/* * rcar_du_crtc.c -- R-Car Display Unit CRTCs * * Copyright (C) 2013-2014 Renesas Electronics Corporation * * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include <linux/clk.h> #include <linux/mutex.h> #include <drm/drmP.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_crtc.h> #include <drm/drm_crtc_helper.h> #include <drm/drm_fb_cma_helper.h> #include <drm/drm_gem_cma_helper.h> #include <drm/drm_plane_helper.h> #include "rcar_du_crtc.h" #include "rcar_du_drv.h" #include "rcar_du_kms.h" #include "rcar_du_plane.h" #include "rcar_du_regs.h" static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg) { struct rcar_du_device *rcdu = rcrtc->group->dev; return rcar_du_read(rcdu, rcrtc->mmio_offset + reg); } static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data) { struct rcar_du_device *rcdu = rcrtc->group->dev; rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data); } static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr) { struct rcar_du_device *rcdu = rcrtc->group->dev; rcar_du_write(rcdu, rcrtc->mmio_offset + reg, rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr); } static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set) { struct rcar_du_device *rcdu = rcrtc->group->dev; rcar_du_write(rcdu, rcrtc->mmio_offset + reg, rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set); } static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr, u32 set) { struct rcar_du_device *rcdu = rcrtc->group->dev; u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg); rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set); } static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc) { int ret; ret = clk_prepare_enable(rcrtc->clock); if (ret < 0) return ret; ret = clk_prepare_enable(rcrtc->extclock); if (ret < 0) goto error_clock; ret = rcar_du_group_get(rcrtc->group); if (ret < 0) goto error_group; return 0; error_group: clk_disable_unprepare(rcrtc->extclock); error_clock: clk_disable_unprepare(rcrtc->clock); return ret; } static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc) { rcar_du_group_put(rcrtc->group); clk_disable_unprepare(rcrtc->extclock); clk_disable_unprepare(rcrtc->clock); } /* ----------------------------------------------------------------------------- * Hardware Setup */ static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc) { const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode; unsigned long mode_clock = mode->clock * 1000; unsigned long clk; u32 value; u32 escr; u32 div; /* Compute the clock divisor and select the internal or external dot * clock based on the requested frequency. */ clk = clk_get_rate(rcrtc->clock); div = DIV_ROUND_CLOSEST(clk, mode_clock); div = clamp(div, 1U, 64U) - 1; escr = div | ESCR_DCLKSEL_CLKS; if (rcrtc->extclock) { unsigned long extclk; unsigned long extrate; unsigned long rate; u32 extdiv; extclk = clk_get_rate(rcrtc->extclock); extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock); extdiv = clamp(extdiv, 1U, 64U) - 1; rate = clk / (div + 1); extrate = extclk / (extdiv + 1); if (abs((long)extrate - (long)mode_clock) < abs((long)rate - (long)mode_clock)) { dev_dbg(rcrtc->group->dev->dev, "crtc%u: using external clock\n", rcrtc->index); escr = extdiv | ESCR_DCLKSEL_DCLKIN; } } rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR, escr); rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0); /* Signal polarities */ value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? 0 : DSMR_VSL) | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? 