/* * Copyright 2017 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Rafał Miłecki * Alex Deucher */ #include #include "amdgpu.h" #include "amdgpu_drv.h" #include "amdgpu_pm.h" #include "amdgpu_dpm.h" #include "atom.h" #include #include #include static int amdgpu_debugfs_pm_init(struct amdgpu_device *adev); static const struct cg_flag_name clocks[] = { {AMD_CG_SUPPORT_GFX_MGCG, "Graphics Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_MGLS, "Graphics Medium Grain memory Light Sleep"}, {AMD_CG_SUPPORT_GFX_CGCG, "Graphics Coarse Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_CGLS, "Graphics Coarse Grain memory Light Sleep"}, {AMD_CG_SUPPORT_GFX_CGTS, "Graphics Coarse Grain Tree Shader Clock Gating"}, {AMD_CG_SUPPORT_GFX_CGTS_LS, "Graphics Coarse Grain Tree Shader Light Sleep"}, {AMD_CG_SUPPORT_GFX_CP_LS, "Graphics Command Processor Light Sleep"}, {AMD_CG_SUPPORT_GFX_RLC_LS, "Graphics Run List Controller Light Sleep"}, {AMD_CG_SUPPORT_GFX_3D_CGCG, "Graphics 3D Coarse Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_3D_CGLS, "Graphics 3D Coarse Grain memory Light Sleep"}, {AMD_CG_SUPPORT_MC_LS, "Memory Controller Light Sleep"}, {AMD_CG_SUPPORT_MC_MGCG, "Memory Controller Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_SDMA_LS, "System Direct Memory Access Light Sleep"}, {AMD_CG_SUPPORT_SDMA_MGCG, "System Direct Memory Access Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_BIF_MGCG, "Bus Interface Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_BIF_LS, "Bus Interface Light Sleep"}, {AMD_CG_SUPPORT_UVD_MGCG, "Unified Video Decoder Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_VCE_MGCG, "Video Compression Engine Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_HDP_LS, "Host Data Path Light Sleep"}, {AMD_CG_SUPPORT_HDP_MGCG, "Host Data Path Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_DRM_MGCG, "Digital Right Management Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_DRM_LS, "Digital Right Management Light Sleep"}, {AMD_CG_SUPPORT_ROM_MGCG, "Rom Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_DF_MGCG, "Data Fabric Medium Grain Clock Gating"}, {0, NULL}, }; void amdgpu_pm_acpi_event_handler(struct amdgpu_device *adev) { if (adev->pm.dpm_enabled) { mutex_lock(&adev->pm.mutex); if (power_supply_is_system_supplied() > 0) adev->pm.dpm.ac_power = true; else adev->pm.dpm.ac_power = false; if (adev->powerplay.pp_funcs->enable_bapm) amdgpu_dpm_enable_bapm(adev, adev->pm.dpm.ac_power); mutex_unlock(&adev->pm.mutex); } } static ssize_t amdgpu_get_dpm_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; enum amd_pm_state_type pm; if (adev->powerplay.pp_funcs->get_current_power_state) pm = amdgpu_dpm_get_current_power_state(adev); else pm = adev->pm.dpm.user_state; return snprintf(buf, PAGE_SIZE, "%s\n", (pm == POWER_STATE_TYPE_BATTERY) ? "battery" : (pm == POWER_STATE_TYPE_BALANCED) ? "balanced" : "performance"); } static ssize_t amdgpu_set_dpm_state(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; enum amd_pm_state_type state; if (strncmp("battery", buf, strlen("battery")) == 0) state = POWER_STATE_TYPE_BATTERY; else if (strncmp("balanced", buf, strlen("balanced")) == 0) state = POWER_STATE_TYPE_BALANCED; else if (strncmp("performance", buf, strlen("performance")) == 0) state = POWER_STATE_TYPE_PERFORMANCE; else { count = -EINVAL; goto fail; } if (adev->powerplay.pp_funcs->dispatch_tasks) { amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_ENABLE_USER_STATE, &state); } else { mutex_lock(&adev->pm.mutex); adev->pm.dpm.user_state = state; mutex_unlock(&adev->pm.mutex); /* Can't set dpm state when the card is off */ if (!(adev->flags & AMD_IS_PX) || (ddev->switch_power_state == DRM_SWITCH_POWER_ON)) amdgpu_pm_compute_clocks(adev); } fail: return count; } static ssize_t amdgpu_get_dpm_forced_performance_level(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; enum amd_dpm_forced_level level = 0xff; if ((adev->flags & AMD_IS_PX) && (ddev->switch_power_state != DRM_SWITCH_POWER_ON)) return snprintf(buf, PAGE_SIZE, "off\n"); if (adev->powerplay.pp_funcs->get_performance_level) level = amdgpu_dpm_get_performance_level(adev); else level = adev->pm.dpm.forced_level; return snprintf(buf, PAGE_SIZE, "%s\n", (level == AMD_DPM_FORCED_LEVEL_AUTO) ? "auto" : (level == AMD_DPM_FORCED_LEVEL_LOW) ? "low" : (level == AMD_DPM_FORCED_LEVEL_HIGH) ? "high" : (level == AMD_DPM_FORCED_LEVEL_MANUAL) ? "manual" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD) ? "profile_standard" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) ? "profile_min_sclk" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) ? "profile_min_mclk" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) ? "profile_peak" : "unknown"); } static ssize_t amdgpu_set_dpm_forced_performance_level(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; enum amd_dpm_forced_level level; enum amd_dpm_forced_level current_level = 0xff; int ret = 0; /* Can't force performance level when the card is off */ if ((adev->flags & AMD_IS_PX) && (ddev->switch_power_state != DRM_SWITCH_POWER_ON)) return -EINVAL; if (adev->powerplay.pp_funcs->get_performance_level) current_level = amdgpu_dpm_get_performance_level(adev); if (strncmp("low", buf, strlen("low")) == 0) { level = AMD_DPM_FORCED_LEVEL_LOW; } else if (strncmp("high", buf, strlen("high")) == 0) { level = AMD_DPM_FORCED_LEVEL_HIGH; } else if (strncmp("auto", buf, strlen("auto")) == 0) { level = AMD_DPM_FORCED_LEVEL_AUTO; } else if (strncmp("manual", buf, strlen("manual")) == 0) { level = AMD_DPM_FORCED_LEVEL_MANUAL; } else if (strncmp("profile_exit", buf, strlen("profile_exit")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_EXIT; } else if (strncmp("profile_standard", buf, strlen("profile_standard")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD; } else