/** * Routines supporting the Power 7+ Nest Accelerators driver * * Copyright (C) 2011-2012 International Business Machines Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 only. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Author: Kent Yoder */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nx_csbcpb.h" #include "nx.h" /** * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure * * @nx_ctx: the crypto context handle * @op: PFO operation struct to pass in * @may_sleep: flag indicating the request can sleep * * Make the hcall, retrying while the hardware is busy. If we cannot yield * the thread, limit the number of retries to 10 here. */ int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx, struct vio_pfo_op *op, u32 may_sleep) { int rc, retries = 10; struct vio_dev *viodev = nx_driver.viodev; atomic_inc(&(nx_ctx->stats->sync_ops)); do { rc = vio_h_cop_sync(viodev, op); } while ((rc == -EBUSY && !may_sleep && retries--) || (rc == -EBUSY && may_sleep && cond_resched())); if (rc) { dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d " "hcall rc: %ld\n", rc, op->hcall_err); atomic_inc(&(nx_ctx->stats->errors)); atomic_set(&(nx_ctx->stats->last_error), op->hcall_err); atomic_set(&(nx_ctx->stats->last_error_pid), current->pid); } return rc; } /** * nx_build_sg_list - build an NX scatter list describing a single buffer * * @sg_head: pointer to the first scatter list element to build * @start_addr: pointer to the linear buffer * @len: length of the data at @start_addr * @sgmax: the largest number of scatter list elements we're allowed to create * * This function will start writing nx_sg elements at @sg_head and keep * writing them until all of the data from @start_addr is described or * until sgmax elements have been written. Scatter list elements will be * created such that none of the elements describes a buffer that crosses a 4K * boundary. */ struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head, u8 *start_addr, unsigned int len, u32 sgmax) { unsigned int sg_len = 0; struct nx_sg *sg; u64 sg_addr = (u64)start_addr; u64 end_addr; /* determine the start and end for this address range - slightly * different if this is in VMALLOC_REGION */ if (is_vmalloc_addr(start_addr)) sg_addr = page_to_phys(vmalloc_to_page(start_addr)) + offset_in_page(sg_addr); else sg_addr = __pa(sg_addr); end_addr = sg_addr + len; /* each iteration will write one struct nx_sg element and add the * length of data described by that element to sg_len. Once @len bytes * have been described (or @sgmax elements have been written), the * loop ends. min_t is used to ensure @end_addr falls on the same page * as sg_addr, if not, we need to create another nx_sg element for the * data on the next page. * * Also when using vmalloc'ed data, every time that a system page * boundary is crossed the physical address needs to be re-calculated. */ for (sg = sg_head; sg_len < len; sg++) { u64 next_page; sg->addr = sg_addr; sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE), end_addr); next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE; sg->len = min_t(u64, sg_addr, next_page) - sg->addr; sg_len += sg->len; if (sg_addr >= next_page && is_vmalloc_addr(start_addr + sg_len)) { sg_addr = page_to_phys(vmalloc_to_page( start_addr + sg_len)); end_addr = sg_addr + len - sg_len; } if ((sg - sg_head) == sgmax) { pr_err("nx: scatter/gather list overflow, pid: %d\n", current->pid); return NULL; } } /* return the moved sg_head pointer */ return sg; } /** * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist * * @nx_dst: pointer to the first nx_sg element to write * @sglen: max number of nx_sg entries we're allowed to write * @sg_src: pointer to the source linux scatterlist to walk * @start: number of bytes to fast-forward past at the beginning of @sg_src * @src_len: number of bytes to walk in @sg_src */ struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst, unsigned int sglen, struct scatterlist *sg_src, unsigned int start, unsigned int src_len) { struct scatter_walk walk; struct nx_sg *nx_sg = nx_dst; unsigned int n, offset = 0, len = src_len; char *dst; /* we need to fast forward through @start bytes first */ for (;;) { scatterwalk_start(&walk, sg_src); if (start < offset + sg_src->length) break; offset += sg_src->length; sg_src = scatterwalk_sg_next(sg_src); } /* start - offset is