplay; u16 vdisplay = adjusted_mode->vdisplay; u16 vtotal = adjusted_mode->vtotal; u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start; u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start; u16 vact_end = vact_st + vdisplay; uint32_t val; WARN_ON(vop->event); vop_enable(crtc); /* * If dclk rate is zero, mean that scanout is stop, * we don't need wait any more. */ if (clk_get_rate(vop->dclk)) { /* * Rk3288 vop timing register is immediately, when configure * display timing on display time, may cause tearing. * * Vop standby will take effect at end of current frame, * if dsp hold valid irq happen, it means standby complete. * * mode set: * standby and wait complete --> |---- * | display time * |---- * |---> dsp hold irq * configure display timing --> | * standby exit | * | new frame start. */ reinit_completion(&vop->dsp_hold_completion); vop_dsp_hold_valid_irq_enable(vop); spin_lock(&vop->reg_lock); VOP_CTRL_SET(vop, standby, 1); spin_unlock(&vop->reg_lock); wait_for_completion(&vop->dsp_hold_completion); vop_dsp_hold_valid_irq_disable(vop); } val = 0x8; val |= (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC) ? 0 : 1; val |= (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC) ? 0 : (1 << 1); VOP_CTRL_SET(vop, pin_pol, val); switch (s->output_type) { case DRM_MODE_CONNECTOR_LVDS: VOP_CTRL_SET(vop, rgb_en, 1); break; case DRM_MODE_CONNECTOR_eDP: VOP_CTRL_SET(vop, edp_en, 1); break; case DRM_MODE_CONNECTOR_HDMIA: VOP_CTRL_SET(vop, hdmi_en, 1); break; case DRM_MODE_CONNECTOR_DSI: VOP_CTRL_SET(vop, mipi_en, 1); break; default: DRM_ERROR("unsupport connector_type[%d]\n", s->output_type); } VOP_CTRL_SET(vop, out_mode, s->output_mode); VOP_CTRL_SET(vop, htotal_pw, (htotal << 16) | hsync_len); val = hact_st << 16; val |= hact_end; VOP_CTRL_SET(vop, hact_st_end, val); VOP_CTRL_SET(vop, hpost_st_end, val); VOP_CTRL_SET(vop, vtotal_pw, (vtotal << 16) | vsync_len); val = vact_st << 16; val |= vact_end; VOP_CTRL_SET(vop, vact_st_end, val); VOP_CTRL_SET(vop, vpost_st_end, val); clk_set_rate(vop->dclk, adjusted_mode->clock * 1000); VOP_CTRL_SET(vop, standby, 0); } static void vop_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state) { struct vop *vop = to_vop(crtc); if (WARN_ON(!vop->is_enabled)) return; spin_lock(&vop->reg_lock); vop_cfg_done(vop); spin_unlock(&vop->reg_lock); } static void vop_crtc_atomic_begin(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state) { struct vop *vop = to_vop(crtc); spin_lock_irq(&crtc->dev->event_lock); if (crtc->state->event) { WARN_ON(drm_crtc_vblank_get(crtc) != 0); WARN_ON(vop->event); vop->event = crtc->state->event; crtc->state->event = NULL; } spin_unlock_irq(&crtc->dev->event_lock); } static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = { .enable = vop_crtc_enable, .disable = vop_crtc_disable, .mode_fixup = vop_crtc_mode_fixup, .atomic_flush = vop_crtc_atomic_flush, .atomic_begin = vop_crtc_atomic_begin, }; static void vop_crtc_destroy(struct drm_crtc *crtc) { drm_crtc_cleanup(crtc); } static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc) { struct rockchip_crtc_state *rockchip_state; rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL); if (!rockchip_state) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base); return &rockchip_state->base; } static void vop_crtc_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct rockchip_crtc_state *s = to_rockchip_crtc_state(state); __drm_atomic_helper_crtc_destroy_state(&s->base); kfree(s); } static const struct drm_crtc_funcs vop_crtc_funcs = { .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .destroy = vop_crtc_destroy, .reset = drm_atomic_helper_crtc_reset, .atomic_duplicate_state = vop_crtc_duplicate_state, .atomic_destroy_state = vop_crtc_destroy_state, }; static bool vop_win_pending_is_complete(struct vop_win *vop_win) { dma_addr_t yrgb_mst; if (!vop_win->enable) return VOP_WIN_GET(vop_win->vop, vop_win->data, enable) == 0; yrgb_mst = VOP_WIN_GET_YRGBADDR(vop_win->vop, vop_win->data); return yrgb_mst == vop_win->yrgb_mst; } static void vop_handle_vblank(struct vop *vop) { struct drm_device *drm = vop->drm_dev; struct drm_crtc *crtc = &vop->crtc; unsigned long flags; int i; for (i = 0; i < vop->data->win_size; i++) { if (!vop_win_pending_is_complete(&vop->win[i])) return; } spin_lock_irqsave(&drm->event_lock, flags); if (vop->event) { drm_crtc_send_vblank_event(crtc, vop->event); drm_crtc_vblank_put(crtc); vop->event = NULL; } spin_unlock_irqrestore(&drm->event_lock, flags); if (!completion_done(&vop->wait_update_complete)) complete(&vop->wait_update_complete); } static irqreturn_t vop_isr(int irq, void *data) { struct vop *vop = data; struct drm_crtc *crtc = &vop->crtc; uint32_t active_irqs; unsigned long flags; int ret = IRQ_NONE; /* * interrupt register has interrupt status, enable and clear bits, we * must hold irq_lock to avoid a race with enable/disable_vblank(). */ spin_lock_irqsave(&vop->irq_lock, flags); active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK); /* Clear all active interrupt sources */ if (active_irqs) VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1); spin_unlock_irqrestore(&vop->irq_lock, flags); /* This is expected for vop iommu irqs, since the irq is shared */ if (!active_irqs) return IRQ_NONE; if (active_irqs & DSP_HOLD_VALID_INTR) { complete(&vop->dsp_hold_completion); active_irqs &= ~DSP_HOLD_VALID_INTR; ret = IRQ_HANDLED; } if (active_irqs & FS_INTR) { drm_crtc_handle_vblank(crtc); vop_handle_vblank(vop); active_irqs &= ~FS_INTR; ret = IRQ_HANDLED; } /* Unhandled irqs are spurious. */ if (active_irqs) DRM_ERROR("Unknown VOP IRQs: %#02x\n", active_irqs); return ret; } static int vop_create_crtc(struct vop *vop) { const struct vop_data *vop_data = vop->data; struct device *dev = vop->dev; struct drm_device *drm_dev = vop->drm_dev; struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp; struct drm_crtc *crtc = &vop->crtc; struct device_node *port; int ret; int i; /* * Create drm_plane for primary and cursor planes first, since we need * to pass them to drm_crtc_init_with_planes, which sets the * "possible_crtcs" to the newly initialized crtc. */ for (i = 0; i < vop_data->win_size; i++) { struct vop_win *vop_win = &vop->win[i]; const struct vop_win_data *win_data = vop_win->data; if (win_data->type != DRM_PLANE_TYPE_PRIMARY && win_data->type != DRM_PLANE_TYPE_CURSOR) continue; ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base, 0, &vop_plane_funcs, win_data->phy->data_formats, win_data->phy->nformats, win_data->type, NULL); if (ret) { DRM_ERROR("failed to initialize plane\n"); goto err_cleanup_planes; } plane = &vop_win->base; drm_plane_helper_add(plane, &plane_helper_funcs); if (plane->type == DRM_PLANE_TYPE_PRIMARY) primary = plane; else if (plane->type == DRM_PLANE_TYPE_CURSOR) cursor = plane; } ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor, &vop_crtc_funcs, NULL); if (ret) goto err_cleanup_planes; drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs); /* * Create drm_planes for overlay windows with possible_crtcs restricted * to the newly created crtc. */ for (i = 0; i < vop_data->win_size; i++) { struct vop_win *vop_win = &vop->win[i]; const struct vop_win_data *win_data = vop_win->data; unsigned long possible_crtcs = 1 << drm_crtc_index(crtc); if (win_data->type != DRM_PLANE_TYPE_OVERLAY) continue; ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base, possible_crtcs, &vop_plane_funcs, win_data->phy->data_formats, win_data->phy->nformats, win_data->type, NULL); if (ret) { DRM_ERROR("failed to initialize overlay plane\n"); goto err_cleanup_crtc; } drm_plane_helper_add(&vop_win->base, &plane_helper_funcs); } port = of_get_child_by_name(dev->of_node, "port"); if (!port) { DRM_ERROR("no port node found in %s\n", dev->of_node->full_name); ret = -ENOENT; goto err_cleanup_crtc; } init_completion(&vop->dsp_hold_completion); init_completion(&vop->wait_update_complete); crtc->port = port; rockchip_register_crtc_funcs(crtc, &private_crtc_funcs); return 0; err_cleanup_crtc: drm_crtc_cleanup(crtc); err_cleanup_planes: list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list, head) drm_plane_cleanup(plane); return ret; } static void vop_destroy_crtc(struct vop *vop) { struct drm_crtc *crtc = &vop->crtc; struct drm_device *drm_dev = vop->drm_dev; struct drm_plane *plane, *tmp; rockchip_unregister_crtc_funcs(crtc); of_node_put(crtc->port); /* * We need to cleanup the planes now. Why? * * The planes are "&vop->win[i].base". That means the memory is * all part of the big "struct vop" chunk of memory. That memory * was devm allocated and associated with this component. We need to * free it ourselves before vop_unbind() finishes. */ list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list, head) vop_plane_destroy(plane); /* * Destroy CRTC after vop_plane_destroy() since vop_disable_plane() * references