if (strncmp("profile_min_sclk", buf, strlen("profile_min_sclk")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK; } else if (strncmp("profile_min_mclk", buf, strlen("profile_min_mclk")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK; } else if (strncmp("profile_peak", buf, strlen("profile_peak")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; } else { count = -EINVAL; goto fail; } if (current_level == level) return count; if (adev->powerplay.pp_funcs->force_performance_level) { mutex_lock(&adev->pm.mutex); if (adev->pm.dpm.thermal_active) { count = -EINVAL; mutex_unlock(&adev->pm.mutex); goto fail; } ret = amdgpu_dpm_force_performance_level(adev, level); if (ret) count = -EINVAL; else adev->pm.dpm.forced_level = level; mutex_unlock(&adev->pm.mutex); } fail: return count; } static ssize_t amdgpu_get_pp_num_states(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; struct pp_states_info data; int i, buf_len; if (adev->powerplay.pp_funcs->get_pp_num_states) amdgpu_dpm_get_pp_num_states(adev, &data); buf_len = snprintf(buf, PAGE_SIZE, "states: %d\n", data.nums); for (i = 0; i < data.nums; i++) buf_len += snprintf(buf + buf_len, PAGE_SIZE, "%d %s\n", i, (data.states[i] == POWER_STATE_TYPE_INTERNAL_BOOT) ? "boot" : (data.states[i] == POWER_STATE_TYPE_BATTERY) ? "battery" : (data.states[i] == POWER_STATE_TYPE_BALANCED) ? "balanced" : (data.states[i] == POWER_STATE_TYPE_PERFORMANCE) ? "performance" : "default"); return buf_len; } static ssize_t amdgpu_get_pp_cur_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; struct pp_states_info data; enum amd_pm_state_type pm = 0; int i = 0; if (adev->powerplay.pp_funcs->get_current_power_state && adev->powerplay.pp_funcs->get_pp_num_states) { pm = amdgpu_dpm_get_current_power_state(adev); amdgpu_dpm_get_pp_num_states(adev, &data); for (i = 0; i < data.nums; i++) { if (pm == data.states[i]) break; } if (i == data.nums) i = -EINVAL; } return snprintf(buf, PAGE_SIZE, "%d\n", i); } static ssize_t amdgpu_get_pp_force_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; if (adev->pp_force_state_enabled) return amdgpu_get_pp_cur_state(dev, attr, buf); else return snprintf(buf, PAGE_SIZE, "\n"); } static ssize_t amdgpu_set_pp_force_state(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; enum amd_pm_state_type state = 0; unsigned long idx; int ret; if (strlen(buf) == 1) adev->pp_force_state_enabled = false; else if (adev->powerplay.pp_funcs->dispatch_tasks && adev->powerplay.pp_funcs->get_pp_num_states) { struct pp_states_info data; ret = kstrtoul(buf, 0, &idx); if (ret || idx >= ARRAY_SIZE(data.states)) { count = -EINVAL; goto fail; } amdgpu_dpm_get_pp_num_states(adev, &data); state = data.states[idx]; /* only set user selected power states */ if (state != POWER_STATE_TYPE_INTERNAL_BOOT && state != POWER_STATE_TYPE_DEFAULT) { amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_ENABLE_USER_STATE, &state); adev->pp_force_state_enabled = true; } } fail: return count; } static ssize_t amdgpu_get_pp_table(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; char *table = NULL; int size; if (adev->powerplay.pp_funcs->get_pp_table) size = amdgpu_dpm_get_pp_table(adev, &table); else return 0; if (size >= PAGE_SIZE) size = PAGE_SIZE - 1; memcpy(buf, table, size); return size; } static ssize_t amdgpu_set_pp_table(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; if (adev->powerplay.pp_funcs->set_pp_table) amdgpu_dpm_set_pp_table(adev, buf, count); return count; } static ssize_t amdgpu_set_pp_od_clk_voltage(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret; uint32_t parameter_size = 0; long parameter[64]; char buf_cpy[128]; char *tmp_str; char *sub_str; const char delimiter[3] = {' ', '\n', '\0'}; uint32_t type; if (count > 127) return -EINVAL; if (*buf == 's') type = PP_OD_EDIT_SCLK_VDDC_TABLE; else if (*buf == 'm') type = PP_OD_EDIT_MCLK_VDDC_TABLE; else if(*buf == 'r') type = PP_OD_RESTORE_DEFAULT_TABLE; else if (*buf == 'c') type = PP_OD_COMMIT_DPM_TABLE; else return -EINVAL; memcpy(buf_cpy, buf, count+1); tmp_str = buf_cpy; while (isspace(*++tmp_str)); while (tmp_str[0]) { sub_str = strsep(&tmp_str, delimiter); ret = kstrtol(sub_str, 0, ¶meter[parameter_size]); if (ret) return -EINVAL; parameter_size++; while (isspace(*tmp_str)) tmp_str++; } if (adev->powerplay.pp_funcs->odn_edit_dpm_table) ret = amdgpu_dpm_odn_edit_dpm_table(adev, type, parameter, parameter_size); if (ret) return -EINVAL; if (type == PP_OD_COMMIT_DPM_TABLE) { if (adev->powerplay.pp_funcs->dispatch_tasks) { amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL); return count; } else { return -EINVAL; } } return count; } static ssize_t amdgpu_get_pp_od_clk_voltage(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; uint32_t size = 0; if (adev->powerplay.pp_funcs->print_clock_levels) { size = amdgpu_dpm_print_clock_levels(adev, OD_SCLK, buf); size += amdgpu_dpm_print_clock_levels(adev, OD_MCLK, buf+size); return size; } else { return snprintf(buf, PAGE_SIZE, "\n"); } } static ssize_t amdgpu_get_pp_dpm_sclk(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; if (adev->powerplay.pp_funcs->print_clock_levels) return amdgpu_dpm_print_clock_levels(adev, PP_SCLK, buf); else return snprintf(buf, PAGE_SIZE, "\n"); } static ssize_t amdgpu_set_pp_dpm_sclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret; long level; uint32_t i, mask = 0; char sub_str[2]; for (i = 0; i < strlen(buf); i++) { if (*(buf + i) == '\n') continue; sub_str[0] = *(buf + i); sub_str[1] = '\0'; ret = kstrtol(sub_str, 0, &level); if (ret) { count = -EINVAL; goto fail; } mask |= 1 << level; } if (adev->powerplay.pp_funcs->force_clock_level) amdgpu_dpm_force_clock_level(adev, PP_SCLK, mask); fail: return count; } static ssize_t