the number of bytes to advance in the scatterlist * element we're currently looking at */ scatterwalk_advance(&walk, start - offset); while (len && nx_sg) { n = scatterwalk_clamp(&walk, len); if (!n) { scatterwalk_start(&walk, sg_next(walk.sg)); n = scatterwalk_clamp(&walk, len); } dst = scatterwalk_map(&walk); nx_sg = nx_build_sg_list(nx_sg, dst, n, sglen); len -= n; scatterwalk_unmap(dst); scatterwalk_advance(&walk, n); scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len); } /* return the moved destination pointer */ return nx_sg; } /** * nx_build_sg_lists - walk the input scatterlists and build arrays of NX * scatterlists based on them. * * @nx_ctx: NX crypto context for the lists we're building * @desc: the block cipher descriptor for the operation * @dst: destination scatterlist * @src: source scatterlist * @nbytes: length of data described in the scatterlists * @iv: destination for the iv data, if the algorithm requires it * * This is common code shared by all the AES algorithms. It uses the block * cipher walk routines to traverse input and output scatterlists, building * corresponding NX scatterlists */ int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx, struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes, u8 *iv) { struct nx_sg *nx_insg = nx_ctx->in_sg; struct nx_sg *nx_outsg = nx_ctx->out_sg; if (iv) memcpy(iv, desc->info, AES_BLOCK_SIZE); nx_insg = nx_walk_and_build(nx_insg, nx_ctx->ap->sglen, src, 0, nbytes); nx_outsg = nx_walk_and_build(nx_outsg, nx_ctx->ap->sglen, dst, 0, nbytes); /* these lengths should be negative, which will indicate to phyp that * the input and output parameters are scatterlists, not linear * buffers */ nx_ctx->op.inlen = (nx_ctx->in_sg - nx_insg) * sizeof(struct nx_sg); nx_ctx->op.outlen = (nx_ctx->out_sg - nx_outsg) * sizeof(struct nx_sg); return 0; } /** * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct * * @nx_ctx: the nx context to initialize * @function: the function code for the op */ void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function) { memset(nx_ctx->kmem, 0, nx_ctx->kmem_len); nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT; nx_ctx->op.flags = function; nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb); nx_ctx->op.in = __pa(nx_ctx->in_sg); nx_ctx->op.out = __pa(nx_ctx->out_sg); if (nx_ctx->csbcpb_aead) { nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT; nx_ctx->op_aead.flags = function; nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead); nx_ctx->op_aead.in = __pa(nx_ctx->in_sg); nx_ctx->op_aead.out = __pa(nx_ctx->out_sg); } } static void nx_of_update_status(struct device *dev, struct property *p, struct nx_of *props) { if (!strncmp(p->value, "okay", p->length)) { props->status = NX_WAITING; props->flags |= NX_OF_FLAG_STATUS_SET; } else { dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__, (char *)p->value); } } static void nx_of_update_sglen(struct device *dev, struct property *p, struct nx_of *props) { if (p->length != sizeof(props->max_sg_len)) { dev_err(dev, "%s: unexpected format for " "ibm,max-sg-len property\n", __func__); dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes " "long, expected %zd bytes\n", __func__, p->length, sizeof(props->max_sg_len)); return; } props->max_sg_len = *(u32 *)p->value; props->flags |= NX_OF_FLAG_MAXSGLEN_SET; } static void nx_of_update_msc(struct device *dev, struct property *p, struct nx_of *props) { struct msc_triplet *trip; struct max_sync_cop *msc; unsigned int bytes_so_far, i, lenp; msc = (struct max_sync_cop *)p->value; lenp = p->length; /* You can't tell if the data read in for this property is sane by its * size alone. This is because there are sizes embedded in the data * structure. The best we can do is check lengths as we parse and bail * as soon as a length error is detected. */ bytes_so_far = 0; while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) { bytes_so_far += sizeof(struct max_sync_cop); trip = msc->trip; for (i = 0; ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) && i < msc->triplets; i++) { if (msc->fc > NX_MAX_FC || msc->mode > NX_MAX_MODE) { dev_err(dev, "unknown function code/mode " "combo: %d/%d (ignored)\n", msc->fc, msc->mode); goto next_loop; } switch (trip->keybitlen) { case 128: case 160: props->ap[msc->fc][msc->mode][0].databytelen = trip->databytelen; props->ap[msc->fc][msc->mode][0].sglen = trip->sglen; break; case 192: props->ap[msc->fc][msc->mode][1].databytelen = trip->databytelen; props->ap[msc->fc][msc->mode][1].sglen = trip->sglen; break; case 256: if (msc->fc == NX_FC_AES) { props->ap[msc->fc][msc->mode][2]. databytelen = trip->databytelen; props->ap[msc->fc][msc->mode][2].sglen = trip->sglen; } else if (msc->fc == NX_FC_AES_HMAC || msc->fc == NX_FC_SHA) { props->ap[msc->fc][msc->mode][1]. databytelen = trip->databytelen; props->ap[msc->fc][msc->mode][1].sglen = trip->sglen; } else { dev_warn(dev, "unknown function " "code/key bit len combo" ": (%u/256)\n", msc->fc); } break; case 512: props->ap[msc->fc][msc->mode][2].databytelen = trip->databytelen; props->ap[msc->fc][msc->mode][2].sglen = trip->sglen; break; default: dev_warn(dev, "unknown function code/key bit " "len combo: (%u/%u)\n", msc->fc, trip->keybitlen); break; } next_loop: bytes_so_far += sizeof(struct msc_triplet); trip++; } msc = (struct max_sync_cop *)trip; } props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET; } /** * nx_of_init - read openFirmware values from the device tree * * @dev: device handle * @props: pointer to struct to hold the properties values * * Called once at driver probe time, this function will read out the * openFirmware properties we use at runtime. If all the OF properties are * acceptable, when we exit this function props->flags will indicate that * we're ready to register our crypto algorithms. */ static void nx_of_init(struct device *dev, struct nx_of *props) { struct device_node *base_node = dev->of_node; struct property *p; p = of_find_property(base_node, "status", NULL); if (!p) dev_info(dev, "%s: property 'status' not found\n", __func__); else nx_of_update_status(dev, p, props); p = of_find_property(base_node, "ibm,max-sg-len", NULL); if (!p) dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n", __func__); else nx_of_update_sglen(dev, p, props); p = of_find_property(base_node, "ibm,max-sync-cop", NULL); if (!p) dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n", __func__); else nx_of_update_msc(dev, p, props); } /** * nx_register_algs - register algorithms with the crypto API * * Called from nx_probe() * * If all OF properties are in an acceptable state, the driver flags will * indicate that we're ready and we'll create our debugfs files and register * out crypto algorithms. */ static int nx_register_algs(void) { int rc = -1; if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY) goto out; memset(&nx_driver.stats, 0, sizeof(struct nx_stats)); rc = NX_DEBUGFS_INIT(&nx_driver); if (rc) goto out; nx_driver.of.status = NX_OKAY; rc = crypto_register_alg(&nx_ecb_aes_alg); if (rc) goto out; rc = crypto_register_alg(&nx_cbc_aes_alg); if (rc) goto out_unreg_ecb; rc = crypto_register_alg(&nx_ctr_aes_alg); if (rc) goto out_unreg_cbc; rc = crypto_register_alg(&nx_ctr3686_aes_alg); if (rc) goto out_unreg_ctr; rc = crypto_register_alg(&nx_gcm_aes_alg); if (rc) goto out_unreg_ctr3686; rc = crypto_register_alg(&nx_gcm4106_aes_alg); if (rc) goto out_unreg_gcm; rc = crypto_register_alg(&nx_ccm_aes_alg); if (rc) goto out_unreg_gcm4106; rc = crypto_register_alg(&nx_ccm4309_aes_alg); if (rc) goto out_unreg_ccm; rc = crypto_register_shash(&nx_shash_sha256_alg); if (rc) goto out_unreg_ccm4309; rc = crypto_register_shash(&nx_shash_sha512_alg); if (rc) goto out_unreg_s256; rc = crypto_register_shash(&nx_shash_aes_xcbc_alg); if (rc) goto out_unreg_s512; goto out; out_unreg_s512: crypto_unregister_shash(&nx_shash_sha512_alg); out_unreg_s256: crypto_unregister_shash(&nx_shash_sha256_alg); out_unreg_ccm4309: crypto_unregister_alg(&nx_ccm4309_aes_alg); out_unreg_ccm: crypto_unregister_alg(&nx_ccm_aes_alg); out_unreg_gcm4106: crypto_unregister_alg(&nx_gcm4106_aes_alg); out_unreg_gcm: crypto_unregister_alg(&nx_gcm_aes_alg); out_unreg_ctr3686: crypto_unregister_alg(&nx_ctr3686_aes_alg); out_unreg_ctr: crypto_unregister_alg(&nx_ctr_aes_alg); out_unreg_cbc: crypto_unregister_alg(&nx_cbc_aes_alg); out_unreg_ecb: crypto_unregister_alg(&nx_ecb_aes_alg); out: return rc; } /** * nx_crypto_ctx_init - create and initialize a crypto api context * * @nx_ctx: the crypto api context * @fc: function code for the context * @mode: the function code specific mode for this context */ static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode) { if (nx_driver.of.status != NX_OKAY) { pr_err("Attempt to initialize NX crypto context while device " "is not available!