the CRTC. */ drm_crtc_cleanup(crtc); } static int vop_initial(struct vop *vop) { const struct vop_data *vop_data = vop->data; const struct vop_reg_data *init_table = vop_data->init_table; struct reset_control *ahb_rst; int i, ret; vop->hclk = devm_clk_get(vop->dev, "hclk_vop"); if (IS_ERR(vop->hclk)) { dev_err(vop->dev, "failed to get hclk source\n"); return PTR_ERR(vop->hclk); } vop->aclk = devm_clk_get(vop->dev, "aclk_vop"); if (IS_ERR(vop->aclk)) { dev_err(vop->dev, "failed to get aclk source\n"); return PTR_ERR(vop->aclk); } vop->dclk = devm_clk_get(vop->dev, "dclk_vop"); if (IS_ERR(vop->dclk)) { dev_err(vop->dev, "failed to get dclk source\n"); return PTR_ERR(vop->dclk); } ret = clk_prepare(vop->dclk); if (ret < 0) { dev_err(vop->dev, "failed to prepare dclk\n"); return ret; } /* Enable both the hclk and aclk to setup the vop */ ret = clk_prepare_enable(vop->hclk); if (ret < 0) { dev_err(vop->dev, "failed to prepare/enable hclk\n"); goto err_unprepare_dclk; } ret = clk_prepare_enable(vop->aclk); if (ret < 0) { dev_err(vop->dev, "failed to prepare/enable aclk\n"); goto err_disable_hclk; } /* * do hclk_reset, reset all vop registers. */ ahb_rst = devm_reset_control_get(vop->dev, "ahb"); if (IS_ERR(ahb_rst)) { dev_err(vop->dev, "failed to get ahb reset\n"); ret = PTR_ERR(ahb_rst); goto err_disable_aclk; } reset_control_assert(ahb_rst); usleep_range(10, 20); reset_control_deassert(ahb_rst); memcpy(vop->regsbak, vop->regs, vop->len); for (i = 0; i < vop_data->table_size; i++) vop_writel(vop, init_table[i].offset, init_table[i].value); for (i = 0; i < vop_data->win_size; i++) { const struct vop_win_data *win = &vop_data->win[i]; VOP_WIN_SET(vop, win, enable, 0); } vop_cfg_done(vop); /* * do dclk_reset, let all config take affect. */ vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk"); if (IS_ERR(vop->dclk_rst)) { dev_err(vop->dev, "failed to get dclk reset\n"); ret = PTR_ERR(vop->dclk_rst); goto err_disable_aclk; } reset_control_assert(vop->dclk_rst); usleep_range(10, 20); reset_control_deassert(vop->dclk_rst); clk_disable(vop->hclk); clk_disable(vop->aclk); vop->is_enabled = false; return 0; err_disable_aclk: clk_disable_unprepare(vop->aclk); err_disable_hclk: clk_disable_unprepare(vop->hclk); err_unprepare_dclk: clk_unprepare(vop->dclk); return ret; } /* * Initialize the vop->win array elements. */ static void vop_win_init(struct vop *vop) { const struct vop_data *vop_data = vop->data; unsigned int i; for (i = 0; i < vop_data->win_size; i++) { struct vop_win *vop_win = &vop->win[i]; const struct vop_win_data *win_data = &vop_data->win[i]; vop_win->data = win_data; vop_win->vop = vop; } } static int vop_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); const struct vop_data *vop_data; struct drm_device *drm_dev = data; struct vop *vop; struct resource *res; size_t alloc_size; int ret, irq; vop_data = of_device_get_match_data(dev); if (!vop_data) return -ENODEV; /* Allocate vop struct and its vop_win array */ alloc_size = sizeof(*vop) + sizeof(*vop->win) * vop_data->win_size; vop = devm_kzalloc(dev, alloc_size, GFP_KERNEL); if (!vop) return -ENOMEM; vop->dev = dev; vop->data = vop_data; vop->drm_dev = drm_dev; dev_set_drvdata(dev, vop); vop_win_init(vop); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); vop->len = resource_size(res); vop->regs = devm_ioremap_resource(dev, res); if (IS_ERR(vop->regs)) return PTR_ERR(vop->regs); vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL); if (!vop->regsbak) return -ENOMEM; ret = vop_initial(vop); if (ret < 0) { dev_err(&pdev->dev, "cannot initial vop dev - err %d\n", ret); return ret; } irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(dev, "cannot find irq for vop\n"); return irq; } vop->irq = (unsigned int)irq; spin_lock_init(&vop->reg_lock); spin_lock_init(&vop->irq_lock); mutex_init(&vop->vsync_mutex); ret = devm_request_irq(dev, vop->irq, vop_isr, IRQF_SHARED, dev_name(dev), vop); if (ret) return ret; /* IRQ is initially disabled; it gets enabled in power_on */ disable_irq(vop->irq); ret = vop_create_crtc(vop); if (ret) return ret; pm_runtime_enable(&pdev->dev); return 0; } static void vop_unbind(struct device *dev, struct device *master, void *data) { struct vop *vop = dev_get_drvdata(dev); pm_runtime_disable(dev); vop_destroy_crtc(vop); } const struct component_ops vop_component_ops = { .bind = vop_bind, .unbind = vop_unbind, }; EXPORT_SYMBOL_GPL(vop_component_ops);