amdgpu_get_pp_dpm_mclk(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; if (adev->powerplay.pp_funcs->print_clock_levels) return amdgpu_dpm_print_clock_levels(adev, PP_MCLK, buf); else return snprintf(buf, PAGE_SIZE, "\n"); } static ssize_t amdgpu_set_pp_dpm_mclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret; long level; uint32_t i, mask = 0; char sub_str[2]; for (i = 0; i < strlen(buf); i++) { if (*(buf + i) == '\n') continue; sub_str[0] = *(buf + i); sub_str[1] = '\0'; ret = kstrtol(sub_str, 0, &level); if (ret) { count = -EINVAL; goto fail; } mask |= 1 << level; } if (adev->powerplay.pp_funcs->force_clock_level) amdgpu_dpm_force_clock_level(adev, PP_MCLK, mask); fail: return count; } static ssize_t amdgpu_get_pp_dpm_pcie(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; if (adev->powerplay.pp_funcs->print_clock_levels) return amdgpu_dpm_print_clock_levels(adev, PP_PCIE, buf); else return snprintf(buf, PAGE_SIZE, "\n"); } static ssize_t amdgpu_set_pp_dpm_pcie(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret; long level; uint32_t i, mask = 0; char sub_str[2]; for (i = 0; i < strlen(buf); i++) { if (*(buf + i) == '\n') continue; sub_str[0] = *(buf + i); sub_str[1] = '\0'; ret = kstrtol(sub_str, 0, &level); if (ret) { count = -EINVAL; goto fail; } mask |= 1 << level; } if (adev->powerplay.pp_funcs->force_clock_level) amdgpu_dpm_force_clock_level(adev, PP_PCIE, mask); fail: return count; } static ssize_t amdgpu_get_pp_sclk_od(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; uint32_t value = 0; if (adev->powerplay.pp_funcs->get_sclk_od) value = amdgpu_dpm_get_sclk_od(adev); return snprintf(buf, PAGE_SIZE, "%d\n", value); } static ssize_t amdgpu_set_pp_sclk_od(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret; long int value; ret = kstrtol(buf, 0, &value); if (ret) { count = -EINVAL; goto fail; } if (adev->powerplay.pp_funcs->set_sclk_od) amdgpu_dpm_set_sclk_od(adev, (uint32_t)value); if (adev->powerplay.pp_funcs->dispatch_tasks) { amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL); } else { adev->pm.dpm.current_ps = adev->pm.dpm.boot_ps; amdgpu_pm_compute_clocks(adev); } fail: return count; } static ssize_t amdgpu_get_pp_mclk_od(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; uint32_t value = 0; if (adev->powerplay.pp_funcs->get_mclk_od) value = amdgpu_dpm_get_mclk_od(adev); return snprintf(buf, PAGE_SIZE, "%d\n", value); } static ssize_t amdgpu_set_pp_mclk_od(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret; long int value; ret = kstrtol(buf, 0, &value); if (ret) { count = -EINVAL; goto fail; } if (adev->powerplay.pp_funcs->set_mclk_od) amdgpu_dpm_set_mclk_od(adev, (uint32_t)value); if (adev->powerplay.pp_funcs->dispatch_tasks) { amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL); } else { adev->pm.dpm.current_ps = adev->pm.dpm.boot_ps; amdgpu_pm_compute_clocks(adev); } fail: return count; } static ssize_t amdgpu_get_pp_power_profile_mode(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; if (adev->powerplay.pp_funcs->get_power_profile_mode) return amdgpu_dpm_get_power_profile_mode(adev, buf); return snprintf(buf, PAGE_SIZE, "\n"); } static ssize_t amdgpu_set_pp_power_profile_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret = 0xff; struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; uint32_t parameter_size = 0; long parameter[64]; char *sub_str, buf_cpy[128]; char *tmp_str; uint32_t i = 0; char tmp[2]; long int profile_mode = 0; const char delimiter[3] = {' ', '\n', '\0'}; tmp[0] = *(buf); tmp[1] = '\0'; ret = kstrtol(tmp, 0, &profile_mode); if (ret) goto fail; if (profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { if (count < 2 || count > 127) return -EINVAL; while (isspace(*++buf)) i++; memcpy(buf_cpy, buf, count-i); tmp_str = buf_cpy; while (tmp_str[0]) { sub_str = strsep(&tmp_str, delimiter); ret = kstrtol(sub_str, 0, ¶meter[parameter_size]); if (ret) { count = -EINVAL; goto fail; } pr_info("value is %ld \n", parameter[parameter_size]); parameter_size++; while (isspace(*tmp_str)) tmp_str++; } } parameter[parameter_size] = profile_mode; if (adev->powerplay.pp_funcs->set_power_profile_mode) ret = amdgpu_dpm_set_power_profile_mode(adev, parameter, parameter_size); if (!ret) return count; fail: return -EINVAL; } static ssize_t amdgpu_get_pp_power_profile(struct device *dev, char *buf, struct amd_pp_profile *query) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; int ret = 0xff; if (adev->powerplay.pp_funcs->get_power_profile_state) ret = amdgpu_dpm_get_power_profile_state( adev, query); if (ret) return ret; return snprintf(buf, PAGE_SIZE, "%d %d %d %d %d\n", query->min_sclk / 100, query->min_mclk / 100, query->activity_threshold, query->up_hyst, query->down_hyst); } static ssize_t amdgpu_get_pp_gfx_power_profile(struct device *dev, struct device_attribute *attr, char *buf) { struct amd_pp_profile query = {0}; query.type = AMD_PP_GFX_PROFILE; return amdgpu_get_pp_power_profile(dev, buf, &query); } static ssize_t amdgpu_get_pp_compute_power_profile(struct device *dev, struct device_attribute *attr, char *buf) { struct amd_pp_profile query = {0}; query.type = AMD_PP_COMPUTE_PROFILE; return amdgpu_get_pp_power_profile(dev, buf, &query); } static ssize_t amdgpu_set_pp_power_profile(struct device *dev, const char *buf, size_t count, struct amd_pp_profile *request) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = ddev->dev_private; uint32_t loop = 0; char *sub_str, buf_cpy[128], *tmp_str; const char delimiter[3] = {' ', '\n', '\0'}; long int value; int ret = 0xff; if (strncmp("reset", buf, strlen("reset")) == 0) { if (adev->powerplay.pp_funcs->reset_power_profile_state) ret = amdgpu_dpm_reset_power_profile_state( adev, request); if (ret) { count = -EINVAL; goto fail; } return count; } if (strncmp("set", buf, strlen("set")) == 