\n"); return -ENODEV; } /* we need an extra page for csbcpb_aead for these modes */ if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) + sizeof(struct nx_csbcpb); else nx_ctx->kmem_len = (3 * NX_PAGE_SIZE) + sizeof(struct nx_csbcpb); nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL); if (!nx_ctx->kmem) return -ENOMEM; /* the csbcpb and scatterlists must be 4K aligned pages */ nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem, (u64)NX_PAGE_SIZE)); nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE); nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE); if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) nx_ctx->csbcpb_aead = (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg + NX_PAGE_SIZE); /* give each context a pointer to global stats and their OF * properties */ nx_ctx->stats = &nx_driver.stats; memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode], sizeof(struct alg_props) * 3); return 0; } /* entry points from the crypto tfm initializers */ int nx_crypto_ctx_aes_ccm_init(struct crypto_tfm *tfm) { return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, NX_MODE_AES_CCM); } int nx_crypto_ctx_aes_gcm_init(struct crypto_tfm *tfm) { return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, NX_MODE_AES_GCM); } int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm) { return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, NX_MODE_AES_CTR); } int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm) { return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, NX_MODE_AES_CBC); } int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm) { return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, NX_MODE_AES_ECB); } int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm) { return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA); } int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm) { return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, NX_MODE_AES_XCBC_MAC); } /** * nx_crypto_ctx_exit - destroy a crypto api context * * @tfm: the crypto transform pointer for the context * * As crypto API contexts are destroyed, this exit hook is called to free the * memory associated with it. */ void nx_crypto_ctx_exit(struct crypto_tfm *tfm) { struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm); kzfree(nx_ctx->kmem); nx_ctx->csbcpb = NULL; nx_ctx->csbcpb_aead = NULL; nx_ctx->in_sg = NULL; nx_ctx->out_sg = NULL; } static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id) { dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n", viodev->name, viodev->resource_id); if (nx_driver.viodev) { dev_err(&viodev->dev, "%s: Attempt to register more than one " "instance of the hardware\n", __func__); return -EINVAL; } nx_driver.viodev = viodev; nx_of_init(&viodev->dev, &nx_driver.of); return nx_register_algs(); } static int nx_remove(struct vio_dev *viodev) { dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n", viodev->unit_address); if (nx_driver.of.status == NX_OKAY) { NX_DEBUGFS_FINI(&nx_driver); crypto_unregister_alg(&nx_ccm_aes_alg); crypto_unregister_alg(&nx_ccm4309_aes_alg); crypto_unregister_alg(&nx_gcm_aes_alg); crypto_unregister_alg(&nx_gcm4106_aes_alg); crypto_unregister_alg(&nx_ctr_aes_alg); crypto_unregister_alg(&nx_ctr3686_aes_alg); crypto_unregister_alg(&nx_cbc_aes_alg); crypto_unregister_alg(&nx_ecb_aes_alg); crypto_unregister_shash(&nx_shash_sha256_alg); crypto_unregister_shash(&nx_shash_sha512_alg); crypto_unregister_shash(&nx_shash_aes_xcbc_alg); } return 0; } /* module wide initialization/cleanup */ static int __init nx_init(void) { return vio_register_driver(&nx_driver.viodriver); } static void __exit nx_fini(void) { vio_unregister_driver(&nx_driver.viodriver); } static struct vio_device_id nx_crypto_driver_ids[] = { { "ibm,sym-encryption-v1", "ibm,sym-encryption" }, { "", "" } }; MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids); /* driver state structure */ struct nx_crypto_driver nx_driver = { .viodriver = { .id_table = nx_crypto_driver_ids, .probe = nx_probe, .remove = nx_remove, .name = NX_NAME, }, }; module_init(nx_init); module_exit(nx_fini); MODULE_AUTHOR("Kent Yoder "); MODULE_DESCRIPTION(NX_STRING); MODULE_LICENSE("GPL"); MODULE_VERSION(NX_VERSION);