0 : DSMR_HSL) | DSMR_DIPM_DE | DSMR_CSPM; rcar_du_crtc_write(rcrtc, DSMR, value); /* Display timings */ rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19); rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start + mode->hdisplay - 19); rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end - mode->hsync_start - 1); rcar_du_crtc_write(rcrtc, HCR, mode->htotal - 1); rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal - mode->crtc_vsync_end - 2); rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal - mode->crtc_vsync_end + mode->crtc_vdisplay - 2); rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal - mode->crtc_vsync_end + mode->crtc_vsync_start - 1); rcar_du_crtc_write(rcrtc, VCR, mode->crtc_vtotal - 1); rcar_du_crtc_write(rcrtc, DESR, mode->htotal - mode->hsync_start); rcar_du_crtc_write(rcrtc, DEWR, mode->hdisplay); } void rcar_du_crtc_route_output(struct drm_crtc *crtc, enum rcar_du_output output) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct rcar_du_device *rcdu = rcrtc->group->dev; /* Store the route from the CRTC output to the DU output. The DU will be * configured when starting the CRTC. */ rcrtc->outputs |= BIT(output); /* Store RGB routing to DPAD0, the hardware will be configured when * starting the CRTC. */ if (output == RCAR_DU_OUTPUT_DPAD0) rcdu->dpad0_source = rcrtc->index; } static unsigned int plane_zpos(struct rcar_du_plane *plane) { return to_rcar_plane_state(plane->plane.state)->zpos; } static const struct rcar_du_format_info * plane_format(struct rcar_du_plane *plane) { return to_rcar_plane_state(plane->plane.state)->format; } static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc) { struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES]; unsigned int num_planes = 0; unsigned int dptsr_planes; unsigned int hwplanes = 0; unsigned int prio = 0; unsigned int i; u32 dspr = 0; for (i = 0; i < rcrtc->group->num_planes; ++i) { struct rcar_du_plane *plane = &rcrtc->group->planes[i]; unsigned int j; if (plane->plane.state->crtc != &rcrtc->crtc) continue; /* Insert the plane in the sorted planes array. */ for (j = num_planes++; j > 0; --j) { if (plane_zpos(planes[j-1]) <= plane_zpos(plane)) break; planes[j] = planes[j-1]; } planes[j] = plane; prio += plane_format(plane)->planes * 4; } for (i = 0; i < num_planes; ++i) { struct rcar_du_plane *plane = planes[i]; struct drm_plane_state *state = plane->plane.state; unsigned int index = to_rcar_plane_state(state)->hwindex; prio -= 4; dspr |= (index + 1) << prio; hwplanes |= 1 << index; if (plane_format(plane)->planes == 2) { index = (index + 1) % 8; prio -= 4; dspr |= (index + 1) << prio; hwplanes |= 1 << index; } } /* Update the planes to display timing and dot clock generator * associations. * * Updating the DPTSR register requires restarting the CRTC group, * resulting in visible flicker. To mitigate the issue only update the * association if needed by enabled planes. Planes being disabled will * keep their current association. */ mutex_lock(&rcrtc->group->lock); dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes : rcrtc->group->dptsr_planes & ~hwplanes; if (dptsr_planes != rcrtc->group->dptsr_planes) { rcar_du_group_write(rcrtc->group, DPTSR, (dptsr_planes << 16) | dptsr_planes); rcrtc->group->dptsr_planes = dptsr_planes; if (rcrtc->group->used_crtcs) rcar_du_group_restart(rcrtc->group); } mutex_unlock(&rcrtc->group->lock); rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, dspr); } /* ----------------------------------------------------------------------------- * Page Flip */ void rcar_du_crtc_cancel_page_flip(struct rcar_du_crtc *rcrtc, struct drm_file *file) { struct drm_pending_vblank_event *event; struct drm_device *dev = rcrtc->crtc.dev; unsigned long flags; /* Destroy the pending vertical blanking event associated with the * pending page flip, if any, and disable vertical blanking interrupts. */ spin_lock_irqsave(&dev->event_lock, flags); event = rcrtc->event; if (event && event->base.file_priv == file) { rcrtc->event = NULL; event->base.destroy(&event->base); drm_crtc_vblank_put(&rcrtc->crtc); } spin_unlock_irqrestore(&dev->event_lock, flags); } static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc) { struct drm_pending_vblank_event *event; struct drm_device *dev = rcrtc->crtc.dev; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); event = rcrtc->event; rcrtc->event = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); if (event == NULL) return; spin_lock_irqsave(&dev->event_lock, flags); drm_send_vblank_event(dev, rcrtc->index, event); wake_up(&rcrtc->flip_wait); spin_unlock_irqrestore(&dev->event_lock, flags); drm_crtc_vblank_put(&rcrtc->crtc); } static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc) { struct drm_device *dev = rcrtc->crtc.dev; unsigned long flags; bool pending; spin_lock_irqsave(&dev->event_lock, flags); pending = rcrtc->event != NULL; spin_unlock_irqrestore(&dev->event_lock, flags); return pending; } static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc) { struct rcar_du_device *rcdu = rcrtc->group->dev; if (wait_event_timeout(rcrtc->flip_wait, !rcar_du_crtc_page_flip_pending(rcrtc), msecs_to_jiffies(50))) return; dev_warn(rcdu->dev, "page flip timeout\n"); rcar_du_crtc_finish_page_flip(rcrtc); } /* ----------------------------------------------------------------------------- * Start/Stop and Suspend/Resume */ static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc) { struct drm_crtc *crtc = &rcrtc->crtc; bool interlaced; if (rcrtc->started) return; /* Set display off and background to black */ rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0)); rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0)); /* Configure display timings and output routing */ rcar_du_crtc_set_display_timing(rcrtc); rcar_du_group_set_routing(rcrtc->group); /* Start with all planes disabled. */ rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0); /* Select master sync mode. This enables display operation in master * sync mode (with the HSYNC and VSYNC signals configured as outputs and * actively driven). */ interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE; rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK, (interlaced ? DSYSR_SCM_INT_VIDEO : 0) | DSYSR_TVM_MASTER); rcar_du_group_start_stop(rcrtc->group, true); /* Turn vertical blanking interrupt reporting back on. */ drm_crtc_vblank_on(crtc); rcrtc->started = true; } static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc) { struct drm_crtc *crtc = &rcrtc->crtc; if (!rcrtc->started) return; /* Disable all planes and wait for the change to take effect. This is * required as the DSnPR registers are updated on vblank, and no vblank * will occur once the CRTC is stopped. Disabling planes when starting * the CRTC thus wouldn't be enough as it would start scanning out * immediately from old frame buffers until the next vblank. * * This increases the CRTC stop delay, especially when multiple CRTCs * are stopped in one operation as we now wait for one vblank per CRTC. * Whether this can be improved needs to be researched. */ rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0); drm_crtc_wait_one_vblank(crtc); /* Disable vertical blanking interrupt reporting. We first need to wait * for page flip completion before stopping the CRTC as userspace * expects page flips to eventually complete. */ rcar_du_crtc_wait_page_flip(rcrtc); drm_crtc_vblank_off(crtc); /* Select switch sync mode. This stops display operation and configures * the HSYNC and VSYNC signals as inputs. */ rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH); rcar_du_group_start_stop(rcrtc->group, false); rcrtc->started = false; } void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc) { rcar_du_crtc_stop(rcrtc); rcar_du_crtc_put(rcrtc); } void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc) { unsigned int i; if (!rcrtc->enabled) return; rcar_du_crtc_get(rcrtc); rcar_du_crtc_start(rcrtc); /* Commit the planes state. */ for (i = 0; i < rcrtc->group->num_planes; ++i) { struct rcar_du_plane *plane = &rcrtc->group->planes[i]; if (plane->plane.state->crtc != &rcrtc->crtc) continue; rcar_du_plane_setup(plane); } rcar_du_crtc_update_planes(rcrtc); } /* ----------------------------------------------------------------------------- * CRTC Functions */ static void rcar_du_crtc_enable(struct drm_crtc *crtc) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); if (rcrtc->enabled) return; rcar_du_crtc_get(rcrtc); rcar_du_crtc_start(rcrtc); rcrtc->enabled = true; } static void rcar_du_crtc_disable(struct drm_crtc *crtc) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); if (!rcrtc->enabled) return; rcar_du_crtc_stop(rcrtc); rcar_du_crtc_put(rcrtc); rcrtc->enabled = false; rcrtc->outputs = 0; } static bool rcar_du_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { /* TODO Fixup modes */ return true; } static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state) { struct drm_pending_vblank_event *event = crtc->state->event; struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct drm_device *dev = rcrtc->crtc.dev; unsigned long flags; if (event) { WARN_ON(drm_crtc_vblank_get(crtc) != 0); spin_lock_irqsave(&dev->event_lock, flags); rcrtc->event = event; spin_unlock_irqrestore(&dev->event_lock, flags); } } static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); rcar_du_crtc_update_planes(rcrtc); } static const struct drm_crtc_helper_funcs crtc_helper_funcs = { .mode_fixup = rcar_du_crtc_mode_fixup, .disable = rcar_du_crtc_disable, .enable = rcar_du_crtc_enable, .atomic_begin = rcar_du_crtc_atomic_begin, .atomic_flush = rcar_du_crtc_atomic_flush, }; static const struct drm_crtc_funcs crtc_funcs = { .reset = drm_atomic_helper_crtc_reset, .destroy = drm_crtc_cleanup, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, }; /* ----------------------------------------------------------------------------- * Interrupt Handling */ static irqreturn_t rcar_du_crtc_irq(int irq, void *arg) { struct rcar_du_crtc *rcrtc = arg; irqreturn_t ret = IRQ_NONE; u32 status; status = rcar_du_crtc_read(rcrtc, DSSR); rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK); if (status & DSSR_FRM) { drm_handle_vblank(rcrtc->crtc.dev, rcrtc->index); rcar_du_crtc_finish_page_flip(rcrtc); ret = IRQ_HANDLED; } return ret; } /* ----------------------------------------------------------------------------- * Initialization */ int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index) { static const unsigned int mmio_offsets[] = { DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET }; struct rcar_du_device *rcdu = rgrp->dev; struct platform_device *pdev = to_platform_device(rcdu->dev); struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index]; struct drm_crtc *crtc = &rcrtc->crtc; unsigned int irqflags; struct clk *clk; char clk_name[9]; char *name; int irq; int ret; /* Get the CRTC clock and the optional external clock. */ if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) { sprintf(clk_name, "du.%u", index); name = clk_name; } else { name = NULL; } rcrtc->clock = devm_clk_get(rcdu->dev, name); if (IS_ERR(rcrtc->clock)) { dev_err(rcdu->dev, "no clock for CRTC %u\n", index); return PTR_ERR(rcrtc->clock); } sprintf(clk_name, "dclkin.%u", index); clk = devm_clk_get(rcdu->dev, clk_name); if (!IS_ERR(clk)) { rcrtc->extclock = clk; } else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) { dev_info(rcdu->dev, "can't get external clock %u\n", index); return -EPROBE_DEFER; } init_waitqueue_head(&rcrtc->flip_wait); rcrtc->group = rgrp; rcrtc->mmio_offset = mmio_offsets[index]; rcrtc->index = index; rcrtc->enabled = false; ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, &rgrp->planes[index % 2].plane, NULL, &crtc_funcs); if (ret < 0) return ret; drm_crtc_helper_add(crtc, &crtc_helper_funcs); /* Start with vertical blanking interrupt reporting disabled. */ drm_crtc_vblank_off(crtc); /* Register the interrupt handler. */ if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) { irq = platform_get_irq(pdev, index); irqflags = 0; } else { irq = platform_get_irq(pdev, 0); irqflags = IRQF_SHARED; } if (irq < 0) { dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index); return irq; } ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags, dev_name(rcdu->dev), rcrtc); if (ret < 0) { dev_err(rcdu->dev, "failed to register IRQ for CRTC %u\n", index); return ret; } return 0; } void rcar_du_crtc_enable_vblank(struct rcar_du_crtc *rcrtc, bool enable) { if (enable) { rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL); rcar_du_crtc_set(rcrtc, DIER, DIER_VBE); } else { rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE); } }