0) { if (adev->powerplay.pp_funcs->set_power_profile_state) ret = amdgpu_dpm_set_power_profile_state( adev, request); if (ret) { count = -EINVAL; goto fail; } return count; } if (count + 1 >= 128) { count = -EINVAL; goto fail; } memcpy(buf_cpy, buf, count + 1); tmp_str = buf_cpy; while (tmp_str[0]) { sub_str = strsep(&tmp_str, delimiter); ret = kstrtol(sub_str, 0, &value); if (ret) { count = -EINVAL; goto fail; } switch (loop) { case 0: /* input unit MHz convert to dpm table unit 10KHz*/ request->min_sclk = (uint32_t)value * 100; break; case 1: /* input unit MHz convert to dpm table unit 10KHz*/ request->min_mclk = (uint32_t)value * 100; break; case 2: request->activity_threshold = (uint16_t)value; break; case 3: request->up_hyst = (uint8_t)value; break; case 4: request->down_hyst = (uint8_t)value; break; default: break; } loop++; } if (adev->powerplay.pp_funcs->set_power_profile_state) ret = amdgpu_dpm_set_power_profile_state(adev, request); if (ret) count = -EINVAL; fail: return count; } static ssize_t amdgpu_set_pp_gfx_power_profile(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amd_pp_profile request = {0}; request.type = AMD_PP_GFX_PROFILE; return amdgpu_set_pp_power_profile(dev, buf, count, &request); } static ssize_t amdgpu_set_pp_compute_power_profile(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amd_pp_profile request = {0}; request.type = AMD_PP_COMPUTE_PROFILE; return amdgpu_set_pp_power_profile(dev, buf, count, &request); } static DEVICE_ATTR(power_dpm_state, S_IRUGO | S_IWUSR, amdgpu_get_dpm_state, amdgpu_set_dpm_state); static DEVICE_ATTR(power_dpm_force_performance_level, S_IRUGO | S_IWUSR, amdgpu_get_dpm_forced_performance_level, amdgpu_set_dpm_forced_performance_level); static DEVICE_ATTR(pp_num_states, S_IRUGO, amdgpu_get_pp_num_states, NULL); static DEVICE_ATTR(pp_cur_state, S_IRUGO, amdgpu_get_pp_cur_state, NULL); static DEVICE_ATTR(pp_force_state, S_IRUGO | S_IWUSR, amdgpu_get_pp_force_state, amdgpu_set_pp_force_state); static DEVICE_ATTR(pp_table, S_IRUGO | S_IWUSR, amdgpu_get_pp_table, amdgpu_set_pp_table); static DEVICE_ATTR(pp_dpm_sclk, S_IRUGO | S_IWUSR, amdgpu_get_pp_dpm_sclk, amdgpu_set_pp_dpm_sclk); static DEVICE_ATTR(pp_dpm_mclk, S_IRUGO | S_IWUSR, amdgpu_get_pp_dpm_mclk, amdgpu_set_pp_dpm_mclk); static DEVICE_ATTR(pp_dpm_pcie, S_IRUGO | S_IWUSR, amdgpu_get_pp_dpm_pcie, amdgpu_set_pp_dpm_pcie); static DEVICE_ATTR(pp_sclk_od, S_IRUGO | S_IWUSR, amdgpu_get_pp_sclk_od, amdgpu_set_pp_sclk_od); static DEVICE_ATTR(pp_mclk_od, S_IRUGO | S_IWUSR, amdgpu_get_pp_mclk_od, amdgpu_set_pp_mclk_od); static DEVICE_ATTR(pp_gfx_power_profile, S_IRUGO | S_IWUSR, amdgpu_get_pp_gfx_power_profile, amdgpu_set_pp_gfx_power_profile); static DEVICE_ATTR(pp_compute_power_profile, S_IRUGO | S_IWUSR, amdgpu_get_pp_compute_power_profile, amdgpu_set_pp_compute_power_profile); static DEVICE_ATTR(pp_power_profile_mode, S_IRUGO | S_IWUSR, amdgpu_get_pp_power_profile_mode, amdgpu_set_pp_power_profile_mode); static DEVICE_ATTR(pp_od_clk_voltage, S_IRUGO | S_IWUSR, amdgpu_get_pp_od_clk_voltage, amdgpu_set_pp_od_clk_voltage); static ssize_t amdgpu_hwmon_show_temp(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); struct drm_device *ddev = adev->ddev; int temp; /* Can't get temperature when the card is off */ if ((adev->flags & AMD_IS_PX) && (ddev->switch_power_state != DRM_SWITCH_POWER_ON)) return -EINVAL; if (!adev->powerplay.pp_funcs->get_temperature) temp = 0; else temp = amdgpu_dpm_get_temperature(adev); return snprintf(buf, PAGE_SIZE, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_temp_thresh(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int hyst = to_sensor_dev_attr(attr)->index; int temp; if (hyst) temp = adev->pm.dpm.thermal.min_temp; else temp = adev->pm.dpm.thermal.max_temp; return snprintf(buf, PAGE_SIZE, "%d\n", temp); } static ssize_t amdgpu_hwmon_get_pwm1_enable(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 pwm_mode = 0; if (!adev->powerplay.pp_funcs->get_fan_control_mode) return -EINVAL; pwm_mode = amdgpu_dpm_get_fan_control_mode(adev); return sprintf(buf, "%i\n", pwm_mode); } static ssize_t amdgpu_hwmon_set_pwm1_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; int value; /* Can't adjust fan when the card is off */ if ((adev->flags & AMD_IS_PX) && (adev->ddev->switch_power_state != DRM_SWITCH_POWER_ON)) return -EINVAL; if (!adev->powerplay.pp_funcs->set_fan_control_mode) return -EINVAL; err = kstrtoint(buf, 10, &value); if (err) return err; amdgpu_dpm_set_fan_control_mode(adev, value); return count; } static ssize_t amdgpu_hwmon_get_pwm1_min(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%i\n", 0); } static ssize_t amdgpu_hwmon_get_pwm1_max(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%i\n", 255); } static ssize_t amdgpu_hwmon_set_pwm1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 value; /* Can't adjust fan when the card is off */ if ((adev->flags & AMD_IS_PX) && (adev->ddev->switch_power_state != DRM_SWITCH_POWER_ON)) return -EINVAL; err = kstrtou32(buf, 10, &value); if (err) return err; value = (value * 100) / 255; if (adev->powerplay.pp_funcs->set_fan_speed_percent) { err = amdgpu_dpm_set_fan_speed_percent(adev, value); if (err) return err; } return count; } static ssize_t amdgpu_hwmon_get_pwm1(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 speed = 0; /* Can't adjust fan when the card is off */ if ((adev->flags & AMD_IS_PX) && (adev->ddev->switch_power_state != DRM_SWITCH_POWER_ON)) return -EINVAL; if (adev->powerplay.pp_funcs->get_fan_speed_percent) { err = amdgpu_dpm_get_fan_speed_percent(adev, &speed); if (err) return err; } speed = (speed * 255) / 100; return sprintf(buf, "%i\n", speed); } static ssize_t amdgpu_hwmon_get_fan1_input(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 speed = 0; /* Can't adjust fan when the card is off */ if ((adev->flags & AMD_IS_PX) && (adev->ddev->switch_power_state != DRM_SWITCH_POWER_ON)) return -EINVAL; if (adev->powerplay.pp_funcs->get_fan_speed_rpm) { err = amdgpu_dpm_get_fan_speed_rpm(adev, &speed); if (err) return err; } return sprintf(buf, "%i\n", speed); } static ssize_t amdgpu_hwmon_show_vddgfx(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); struct drm_device *ddev = adev->ddev; u32 vddgfx; int r, size = sizeof(vddgfx); /* Can't get voltage when the card is off */ if ((adev->flags & AMD_IS_PX) && (ddev->switch_power_state != DRM_SWITCH_POWER_ON)) return -EINVAL; /* sanity check PP is enabled */ if (!(adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->read_sensor)) return -EINVAL; /* get the voltage */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX, (void *)&vddgfx, &size); if (r) return r; return snprintf(buf, PAGE_SIZE, "%d\n", vddgfx); } static ssize_t amdgpu_hwmon_show_vddgfx_label(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "vddgfx\n"); } static ssize_t amdgpu_hwmon_show_vddnb(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); struct drm_device *ddev = adev->ddev; u32 vddnb; int r, size = sizeof(vddnb); /* only APUs have vddnb */ if (adev->flags & AMD_IS_APU) return -EINVAL; /* Can't get voltage when the card is off */ if ((adev->flags & AMD_IS_PX) && (ddev->switch_power_state != DRM_SWITCH_POWER_ON)) return -EINVAL; /* sanity check PP is enabled */ if (!(adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->read_sensor)) return -EINVAL; /* get the voltage */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB, (void *)&vddnb, &size); if (r) return r; return snprintf(buf, PAGE_SIZE, "%d\n", vddnb); } static ssize_t amdgpu_hwmon_show_vddnb_label(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "vddnb\n"); } static ssize_t amdgpu_hwmon_show_power_avg(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); struct drm_device *ddev = adev->ddev; struct pp_gpu_power query = {0}; int r, size = sizeof(query); unsigned uw; /* Can't get power when the card is off */ if ((adev->flags & AMD_IS_PX) && (ddev->switch_power_state != DRM_SWITCH_POWER_ON)) return -EINVAL; /* sanity check PP is enabled */ if (!(adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->read_sensor)) return -EINVAL; /* get the voltage */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_POWER, (void *)&query, &size); if (r) return r; /* convert to microwatts */ uw = (query.average_gpu_power >> 8) * 1000000; return snprintf(buf, PAGE_SIZE, "%u\n", uw); } static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, 0); static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 0); static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 1); static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1, amdgpu_hwmon_set_pwm1, 0); static SENSOR_DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1_enable, amdgpu_hwmon_set_pwm1_enable, 0); static SENSOR_DEVICE_ATTR(pwm1_min, S_IRUGO, amdgpu_hwmon_get_pwm1_min, NULL, 0); static SENSOR_DEVICE_ATTR(pwm1_max, S_IRUGO, amdgpu_hwmon_get_pwm1_max, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, amdgpu_hwmon_get_fan1_input, NULL, 0); static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, amdgpu_hwmon_show_vddgfx, NULL, 0); static SENSOR_DEVICE_ATTR(in0_label, S_IRUGO, amdgpu_hwmon_show_vddgfx_label, NULL, 0); static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, amdgpu_hwmon_show_vddnb, NULL, 0); static SENSOR_DEVICE_ATTR(in1_label, S_IRUGO, amdgpu_hwmon_show_vddnb_label, NULL, 0); static SENSOR_DEVICE_ATTR(power1_average, S_IRUGO, amdgpu_hwmon_show_power_avg, NULL, 0); static struct attribute *hwmon_attributes[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm1_min.dev_attr.attr, &sensor_dev_attr_pwm1_max.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_label.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_label.dev_attr.attr, &sensor_dev_attr_power1_average.dev_attr.attr, NULL }; static umode_t hwmon_attributes_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = kobj_to_dev(kobj); struct amdgpu_device *adev = dev_get_drvdata(dev); umode_t effective_mode = attr->mode; /* no skipping for powerplay */ if (adev->powerplay.cgs_device) return effective_mode; /* Skip limit attributes if DPM is not enabled */ if (!adev->pm.dpm_enabled && (attr == &sensor_dev_attr_temp1_crit.dev_attr.attr || attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr || attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr)) return 0; /* Skip fan attributes if fan is not present */ if (adev->pm.no_fan && (attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr)) return 0; /* mask fan attributes if we have no bindings for this asic to expose */ if ((!adev->powerplay.pp_funcs->get_fan_speed_percent && attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't query fan */ (!adev->powerplay.pp_funcs->get_fan_control_mode && attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't query state */ effective_mode &= ~S_IRUGO; if ((!adev->powerplay.pp_funcs->set_fan_speed_percent && attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't manage fan */ (!adev->powerplay.pp_funcs->set_fan_control_mode && attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't manage state */ effective_mode &= ~S_IWUSR; /* hide max/min values if we can't both query and manage the fan */ if ((!adev->powerplay.pp_funcs->set_fan_speed_percent && !adev->powerplay.pp_funcs->get_fan_speed_percent) && (attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr)) return 0; /* requires powerplay */ if (attr == &sensor_dev_attr_fan1_input.dev_attr.attr) return 0; return effective_mode; } static const struct attribute_group hwmon_attrgroup = { .attrs = hwmon_attributes, .is_visible = hwmon_attributes_visible, }; static const struct attribute_group *hwmon_groups[] = { &hwmon_attrgroup, NULL }; void amdgpu_dpm_thermal_work_handler(struct work_struct *work) { struct amdgpu_device *adev = container_of(work, struct amdgpu_device, pm.dpm.thermal.work); /* switch to the thermal state */ enum amd_pm_state_type dpm_state = POWER_STATE_TYPE_INTERNAL_THERMAL; if (!adev->pm.dpm_enabled) return; if (adev->powerplay.pp_funcs->get_temperature) { int temp = amdgpu_dpm_get_temperature(adev); if (temp < adev->pm.dpm.thermal.min_temp) /* switch back the user state */ dpm_state = adev->pm.dpm.user_state; } else { if (adev->pm.dpm.thermal.high_to_low) /* switch back the user state */ dpm_state = adev->pm.dpm.user_state; } mutex_lock(&adev->pm.mutex); if (dpm_state == POWER_STATE_TYPE_INTERNAL_THERMAL) adev->pm.dpm.thermal_active = true; else adev->pm.dpm.thermal_active = false; adev->pm.dpm.state = dpm_state; mutex_unlock(&adev->pm.mutex); amdgpu_pm_compute_clocks(adev); } static struct amdgpu_ps *amdgpu_dpm_pick_power_state(struct amdgpu_device *adev, enum amd_pm_state_type dpm_state) { int i; struct amdgpu_ps *ps; u32 ui_class; bool single_display = (adev->pm.dpm.new_active_crtc_count < 2) ? true : false; /* check if the vblank period is too short to adjust the mclk */ if (single_display && adev->powerplay.pp_funcs->vblank_too_short) { if (amdgpu_dpm_vblank_too_short(adev)) single_display = false; } /* certain older asics have a separare 3D performance state, * so try that first if the user selected performance */ if (dpm_state == POWER_STATE_TYPE_PERFORMANCE) dpm_state = POWER_STATE_TYPE_INTERNAL_3DPERF; /* balanced states don't exist at the moment */ if (dpm_state == POWER_STATE_TYPE_BALANCED) dpm_state = POWER_STATE_TYPE_PERFORMANCE; restart_search: /* Pick the best power state based on current conditions */ for (i = 0; i < adev->pm.dpm.num_ps; i++) { ps = &adev->pm.dpm.ps[i]; ui_class = ps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK; switch (dpm_state) { /* user states */ case POWER_STATE_TYPE_BATTERY: if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY) { if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) { if (single_display) return ps; } else return ps; } break; case POWER_STATE_TYPE_BALANCED: if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BALANCED) { if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) { if (single_display) return ps; } else return ps; } break; case POWER_STATE_TYPE_PERFORMANCE: if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE) { if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) { if (single_display) return ps; } else return ps; } break; /* internal states */ case POWER_STATE_TYPE_INTERNAL_UVD: if (adev->pm.dpm.uvd_ps) return adev->pm.dpm.uvd_ps; else break; case POWER_STATE_TYPE_INTERNAL_UVD_SD: if (ps->class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) return ps; break; case POWER_STATE_TYPE_INTERNAL_UVD_HD: if (ps->class & ATOM_PPLIB_CLASSIFICATION_HDSTATE) return ps; break; case POWER_STATE_TYPE_INTERNAL_UVD_HD2: if (ps->class & ATOM_PPLIB_CLASSIFICATION_HD2STATE) return ps; break; case POWER_STATE_TYPE_INTERNAL_UVD_MVC: if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_MVC) return ps; break; case POWER_STATE_TYPE_INTERNAL_BOOT: return adev->pm.dpm.boot_ps; case POWER_STATE_TYPE_INTERNAL_THERMAL: if (ps->class & ATOM_PPLIB_CLASSIFICATION_THERMAL) return ps; break; case POWER_STATE_TYPE_INTERNAL_ACPI: if (ps->class & ATOM_PPLIB_CLASSIFICATION_ACPI) return ps; break; case POWER_STATE_TYPE_INTERNAL_ULV: if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) return ps; break; case POWER_STATE_TYPE_INTERNAL_3DPERF: if (ps->class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE) return ps; break; default: break; } } /* use a fallback state if we didn't match */ switch (dpm_state) { case POWER_STATE_TYPE_INTERNAL_UVD_SD: dpm_state = POWER_STATE_TYPE_INTERNAL_UVD_HD; goto restart_search; case POWER_STATE_TYPE_INTERNAL_UVD_HD: case POWER_STATE_TYPE_INTERNAL_UVD_HD2: case POWER_STATE_TYPE_INTERNAL_UVD_MVC: if (adev->pm.dpm.uvd_ps) { return adev->pm.dpm.uvd_ps; } else { dpm_state = POWER_STATE_TYPE_PERFORMANCE; goto restart_search; } case POWER_STATE_TYPE_INTERNAL_THERMAL: dpm_state = POWER_STATE_TYPE_INTERNAL_ACPI; goto restart_search; case POWER_STATE_TYPE_INTERNAL_ACPI: dpm_state = POWER_STATE_TYPE_BATTERY; goto restart_search; case POWER_STATE_TYPE_BATTERY: case POWER_STATE_TYPE_BALANCED: case POWER_STATE_TYPE_INTERNAL_3DPERF: dpm_state = POWER_STATE_TYPE_PERFORMANCE; goto restart_search; default: break; } return NULL; } static void amdgpu_dpm_change_power_state_locked(struct amdgpu_device *adev) { struct amdgpu_ps *ps; enum amd_pm_state_type dpm_state; int ret; bool equal = false; /* if dpm init failed */ if (!adev->pm.dpm_enabled) return; if (adev->pm.dpm.user_state != adev->pm.dpm.state) { /* add other state override checks here */ if ((!adev->pm.dpm.thermal_active) && (!adev->pm.dpm.uvd_active)) adev->pm.dpm.state = adev->pm.dpm.user_state; } dpm_state = adev->pm.dpm.state; ps = amdgpu_dpm_pick_power_state(adev, dpm_state); if (ps) adev->pm.dpm.requested_ps = ps; else return; if (amdgpu_dpm == 1 && adev->powerplay.pp_funcs->print_power_state) { printk("switching from power state:\n"); amdgpu_dpm_print_power_state(adev, adev->pm.dpm.current_ps); printk("switching to power state:\n"); amdgpu_dpm_print_power_state(adev, adev->pm.dpm.requested_ps); } /* update whether vce is active */ ps->vce_active = adev->pm.dpm.vce_active; if (adev->powerplay.pp_funcs->display_configuration_changed) amdgpu_dpm_display_configuration_changed(adev); ret = amdgpu_dpm_pre_set_power_state(adev); if (ret) return; if (adev->powerplay.pp_funcs->check_state_equal) { if (0 != amdgpu_dpm_check_state_equal(adev, adev->pm.dpm.current_ps, adev->pm.dpm.requested_ps, &equal)) equal = false; } if (equal) return; amdgpu_dpm_set_power_state(adev); amdgpu_dpm_post_set_power_state(adev); adev->pm.dpm.current_active_crtcs = adev->pm.dpm.new_active_crtcs; adev->pm.dpm.current_active_crtc_count = adev->pm.dpm.new_active_crtc_count; if (adev->powerplay.pp_funcs->force_performance_level) { if (adev->pm.dpm.thermal_active) { enum amd_dpm_forced_level level = adev->pm.dpm.forced_level; /* force low perf level for thermal */ amdgpu_dpm_force_performance_level(adev, AMD_DPM_FORCED_LEVEL_LOW); /* save the user's level */ adev->pm.dpm.forced_level = level; } else { /* otherwise, user selected level */ amdgpu_dpm_force_performance_level(adev, adev->pm.dpm.forced_level); } } } void amdgpu_dpm_enable_uvd(struct amdgpu_device *adev, bool enable) { if (adev->powerplay.pp_funcs->powergate_uvd) { /* enable/disable UVD */ mutex_lock(&adev->pm.mutex); amdgpu_dpm_powergate_uvd(adev, !enable); mutex_unlock(&adev->pm.mutex); } else { if (enable) { mutex_lock(&adev->pm.mutex); adev->pm.dpm.uvd_active = true; adev->pm.dpm.state = POWER_STATE_TYPE_INTERNAL_UVD; mutex_unlock(&adev->pm.mutex); } else { mutex_lock(&adev->pm.mutex); adev->pm.dpm.uvd_active = false; mutex_unlock(&adev->pm.mutex); } amdgpu_pm_compute_clocks(adev); } } void amdgpu_dpm_enable_vce(struct amdgpu_device *adev, bool enable) { if (adev->powerplay.pp_funcs->powergate_vce) { /* enable/disable VCE */ mutex_lock(&adev->pm.mutex); amdgpu_dpm_powergate_vce(adev, !enable); mutex_unlock(&adev->pm.mutex); } else { if (enable) { mutex_lock(&adev->pm.mutex); adev->pm.dpm.vce_active = true; /* XXX select vce level based on ring/task */ adev->pm.dpm.vce_level = AMD_VCE_LEVEL_AC_ALL; mutex_unlock(&adev->pm.mutex); amdgpu_device_ip_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE, AMD_CG_STATE_UNGATE); amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE, AMD_PG_STATE_UNGATE); amdgpu_pm_compute_clocks(adev); } else { amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE, AMD_PG_STATE_GATE); amdgpu_device_ip_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE, AMD_CG_STATE_GATE); mutex_lock(&adev->pm.mutex); adev->pm.dpm.vce_active = false; mutex_unlock(&adev->pm.mutex); amdgpu_pm_compute_clocks(adev); } } } void amdgpu_pm_print_power_states(struct amdgpu_device *adev) { int i; if (adev->powerplay.pp_funcs->print_power_state == NULL) return; for (i = 0; i < adev->pm.dpm.num_ps; i++) amdgpu_dpm_print_power_state(adev, &adev->pm.dpm.ps[i]); } int amdgpu_pm_sysfs_init(struct amdgpu_device *adev) { int ret; if (adev->pm.sysfs_initialized) return 0; if (adev->pm.dpm_enabled == 0) return 0; if (adev->powerplay.pp_funcs->get_temperature == NULL) return 0; adev->pm.int_hwmon_dev = hwmon_device_register_with_groups(adev->dev, DRIVER_NAME, adev, hwmon_groups); if (IS_ERR(adev->pm.int_hwmon_dev)) { ret = PTR_ERR(adev->pm.int_hwmon_dev); dev_err(adev->dev, "Unable to register hwmon device: %d\n", ret); return ret; } ret = device_create_file(adev->dev, &dev_attr_power_dpm_state); if (ret) { DRM_ERROR("failed to create device file for dpm state\n"); return ret; } ret = device_create_file(adev->dev, &dev_attr_power_dpm_force_performance_level); if (ret) { DRM_ERROR("failed to create device file for dpm state\n"); return ret; } ret = device_create_file(adev->dev, &dev_attr_pp_num_states); if (ret) { DRM_ERROR("failed to create device file pp_num_states\n"); return ret; } ret = device_create_file(adev->dev, &dev_attr_pp_cur_state); if (ret) { DRM_ERROR("failed to create device file pp_cur_state\n"); return ret; } ret = device_create_file(adev->dev, &dev_attr_pp_force_state); if (ret) { DRM_ERROR("failed to create device file pp_force_state\n"); return ret; } ret = device_create_file(adev->dev, &dev_attr_pp_table); if (ret) { DRM_ERROR("failed to create device file pp_table\n"); return ret; } ret = device_create_file(adev->dev, &dev_attr_pp_dpm_sclk); if (ret) { DRM_ERROR("failed to create device file pp_dpm_sclk\n"); return ret; } ret = device_create_file(adev->dev, &dev_attr_pp_dpm_mclk); if (ret) { DRM_ERROR("failed to create device file pp_dpm_mclk\n"); return ret; } ret = device_create_file(adev->dev, &dev_attr_pp_dpm_pcie); if (ret) { DRM_ERROR("failed to create device file pp_dpm_pcie\n"); return ret; } ret = device_create_file(adev->dev, &dev_attr_pp_sclk_od); if (ret) { DRM_ERROR("failed to create device file pp_sclk_od\n"); return ret; } ret = device_create_file(adev->dev, &dev_attr_pp_mclk_od); if (ret) { DRM_ERROR("failed to create device file pp_mclk_od\n"); return ret; } ret = device_create_file(adev->dev, &dev_attr_pp_gfx_power_profile); if (ret) { DRM_ERROR("failed to create device file " "pp_gfx_power_profile\n"); return ret; } ret = device_create_file(adev->dev, &dev_attr_pp_compute_power_profile); if (ret) { DRM_ERROR("failed to create device file " "pp_compute_power_profile\n"); return ret; } ret = device_create_file(adev->dev, &dev_attr_pp_power_profile_mode); if (ret) { DRM_ERROR("failed to create device file " "pp_power_profile_mode\n"); return ret; } ret = device_create_file(adev->dev, &dev_attr_pp_od_clk_voltage); if (ret) { DRM_ERROR("failed to create device file " "pp_od_clk_voltage\n"); return ret; } ret = amdgpu_debugfs_pm_init(adev); if (ret) { DRM_ERROR("Failed to register debugfs file for dpm!\n"); return ret; } adev->pm.sysfs_initialized = true; return 0; } void amdgpu_pm_sysfs_fini(struct amdgpu_device *adev) { if (adev->pm.dpm_enabled == 0) return; if (adev->pm.int_hwmon_dev) hwmon_device_unregister(adev->pm.int_hwmon_dev); device_remove_file(adev->dev, &dev_attr_power_dpm_state); device_remove_file(adev->dev, &dev_attr_power_dpm_force_performance_level); device_remove_file(adev->dev, &dev_attr_pp_num_states); device_remove_file(adev->dev, &dev_attr_pp_cur_state); device_remove_file(adev->dev, &dev_attr_pp_force_state); device_remove_file(adev->dev, &dev_attr_pp_table); device_remove_file(adev->dev, &dev_attr_pp_dpm_sclk); device_remove_file(adev->dev, &dev_attr_pp_dpm_mclk); device_remove_file(adev->dev, &dev_attr_pp_dpm_pcie); device_remove_file(adev->dev, &dev_attr_pp_sclk_od); device_remove_file(adev->dev, &dev_attr_pp_mclk_od); device_remove_file(adev->dev, &dev_attr_pp_gfx_power_profile); device_remove_file(adev->dev, &dev_attr_pp_compute_power_profile); device_remove_file(adev->dev, &dev_attr_pp_power_profile_mode); device_remove_file(adev->dev, &dev_attr_pp_od_clk_voltage); } void amdgpu_pm_compute_clocks(struct amdgpu_device *adev) { struct drm_device *ddev = adev->ddev; struct drm_crtc *crtc; struct amdgpu_crtc *amdgpu_crtc; int i = 0; if (!adev->pm.dpm_enabled) return; if (adev->mode_info.num_crtc) amdgpu_display_bandwidth_update(adev); for (i = 0; i < AMDGPU_MAX_RINGS; i++) { struct amdgpu_ring *ring = adev->rings[i]; if (ring && ring->ready) amdgpu_fence_wait_empty(ring); } if (adev->powerplay.pp_funcs->dispatch_tasks) { amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_DISPLAY_CONFIG_CHANGE, NULL); } else { mutex_lock(&adev->pm.mutex); adev->pm.dpm.new_active_crtcs = 0; adev->pm.dpm.new_active_crtc_count = 0; if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) { list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) { amdgpu_crtc = to_amdgpu_crtc(crtc); if (amdgpu_crtc->enabled) { adev->pm.dpm.new_active_crtcs |= (1 << amdgpu_crtc->crtc_id); adev->pm.dpm.new_active_crtc_count++; } } } /* update battery/ac status */ if (power_supply_is_system_supplied() > 0) adev->pm.dpm.ac_power = true; else adev->pm.dpm.ac_power = false; amdgpu_dpm_change_power_state_locked(adev); mutex_unlock(&adev->pm.mutex); } } /* * Debugfs info */ #if defined(CONFIG_DEBUG_FS) static int amdgpu_debugfs_pm_info_pp(struct seq_file *m, struct amdgpu_device *adev) { uint32_t value; struct pp_gpu_power query = {0}; int size; /* sanity check PP is enabled */ if (!(adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->read_sensor)) return -EINVAL; /* GPU Clocks */ size = sizeof(value); seq_printf(m, "GFX Clocks and Power:\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_MCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (MCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_SCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (SCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (PSTATE_SCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (PSTATE_MCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX, (void *)&value, &size)) seq_printf(m, "\t%u mV (VDDGFX)\n", value); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB, (void *)&value, &size)) seq_printf(m, "\t%u mV (VDDNB)\n", value); size = sizeof(query); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_POWER, (void *)&query, &size)) { seq_printf(m, "\t%u.%u W (VDDC)\n", query.vddc_power >> 8, query.vddc_power & 0xff); seq_printf(m, "\t%u.%u W (VDDCI)\n", query.vddci_power >> 8, query.vddci_power & 0xff); seq_printf(m, "\t%u.%u W (max GPU)\n", query.max_gpu_power >> 8, query.max_gpu_power & 0xff); seq_printf(m, "\t%u.%u W (average GPU)\n", query.average_gpu_power >> 8, query.average_gpu_power & 0xff); } size = sizeof(value); seq_printf(m, "\n"); /* GPU Temp */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_TEMP, (void *)&value, &size)) seq_printf(m, "GPU Temperature: %u C\n", value/1000); /* GPU Load */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD, (void *)&value, &size)) seq_printf(m, "GPU Load: %u %%\n", value); seq_printf(m, "\n"); /* UVD clocks */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_POWER, (void *)&value, &size)) { if (!value) { seq_printf(m, "UVD: Disabled\n"); } else { seq_printf(m, "UVD: Enabled\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (DCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (VCLK)\n", value/100); } } seq_printf(m, "\n"); /* VCE clocks */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_POWER, (void *)&value, &size)) { if (!value) { seq_printf(m, "VCE: Disabled\n"); } else { seq_printf(m, "VCE: Enabled\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_ECCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (ECCLK)\n", value/100); } } return 0; } static void amdgpu_parse_cg_state(struct seq_file *m, u32 flags) { int i; for (i = 0; clocks[i].flag; i++) seq_printf(m, "\t%s: %s\n", clocks[i].name, (flags & clocks[i].flag) ? "On" : "Off"); } static int amdgpu_debugfs_pm_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct amdgpu_device *adev = dev->dev_private; struct drm_device *ddev = adev->ddev; u32 flags = 0; amdgpu_device_ip_get_clockgating_state(adev, &flags); seq_printf(m, "Clock Gating Flags Mask: 0x%x\n", flags); amdgpu_parse_cg_state(m, flags); seq_printf(m, "\n"); if (!adev->pm.dpm_enabled) { seq_printf(m, "dpm not enabled\n"); return 0; } if ((adev->flags & AMD_IS_PX) && (ddev->switch_power_state != DRM_SWITCH_POWER_ON)) { seq_printf(m, "PX asic powered off\n"); } else if (adev->powerplay.pp_funcs->debugfs_print_current_performance_level) { mutex_lock(&adev->pm.mutex); if (adev->powerplay.pp_funcs->debugfs_print_current_performance_level) adev->powerplay.pp_funcs->debugfs_print_current_performance_level(adev, m); else seq_printf(m, "Debugfs support not implemented for this asic\n"); mutex_unlock(&adev->pm.mutex); } else { return amdgpu_debugfs_pm_info_pp(m, adev); } return 0; } static const struct drm_info_list amdgpu_pm_info_list[] = { {"amdgpu_pm_info", amdgpu_debugfs_pm_info, 0, NULL}, }; #endif static int amdgpu_debugfs_pm_init(struct amdgpu_device *adev) { #if defined(CONFIG_DEBUG_FS) return amdgpu_debugfs_add_files(adev, amdgpu_pm_info_list, ARRAY_SIZE(amdgpu_pm_info_list)); #else return 0; #endif }